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Abstract

This article focuses on non-binary wireless transmission, where “non-binary” refers to the use of non-binary Low
Density Parity Check (LDPC) codes for Forward Error Correction. The complexity of the non-binary soft demapper is
addressed in particular when one non-binary Galois Field (GF) symbol spreads across multiple Quadrature
Amplitude Modulation (QAM) symbols and Space-Time Block Code (STBC) codewords. A strategy is devised to
guarantee an efficient mapping at the transmitter, together with an algorithm at the receiver for low complexity
soft Maximum Likelihood demapping. The proposed solution targets a trade-off between performance and
complexity, and removes any restriction on the setting of the GF order, QAM constellation order, and STBC
scheme. This makes the non-binary LDPC codes even more appealing for potential use in practical wireless
communication systems.
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1. Introduction
Non-binary channel codes (i.e., defined over high-order
Galois Field (GF) q > 2) have been researched in the lit-
erature to achieve higher error protection than conven-
tional binary codes for transmission over different noisy
channels [1-3]. More recently, the European FP7
DAVINCI project [4] has explored the design of innova-
tive non-binary Low Density Parity Check (LDPC) codes
with tailored link level technologies over wireless fading
channels, whilst aiming at small added complexity to
conventional binary receivers.
The DAVINCI project considers LDPC codes defined

over a GF of order q = 64 (denoted as GF(64)). The pro-
posed non-binary LDPC codes were shown to outper-
form their binary counterparts, e.g., binary LDPC and
(duo-) binary Turbo Codes, with higher gains for higher
constellation orders and higher coding rates [5]. More-
over, these non-binary codes were shown to boost the
system spectral efficiency when combined with high-
order Quadrature Amplitude Modulation (QAM) con-
stellations and MIMO spatial multiplexing [6]. This
boosting effect comes from the inherently higher capa-
city of the single-input single-output (SISO) equivalent

channel as seen by the non-binary code with high-order
constellations and multiple antennas [6,7].
Complexity-wise, for high GF order, e.g., q = 64, some

relatively low complexity LDPC decoding algorithms have
been proposed in [8]. Now, if we consider mapping the
encoded symbols onto QAM constellation symbols and
Space-Time Block Code (STBC) codewords, the complex-
ity of the soft demapper at the receiver turns out to repre-
sent a real challenge, especially when one GF symbol
spreads across multiple QAM constellation symbols and
STBC codewords. This can be seen for example in the
simple case of GF order q = 64 with 16QAM constellation
in SISO (single antenna) transmission, where two GF64
coded symbols (total of 2 × 6 = 12 bits) jointly map onto
three 16QAM symbols (total of 3 × 4 = 12 bits). Thus, one
of the three 16QAM symbols has to contain coded bits
from two GF symbols. This spreading of the GF coded
symbols across more than one QAM symbol drastically
increases the complexity of the soft demapper, the latter
already being more complex than in the binary case (q =
2). This complexity issue may become even more proble-
matic in the mapping of GF coded symbols to STBC code-
words. This is particularly true when one GF coded
symbol does not fit into exactly one STBC codeword. In
order to avoid such complexity, most of the recent studies
have been restricted to the configurations where each GF
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symbol can be individually processed in its mapping onto
QAM symbols and STBC codewords [5,6]. This led in cer-
tain cases to non-practical assumptions, such as 3 × 3
antenna configuration for GF64 with Quadrature Phase
Shift Keying (QPSK) and MIMO spatial multiplexing [6].
This article tackles the challenging complexity of the

non-binary soft demapper when the GF symbol spreads
across multiple QAM symbols and STBC codewords.
The mappings at the transmitter and the soft demap-
ping at the receiver are both considered with the aim to
achieve the best trade-off between performance and
complexity. A strategy is devised to guarantee an effi-
cient mapping at the transmitter, together with an algo-
rithm for low complexity soft demapping at the receiver.
The proposed algorithm borrows a key finding in [8]
which is by feeding the non-binary LDPC decoder with
only a limited number of the highest A Posteriori Prob-
ability (APP) values for each GF symbol (with this lim-
ited number being much less than the GF order q) one
can still achieve very close to the optimal performance
whilst reducing significantly the non-binary LDPC
decoding complexity and memory requirements.
The rest of the article is structured as follows. Section

2 describes the system model, and Section 3 follows
with the problem statement. Section 4 presents the
mapping and demapping solutions proposed. Section 5
shows numerical results to illustrate the performance
and complexity of the proposed solutions. Finally, Sec-
tion 6 draws our conclusions and suggests some per-
spectives for future work.

2. System model: non-binary wireless
transmission
The key notations used throughout this article are listed
in Table 1.

A block diagram of the non-binary transmission chain
is depicted in Figure 1. In the following, we first intro-
duce the non-binary LDPC codec used, and then
describe the functioning of the non-binary wireless
transmission chain illustrated in Figure 1.

2.1 Non-binary LDPC codes
The non-binary LDPC codes used are taken directly
from DAVINCI project [4]. These codes have been
designed with a very sparse parity check matrix. The
non-zero elements of the matrix are defined over a GF
of order q = 64, denoted by Ω. The variable node degree
is fixed to dv = 2 (optimal when q ® ∞ and codeword
length ® ∞), whereas the check node degree dc is vari-
able and adapted to the coding rate (i.e., dc = {4, 6, 8,
12} for rate = {1/2, 2/3, 3/4, 5/6}, respectively). The
DAVINCI codes are obtained as regular LDPC codes
over the GF Ω following the optimization process
described in [9]. At the receiver side, we use a reduced
complexity non-binary decoder based on the Extended
Min-Sum algorithm proposed in [8] for practical hard-
ware implementation of the DAVINCI codes. This low
complexity decoder takes only the qm (qm <q) highest
APP values out of the q - 1 values available at the out-
put of the soft demapper. This truncation of the APP
values at the input of the decoder reduces significantly
the decoder complexity at the cost of slight performance
degradation.

2.2 Non-binary wireless transmission chain
2.2.1 Transmitter operations
As illustrated in Figure 1, the binary information mes-
sage issued from the source is first converted into non-
binary GF(q) message by simply mapping groups of log2
(q) bits onto their corresponding GF(q) images. The

Table 1 Key notations used throughout the article

q GF order (default value q = 64)

Ω Alphabet of q GF symbols

M QAM constellation order (e.g., QPSK ® M = 4; 16QAM ® M = 16)

A Alphabet of M QAM constellation symbols

qm Number of APP values per GF symbol fed to the decoder (< <q)

nt Number of transmitter antennas

nr Number of receiver antennas

Q Number of QAM symbols mapped onto one STBC codeword

T STBC block length (as expressed in MIMO channel uses)

m1 Minimum integer number of GF(q) symbols which map onto m2 M-QAM symbols and m3 STBC codewords

n1 Number of GF(q) symbols multiplexing within n2 (≤m2) M-QAM symbols and n3 (≤m3) STBC codewords, (n1 ≤ m1)

m2 Minimum integer number of M-QAM symbols which map to m1 GF(q) symbols and m3 STBC codewords

n2 Number of M-QAM symbols carrying one GF(q) symbol, (n2 ≤ m2)

m3 Minimum integer number of STBC codewords which map to m1 GF(q) symbols and m2 M-QAM symbols

n3 Number of STBC codewords carrying one GF(q) symbol, (n3 ≤ m3)
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binary images are obtained from the primitive polyno-
mial below used in the DAVINCI project to optimize
the DAVINCI codes [4,9]:

P (x) = x6 + x + 1 (1)

Blocks of K GF(q) symbols are then passed to the
non-binary LDPC encoder which generates the non-bin-
ary codeword of length N GF(q) symbols. In order then
to map the non-binary Forward Error Correction (FEC)
codeword onto the M-QAM constellation symbols, each
of the GF(q) symbols in the FEC codeword is first con-
verted back to its binary image of log2(q) bits (using the
same primitive polynomial in (1)). The resulting binary
stream is then passed to the Mapping module, which is
in charge of mapping the GF(q) symbols onto the M-
QAM constellation symbols and STBC codewords. As
highlighted in Figure 1, the mapping function features a
novel module referred to as intra-block permutation
which permutes/re-arranges the bits (per block of m1

GF symbols) in the binary stream in accordance with
three design rules devised in this article to achieve the
trade-off between performance and complexity. Next to
the intra-block permutation, each group of log2(M) adja-
cent bits of the permuted output stream is mapped onto
one QAM constellation symbol. A conventional gray-
mapping is used to produce the stream of complex-
valued QAM symbols. The QAM symbols are then
directly sent for transmission over the wireless multi-
path fading channel in the context of a single antenna
transmission.
In the context of multi-antenna transmission, the

stream of QAM symbols undergoes a further step of
spatial encoding represented by the STBC encoder
depicted in Figure 1. The QAM symbols are arranged in
groups of Q symbols, and each group is encoded by the
STBC encoder resulting into a STBC codeword Vjof nt
× T complex symbols, with nt being the number of
transmitter antennas and T the STBC block length. The
spatial rate is then given by RS = Q/T. The output

stream of the STBC encoder is then transmitted across
the multiple antennas through the multi-path fading
channel.
2.2.2 Receiver operations
At the receiver side, with single antenna (i.e., single out-
put), the complex-valued received signal can be modeled
as:

y = hx + v (2)

where h is the channel fading, x the transmitted sym-
bol per channel use, and v the background noise
assumed to be complex-valued Gaussian distributed
with zero mean and single-sided variance N0.
The received symbols are de-interleaved at the QAM

level, and next fed into the soft demapper, which com-
putes the APP values of all GF(q) symbols in the code-
word. The computation of the APP values in the non-
binary case is much heavier than in the case of binary
transmission for two reasons: first, each GF(q) coded
symbol calls for the computation of (q - 1) APP values,
and second the computation of each APP value turns
out to be particularly complicated whenever one GF(q)
symbol is spread across different QAM symbols (see
Section 3 for more details). The APP values are fed into
the non-binary FEC decoder, and the decoded GF sym-
bols are finally converted into bits to represent the
received binary message.
The received signal model is slightly more compli-

cated with nt × nr MIMO transmission.
The received STBC codeword Wj of size nr × T is a

linear transformation of the transmitted STBC codeword
Vj plus additive Gaussian noise νj, as shown below:

Wj = HjVj + ν j (3)

where Hjis an nr × nt complex matrix representing the
MIMO frequency-flat channel coefficients for the jth
STBC codeword Vj.
The received STBC codewords are fed into the so-

called Soft Maximum Likelihood (ML) demapper which

Figure 1 Block diagram of the transmission chain considered.
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combines the STBC ML detection and the APP compu-
tation. It is noteworthy here that sub-optimal linear
equalizers may be considered for the STBC detection,
which will then be followed in a second step by the APP
computation for non-binary LDPC decoder. Such linear
approach was compared to the soft ML demapper in
[4,10], where the latter was shown to significantly out-
perform the former. It is not in the scope of this article
to reproduce such comparison, but rather focus on the
complexity reduction of the soft ML demapper with the
aim to make it practical for wireless communication
systems.

3. Problem statement: mapping and Soft ML
demapping
Figure 2 illustrates the different stages for mapping the
GF(q) non-binary symbols onto the M-QAM constella-
tion symbols, and later on onto the STBC codewords
should MIMO transmission be considered.

3.1 Mapping of GF(q) symbols onto M-QAM symbols
As suggested in [6], in order to ensure a bijective map-
ping between GF(q) and M-QAM symbols, we have to
map a vector of m1 GF(q) symbols onto a vector of m2

M-QAM symbols, such that both vectors are of the
same length as expressed in (coded) bits:

m1 × log2
(
q
)
= m2 × log2 (M) (4)

In [6], in order to minimize the complexity of the
mapper and demapper, the parameters m1 and m2 are

set to their minimum possible integer values in accor-
dance with Equation (4). Assuming q = 64, Table 2 lists
the values of m1 and m2 to be used with QPSK,
16QAM, and 64QAM constellations.
For example for QPSK, one GF(64) symbol maps onto

three QPSK symbols. For 16QAM however, two GF(64)
symbols will map onto three 16QAM symbols, and con-
sequently two GF(64) symbols will be spread onto at
least one 16QAM symbol. For 64QAM, the mapping is
obviously one-to-one since both GF(64) and 64QAM
symbols are represented by the same number of bits (=
log2(64) = 6).
The mapping between GF(q) symbols and M-QAM

symbols can be formulated as:

d(n) =
[
d(n)
0 · · · d(n)

m1−1

] Mapping μ(.)←→ x(n) =
[
x(n)
0 · · · x(n)

m2−1

]

d =

[
d(0) · · · d

⎛
⎝ N

m1
−1

⎞
⎠

]
; x =

[
x(0) · · · x

⎛
⎝ N

m2
−1

⎞
⎠

] (5)

In the sequel, we consider only one vector d(n) and
corresponding vector x(n), and omit the superscript
index n for the sake of simplicity. Thus, d and x refer
now to two vectors of lengths m1 and m2, respectively,
associated by the mapping function μ(.). As illustrated
in Figures 1 and 2, the mapping function μ(.) features a
novel component introduced in this article which is the
so-called “intra-block permutation“. In this component,
the bits in the binary image of the vector of m1 GF(q)
symbols are permuted (re-arranged) in accordance with
the design rules proposed in Section 3.1. This is with

Figure 2 Mapping of non-binary symbols onto QAM symbols and STBC input-words.
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the aim to achieve the best trade-off between perfor-
mance and complexity.
At the receiver side, the soft demapper computes q - 1

APP values for each GF(q) coded symbol. For a mem-
oryless SISO channel and assuming all GF(q) coded
symbols are equiprobable, we can write the kth (k = 0...q
- 1) APP value for the ith (i = 0...m1 - 1) GF(q) coded
symbol in the vector d of m1 GF(q) symbols mapped
onto the vector x of m2 QAM symbols as [6]:

λi,k = ln

∑
d∈�k

i

exp

(
− 1
N0

m2−1∑
j=0

∣∣yj − hjμj (d)
∣∣2)

∑
d∈�0

i

exp

(
− 1
N0

m2−1∑
j=0

∣∣yj − hjμj (d)
∣∣2) (6)

where yj = hjxj + νj is the jth received symbol given in
(2), hj is the corresponding equivalent channel coeffi-
cient (that we assume perfectly known), xj = μj(d) the
jth entry in the vector x of m2 QAM symbols mapping
onto the vector d of m1 GF(q) symbols, and νj the noise

term. The set �k
i includes all configurations of vector d

with ith component di = ak, where ak denotes the kth

entry in the GF Ω. The cardinality of �k
i is clearly

equal to qm1-1.
The computational complexity of the soft demapper is

of a magnitude order O((q - 1) × qm1-1 × m2) per GF
symbol. This reflects an exponential growth with the GF
order q whenever the minimum number m1 of GF(q)
symbols that are spread onto M-QAM symbols is
strictly greater than 1 (m1 > 1). This is the case with
16QAM as given in Table 2.

3.2 Mapping of GF(q) symbols onto STBC codewords
With MIMO transmission, a number Q of M-QAM
constellation symbols (equal to one input word to the
STBC encoder which outputs once corresponding STBC
codeword) are encoded together and transmitted across
nt transmitter antennas during T transmission intervals
(also known as MIMO channels uses). Thus, similarly to
(4), we have to map here the original vector of m1 GF
(q) symbols (mapping onto the vector of m2 M-QAM
symbols) onto a third vector of m3 STBC codewords,
such that all three vectors are of the same length in bits:

m1 × log2
(
q
)
= m2 × log2 (M) = m3 × Q × log2 (M) (7)

The parameters m1, m2, and m3 should be set to their
minimum possible integer values in accordance with

Equation (7). Assuming q = 64, STBC codeword size Q
= 2, Table 3 gives the values of m1, m2, and m3, with
QPSK, 16QAM, and 64QAM constellations.
Compared to Table 2, the values of m1 and m2 in

Table 3 are simply doubled as a result of MIMO trans-
mission with Q = 2. For a memoryless MIMO channel,
we can write the kth (k = 0...q - 1) APP value (assuming
the to use Log-MAP) for the ith (i = 0...m1 - 1) GF(q)
coded symbol in the vector d of m1 GF(q) symbols
mapped onto the vector of m2 QAM symbols (equiva-
lent to m3 STBC codewords) as

λi,k = ln

∑
d∈�k

i

exp

(
− 1
N0

n3−1∑
j=0

∥∥Wj − HjSM (μ (d))
∥∥2
F

)

∑
d∈�0

i

exp

(
− 1
N0

n3−1∑
j=0

∥∥Wj − HjSM (μ (d))
∥∥2
F

) (8)

where SM(.) denotes the MIMO encoder operation,
which encodes the stream of QAM symbols into STBC
codewords, and ‖..‖F is the Frobenius norm. The para-
meter n3 is defined in Table 1 as the number of STBC
codewords carrying one GF(q) symbol (n3 ≤ m3). The
value of n3 may then vary from one GF symbol to another
in the vector of m1 GF symbols and therefore depends on
the index i of the GF(q) symbol. The vector d may thus
have different bit lengths depending on whether n3 is
equal to or greater than 1. Furthermore, in order to mini-
mize the computational weight of the APP extraction, we
can exploit the max-Log-MAP, so that (8) becomes the
difference between the maximum sum at the numerator
and the maximum sum at the denominator.
Taking into account the inherent matrix multiplica-

tion required to compute the distance between STBC
codewords Vj and Wj (cf. (3)), the computation com-
plexity of the soft demapper becomes of the magnitude
order O((q - 1) × qm1-1 × m3 × nr × Q × T). When m1 >
1 different GF(q) are spread into different STBC code-
words, and this occurs here for any constellation, unlike
the SISO case where it only occurs for 16QAM constel-
lation (cf. Table 2). This emphasizes how problematic
the complexity of the soft demapper may become with
MIMO transmission, even with simple practical config-
urations (e.g., Q = 2). The main problem tackled in this
article is the reduction of the complexity of the soft
demapper when one GF(q) symbol spreads across differ-
ent QAM symbols and STBC codewords (i.e., m1 > 1),
without sacrificing the error protection performance.

Table 2 Values of m1 and m2 for GF(64) to QAM mapping

Constellation QPSK 16QAM 64QAM

(m1, m2) (1, 3) (2, 3) (1, 1)

Table 3 Values of m1, m2, and m3 for GF(64) to MIMO (Q
= 2) mapping

Constellation QPSK 16QAM 64QAM

(m1, m2, m3) (2, 6, 3) (4, 6, 3) (2, 2, 1)
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4. Novel mapping strategy and low complexity
soft demapping
Our solution to the problem stated above consists of a
mapping strategy at the transmitter side together with
an algorithm for low complexity soft demapping when
one GF(q) symbol spreads across different QAM sym-
bols and STBC codewords (i.e. m1 > 1).

4.1 Mapping strategy at the transmitter
Three rules are introduced hereafter with the aim to
achieve the best trade-off between error protection per-
formance and soft demapper complexity.
First rule: The I or Q component of an M-QAM symbol
should carry (in part or in full) the binary image of only
one GF(q) symbol
This rule naturally applies to the particular case of m1 =
1, and can always be met whenever the number of bits
per GF(q) symbol log2(q) is an integer multiple of the
number of bits per I or Q component log2(M)/2. Other-
wise, the rule requires mapping as many I and Q com-
ponents as possible to binary parts issued from the
binary image of only one single GF symbol. This ensures
better performance compared to all other schemes not
obeying to this rule, as will be proven in Section 5.
Assuming SISO 16QAM with m1 = 2 and m2 = 3,

Table 4 gives four possible patterns to map the two GF
(64) symbols a and b with binary images respectively,
a0a1a2a3a4a5 and b0b1b2b3b4b5, onto the three 16QAM
symbols with I and Q components, I0Q0, I1Q1, and I2Q2.
Amongst the four patterns shown in Table 4, only P1
and P3 obey the first rule.
Second rule: Map as many I/Q components as possible
issued from the same GF(q) symbol onto the same STBC
codeword
This will ensure a minimum number (n3 ≤ m3) of STBC
codewords to be considered by the soft demapper for
the computation of the APP values of each GF(q) sym-
bol, and so will contribute to the reduction of the com-
plexity of soft ML demapping as proposed in Section
4.2, but to the detriment of limiting the maximum chan-
nel selectivity that can be achieved within one GF(q)
symbol. This is because ideally by letting each I or Q
component issued from one GF(q) symbol map onto
different STBC codewords, we create higher chance for

these parts of the same GF(q) symbol to experience
uncorrelated channel fading. This rule clearly restricts
the freedom to let the GF(q) symbol enjoy higher chan-
nel selectivity, but fortunately has the advantage of redu-
cing drastically the complexity of the soft ML demapper.
This is where the complexity of the soft ML demapper
is traded off with the error protection performance of
the GF(q) symbols.
Third rule: Under the constraint of the second rule, map the
I/Q components issued from one GF(q) symbol onto the
transmission units ideally of independent channel fading
within the STBC codeword carrying this GF(q) symbol
This rule obviously targets the maximum achievable
channel selectivity (i.e., number of independent channel
fading) within each GF(q) symbol under the constraint
of the second rule. The higher the channel selectivity
within one GF(q) symbol is (i.e., the number of indepen-
dent channel fading affecting the different parts of the
GF(q) symbol), the better the error protection perfor-
mance is expected to be. The margin for this rule to
achieve higher channel selectivity order is clearly bound
by the second rule.
For example, in the case of MIMO uncoded spatial

multiplexing (Q = 2) and 16QAM where m1 = 4, m2 =
6, and m3 = 3 (cf. Table 3), we give in Table 5 three
possible patterns for mapping the four GF(64) symbols,
a, b, c, and d, of binary images, respectively,
a0a1a2a3a4a5, b0b1b2b3b4b5, c0c1c2c3c4c5, d0d1d2d3d4d5,
onto the six 16-QAM symbols representing three STBC
codewords. Each STBC codeword carries Q = 2 16QAM
symbols concurrently transmitted over 2 antennas.
All three patterns in Table 5 follow the first rule by

not mixing bits from different GF symbols into the
same I or Q component.
Patterns P1 and P3 further obey the second rule by

mapping as many I/Q components from the same GF
symbol as possible into the same STBC codeword,
whilst Pattern P2 does not. For patterns P1 and P3, GF
(64) symbols a and d are carried within one single
STBC codeword, and GF(64) symbols b and c are
mapped onto two STBC codewords. However, for

Table 4 Example of four patterns for mapping GF(64)
symbols to 16-QAM symbols

Number Mapping pattern (m1 = 2, m2 = 3)

I0 Q0 I1 Q1 I2 Q2

P1 a0a1 a2a3 a4a5 b0b1 b2b3 b4b5
P2 a0b0 a1b1 a2b2 a3b3 a4b4 a5b5
P3 a0a1 b0b1 a2a3 b2b3 a4a5 b4b5
P4 a0b0 b1a1 a2b2 b3a3 a4b4 b5a5

Table 5 Example of three patterns for mapping GF(64)
symbols to STBC codewords

Number Antenna number Mapping pattern (m1 = 4, m2 = 6, m3

= 3)

I0 Q0 I1 Q1 I2 Q2

P1 A#1 a0a1 a2a3 b2b3 b4b5 c4c5 d0d1
A#2 a4a5 b0b1 c0c1 c2c3 d2d3 d4d5

P2 A#1 a0a1 b0b1 a2a3 b2b3 a4a5 b4b5
A#2 c0c1 d0d1 c2c3 d2d3 c4c5 d4d5

P3 A#1 a0a1 a2a3 b2b3 c0c1 c4c5 d0d1
A#2 a4a5 b0b1 b4b5 c2c3 d2d3 d4d5
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pattern P2, each GF(64) symbol is spread out over all of
the m3 = 3 STBC codewords. In terms of complexity of
the soft demapper, patterns P1 and P3 will enable
reduced complexity, whereas the complexity with pat-
tern P2 will be drastically higher, as shown later in Sec-
tion 4.2.
Now with regard to the third rule, the channel selec-

tivity order (i.e., maximum number of independent
channel fading) for pattern P1 is equal to 2 for all GF
symbols, a, b, c, and d. This is clear since any of these
GF symbols is mapped onto exactly two QAM symbols
within only one single STBC codeword, with the first
QAM symbol transmitted on the first antenna port and
the second QAM symbol transmistted on the second
antenna port. For pattern P2 however, the channel
selectivity order is higher and equal to 3, since any GF
symbol is mapped onto exactly three QAM symbols
transmitted within three different STBC codewords,
hence ideally subject to three independent channel fad-
ing. The last pattern P3 has its channel selectivity order
equal to 2 for the edge symbols a and d (since carried
in two QAM symbols within one single STBC code-
word), whereas it is equal to 3 for the middle symbols b
and c (since these are carried in two QAM symbols
within two STBC codewords). Amongst all three pat-
terns, only P1 and P3 respect the second rule, but only
P3 which further respects the third rule as it attempts
to achieve the highest possible channel selectivity order
under the constraint of the second rule.
In summary, by obeying all the three rules introduced

above, we aim to obtain mapping patterns which ensure
the best trade-off between performance and complexity.
This will be further detailed and proven in Sections 4.2
and 5.

4.2 Low complexity soft demapping at the receiver
As highlighted in Equation (6), the soft demapper at the
receiver requires two major steps for the computation of
the APP values of the GF(q) coded symbols: (i) Eucli-
dean distances computation, and (ii) Marginalization
across all possible combinations. The Euclidean dis-
tances computation is typically required for ML hard
detector. In our case, since soft values are required, the
MIMO ML detection and non-binary soft demapping
are combined together into one single function, referred
to as soft ML demapping.
First step: Computation of the Euclidean distances
In the decoding of STBC, each received STBC codeword
Wj is processed individually in order to obtain its dis-
tance to all possible transmitted STBC codewords Vj. In
our non-binary case (q > 2), one GF(q) coded symbol
may span more than one STBC codeword. Thus, for the
computation of the APP values of one GF(q) symbol,
there is a need to store the Euclidean distances of all of

the STBC codewords which carry the binary image of
the given GF(q) symbol. Thanks to our second rule in
the design of the mapper at the transmitter (which lim-
its the number of STBC codewords carrying the binary
image of one GF(q) symbol to the minimum possible),
only the Euclidean distances of n3 ≤ m3 STBC code-
words are needed. This clearly reduces the memory
requirements at the receiver.
Second step: Marginalization across all possible
combinations
The marginalization takes the form of a summation in
the general case (i.e.. log-Map) reflected in Equation (6).
Should the Max-log approximation be used, it takes
instead the form of a comparison. The marginalization
(or summation) involves the Euclidean distances of n3 ≤
m3 STBC codewords and the binary sub-parts of the n1
- 1 (n1 ≤ m1) GF(q) symbols multiplexing with the bin-
ary image of the desired GF(q) symbol in their mapping
to the n2 ≤ m2 M-QAM symbols and n3 ≤ m3 STBC
codewords.
For the sake of simplicity, let us consider first the case

where n3 = 1, i.e., the desired GF(q) symbol is mapped
onto a single STBC codeword. This is the case of SISO
transmission but also applies for instance to MIMO
transmission for the edge GF(q) symbols a and d in pat-
terns P1 and P3 in Table 5. Let us focus first on the
simple case of SISO transmission with 16QAM as in
Table 4 with the straightforward mapping P1 =
[a0a1a2a3]; [a4a5b0b1]; [b2b3b4b5]; for m1 = 2 and m2 =
3. In order to compute the APP values for the first GF
(64) symbol a, the Euclidean distances involving the first
n2 = 2 ≤ 3 QAM symbols are required. For the second
GF(64) symbol b, those involving the second and the
third QAM symbols are required. For the computation
of the APP values of a, a marginalization is required
across all of the possible combinations of the sub-part
b0b1 from GF(64) symbol b due to their mix with the
sub-part a4a5 in the second QAM symbol (i.e.,
[a4a5b0b1]). The number of all possible combinations is
clearly equal to 22 = 4. The number of operations per
received GF symbol is (q - 1) × 22 × 3, a factor 22/qm1-1

= 4/64 = 1/16 smaller than the value O((q - 1) × qm1-1

× m2) indicated earlier in Section 3.1. Thanks to the
specific mapping where the two edge 16QAM symbols
carry information from only one single GF(64) symbol.
Similar marginalization is required in the second case of
MIMO transmission for the edge GF(q) symbols a and
d in patterns P1 and P3 in Table 5.
Consider now the more general case of n3 > 1, for

example in the case of MIMO transmission for the mid-
dle GF(64) symbols b and c in patterns P1 and P3 in
Table 5 the GF(64) symbol b is mapped onto the first
(= [a0a1a2a3a4a5b0b1]) and second (= [b2b3b4b5c0c1c2c3])
STBC codewords. The marginalization here is required
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across all the possible combinations of a0a1a2a3a4a5 due
to the mix with the sub-part b0b1 in the first STBC
codeword, and also across all of the possible combina-
tions of c0c1c2c3 due to the mix with the sub-part
b2b3b4b5 in the second STBC codeword. This adds up
to the total of 26 × 24 = 1024 combinations per APP
value. Demapping complexity clearly depends on the
mapping pattern used. Table 6 gives an example of the
number of distances required for marginalization of
each APP value for the two mapping patterns P2 and
P3 from Table 5.
Table 6 reflects the huge complexity incurred with

mapping pattern P2 (although as said earlier, this pat-
tern achieves the maximum transmit diversity order 3
for all the GF(64) symbols). This confirms the tremen-
dous complexity advantage of the mapping patterns
respecting the second rule devised previously. Yet, whilst
only 4 combinations are required for the edge symbols a
and d, 1024 combinations are required for the symbols
in the middle b and c, which is still relatively a high
number.
Still, 1024 is a relatively large number causing exces-

sive complexity. To further reduce the number of com-
binations to a relatively low level, we propose the
following algorithm which exploits the correlation exist-
ing between GF(q) symbols produced by the code. The
algorithm introduces a threshold parameter called Nm.
The algorithm proceeds with the following steps:

• Step 1:Set the value of Nm. For example, Nm is set
to the value 8.
• Step 2:For any GF(q) symbol entailing a number
Ne of combinations required for marginalization
lower than the threshold Nm, obtain the correspond-
ing APP values using an exhaustive search over all
Ne required combinations.

○ Example: This applies to the edge symbols a
and d in P1 and P3 in Table 5, where the num-
ber of combinations required is Ne = 4 <Nm = 8.

• Step 3:For GF(q) symbols that multiplex onlywith
symbols falling under step 2, compute the APPs by
limiting the combinations associated with the GF(q)
symbol from step 2 only to the ones yielding the Nm

largest APPs for this symbol.

○ Example: Assume we are transmitting three
consecutive GF(256)*symbols a, b, and g mapped
onto two consecutive 64-QAM STBC codewords.
Then symbols a and g fall under Step 2, while
the APPs for b have to be computed as above.
Assuming Nm = 16, then the marginalization
over a and b will be carried out by considering
only Nm · Nm = 256 terms instead of the 256 ·
256 = 65536 terms in the exhaustive search.
*NB: Switching to GF(256) in this example is sim-
ply because no such case occurs with our default
GF(64).

• Step 4:For each remaining GF(q) symbol, not fall-
ing under steps 2 and 3, proceed with the following
sub-steps:

○ Step 4.1:Limit the combinations associated
with the multiplexing GF(q) symbol from step 2
to the ones yielding the Nm maximum APP
values for this multiplexing symbol.
○ Step 4.2:Complete the marginalization of the
APPs with respect to the adjacent GF(q) symbol
whose APPs are still unavailable with an iterative
procedure for a number r of iterations and
depending on a parameter Nq. At ith iteration,
the marginalization runs across the Nq combina-
tions of the interleaved symbol with the highest
Nq APP values. Such combinations are those
computed in the previous i - 1 iteration of the
algorithm. At the initialization stage, the Nq

combinations are chosen randomly.
○ Example: Step 4.1 applies to the middle GF(q)
symbol b in P1 and P3 in Table 5, where mar-
ginalization is required across the interleaved
edge GF(q) symbol a. The APP values of the
edge symbol a are obtained from step 2. Thus,
instead of searching over all the 26 = 64 possible
values of symbol a, we only limit the search to
the Nm = 8 values of symbol a yielding the high-
est APP values (thus 8 highest likelihood values).
Step 4.2 applies to the middle GF(q) symbol b in
P1 and P3 in Table 5, where marginalization is
required across the interleaved other middle GF
(q) symbol c, whose APP values are not available
from step 2. We start considering Nq = 8 ran-
domly selected APP values for symbol c (out of
the 24 = 16 values theoretically needed) to obtain
the (marginalized) APP values of symbol b.
Then, we compute the APP values for symbols b
and c, with the marginalization limited to the Nq

random values of each. We refine then the
choice of the Nq combinations used for margina-
lization to the ones yielding the highest Nq APP
values for symbols b and c. This is repeated for r
iterations.

Table 6 Example of number of combinations to be
considered for APP marginalization

Number of combinations P2 P3

GF(64) symbol a qm1-1 = 262144 22 = 4

GF(64) symbol b 26 × 24 = 1024

GF(64) symbol c 24 × 26 = 1024

GF(64) symbol d 22 = 4
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The above algorithm may better be illustrated with the
graph depicted in Figure 3, where the nodes represent
the computation of the APP values for each GF symbol,
and the arrows indicate the propagation of the most
likely combinations of one GF symbol at a given node
to the GF symbol at an adjacent node. This for the pur-
pose of reduced marginalization according the different
steps described in the above algorithm. The edge sym-
bols a and d fall under step 2 and will therefore get
their APP values available simply from step 2. The mid-
dle symbols b and c make use of Nm most likely combi-
nations yielding the highest APP values for the eddge
GF symbols a and d, respectively. The propagation of
these combinations is illustrated in Figure 3 by the
arrows coming into nodes b (from node a) and c (from
node·d). Since symbols b and c multiplex together, then
an iterative process as described in step 4.2 is followed
by reusing the Nq most likely combinations of one sym-
bol for marginalization to obtain the APP values of the
adjacent symbol. This exchange of Nq combinations
between GF symbols b and c is illustrasted in the graph
by the arrows connecting nodes b to c. Although in the

example the same value (equal to 8) is set for both
numbers Nm and Nq, this does not reflect the general
case where these two variables can be set with different
values.
The introduction of the variables Nm and Nq taking

values much lower than the total number q of the APP
values is mainly inspired from the work originally done
by the authors in [8,11] in their contribution to the FP7
DAVINCI project [4]. The authors of [8,11] have con-
ducted a thorough analysis of the behavior of the non-
binary LDPC decoder specifically in term of the APP
distribution of the GF symbols at the input of the LDPC
decoder. The main motivation in [8] is the proposal of
sub-optimal LDPC decoding algorithm of reduced com-
plexity and less memory requirements for real imple-
mentation. A key result found in [8,11] is that by
feeding the non-binary LDPC decoder with only a lim-
ited number Nm of the highest APP values for each GF
symbol (with Nm much less than the GF order q)
achieves very close to the optimal performance whilst
reducing significantly the non-binary LDPC decoding
complexity and APP memory requirements. This finding

Figure 3 Low complexity algorithm for soft demapping with m1 = 4.
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is borrowed in our algorithm above to reduce the com-
plexity challenge of the soft ML demapper.
Table 7 reports the number of combinations to be

explored for extracting the q-ary APP values of each GF
(64) symbol first without the low complexity algorithm
and then for two settings of the low complexity algo-
rithm. When the low complexity algorithm is selected,
GF(64) symbols b and c require first a number of opera-
tions for sorting the APP values of GF(64) symbols a
and d, respectively. The implemented algorithm, which
is based on Merge and Sort approach, has a complexity
of n·log(n) (with n being the length of the vector to
sort). The proposed algorithm reduces the number of
combinations used for marginalization to obtain the
APP values of the middle symbols b and c by a factor of
approximately 7.5 without iterations, and a factor of
approximately 10 with 3 iterations. The impact of the
proposed algorithm on the error performance is
assessed in Section 5.

5. Numerical results
Table 8 summarizes the simulation set up that was used
to derive performance results. Both a SISO and a
MIMO scenario are considered as representative of next
generation cellular communication systems.
Figure 4 depicts the Frame Error Rate (FER) results

obtained in the SISO scenario using two different pat-
terns to map the GF(64) symbols onto QAM constella-
tion symbols. The first mapping is an arbitrary mapping
which does not respect the first rule devised in our solu-
tion, whereas the second mapping referred to as opti-
mum mapping does.
As illustrated in Figure 4, for QPSK and 64QAM,

where m1 = 1 (cf. Table 2), there is no significant differ-
ence between the arbitrary and the proposed mapping
patterns, since inherently here only one GF(64) symbol
maps onto three QPSK symbols or one 64QAM symbol.
However, for 16QAM, where m1 = 2 and m2 = 3 (cf.
Table 2), two GF(64) symbols are mapped onto the
same mapping onto one 16QAM symbol, and here the
results show clear SNR gain of 0.5 dB for the mapping
respecting the first design rule as compared to a pattern
not respecting this rule, hence validating the merits of
this rule. It is noteworthy here that at this stage, there is
no issue of trade-off between performance and

complexity (this will come later when considering the
second and third design rules proposed).
We then move to the MIMO context in order to vali-

date the second and third rules introduced in our map-
ping strategy, which aim to achieve a trade-off between
performance and complexity. First we analyze the com-
plexity in terms of number of operations of the APP
extraction. Specifically, with the term operation we refer
to a summation or a comparison of real-valued num-
bers, so either the summation or comparison operation
has the same computational weight. We consider first
the case of 16QAM with the three patterns given in
Table 5, where patterns P1 and P3 respect the second
rule, but not pattern P2. Figure 5 depicts the number of
operations required for marginalization in the computa-
tion of the APP values of the m1 = 4 GF(64) symbols
which map together onto m2 = 6 QAM symbols and m3

= 3 STBC codewords. Four curves show the number of
operations (in logarithm scale) as a function of the
threshold Nm introduced in the proposed algorithm.
The curves are as follows:

• The first curve in black circular marker gives the
number of operations when an exhaustive search
with pattern P2 is performed.
• The second curve in red circular marker gives the
number of operations when an exhaustive search
with pattern P1 or P3 is performed.
• The third curve in blue downwards triangular mar-
ker shows the number of operations using the pro-
posed algorithm without the iterative step 4 (i.e.,
simply replace sub-step 4.2 by an exhaustive search).
• The fourth curve in green with diamond markers
considers the iterative step 4 of the proposed algo-
rithm with r = 3 iterations and Nq = 10.

From Figure 5, we can first clearly appreciate the huge
reduction in complexity (cf. gap between first curve
using P2, and the other curves using P1 and P3). This
clearly validates the merit of our second rule from the
complexity perspective, where patterns P1 and P3
respect this second rule, but not pattern P2. Moreover,
from Figure 5, we can also clearly appreciate the signifi-
cant reduction in complexity (cf. gap between second
curve, and third and fourth curves) brought by the use

Table 7 Example of reduction of the number combinations for P1 and P3 from Table 6

Number of combinations Without the algorithm Prop. Algorithm with r = 0, Nm = 8 Prop. algorithm with r = 3, Nm = 8, Nq = 8

GF(64) symbol a 64 × 22 = 256 64 × 22 = 256 64 × 22 = 256

GF(64) symbol b 64 × 26 × 24 = 65536 64 × 6 + 64 × Nm × 24 = 8576 64 × 3 × Nm × Nq + 2 × 64 × 6 = 13056

GF(64) symbol c 64 × 26 × 24 = 65536 64 × 6 + 64 × Nm × 24 = 8576

GF(64) symbol d 64 × 22 = 256 64 × 22 = 256 64 × 22 = 256

Block of m1 GF symbols 64 × 2 × (210 + 22) = 131584 2 × 64 × (22 + 6 + Nm × 24) = 17664 2 × 64 × (22 + 6) + 64 × 3 × Nm × Nq = 13568
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of the proposed algorithm (with and without iterations)
as compared to the exhaustive search. The reduction in
complexity clearly decreases when increasing the thresh-
old Nm. For a typical value of Nm = 8, we can appreciate
nearly one decay (i.e., a factor of 10) complexity reduc-
tion; thanks to the proposed algorithm.
The second aspect to be assessed here is the impact of

the proposed mapping strategy and demapping

algorithm on the error protection performance. This is
illustrated in Figure 6, for patterns P1 and P3 with dif-
ferent configurations. It is worth noting here that the
pattern P2 could not be evaluated since its breach of the
second rule makes it non practical for computer simula-
tions. Our reference curves are the ones in red solid line
which perform an exhaustive search (i.e., do not imple-
ment the proposed algorithm). In this figure, square

Table 8 Simulations set up

Modules Set up

FEC encoder DAVINCI NB-LDPC codes

GF order = 64

Codeword length = 96 symbols = 576 bits

FEC decoder Extended Min-Sum algorithm

Number of soft values per symbol fed to the decoder = qm = 16 (highest values)

Maximum number of decoding iterations = 30

Constellation QPSK, 16QAM, 64QAM

MIMO encoder 2 × 2 antennas configuration

Uncoded Spatial multiplexing

STBC codeword length Q = 2

Channel model AWGN and Rayleigh channels

Soft demapper Soft ML demapping

Proposed low complexity algorithm with Nm = 8, Nq = 4 to 16, number of demapping iterations r = 0 to 3

Figure 4 Frame Error Rate for QPSK, 16QAM and 64QAM, N = 96, code rate 1/2, AWGN and Rayleigh channel.
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marker is used for mapping pattern P1, and circular
marker for mapping pattern P3.
From Figure 6, we first compare the performance gap

between patterns P1 and P3 with the exhaustive search
used in both. This is in order to appreciate the trade-off
in performance due to the second rule and the merits of
the third rule. The performance gap between P1 and P3
is almost 0.25 dB, when P1 has a constant channel
selectivity order equal to 2 and P3 has an average chan-
nel selectivity order equal to 2.5 (it is equal to 2 at the
edge symbols and 3 at the middle symbols). As men-
tioned previously, both patterns P1 and P3 respect the
second rule, but only P3 respects the third rule. Hence,
from this comparison, the merit of the third rule is
clearly appreciated (approximately 0.25 dB SNR gain) at
the same level of complexity. The same performance
gap is expected between patterns P2 and P3 (although
as said before simulations with pattern P2 are not feasi-
ble since it breaches the second rule). This expectation

is motivated by the fact that the gap in channel selectiv-
ity order between P2 and P3 is equal to 0.5, which is
the same gap between P3 and P1 (PS: the average chan-
nel selectivity order is equal to 3, 2.5, and 2, respec-
tively, for patterns P2, P3, and P1). Hence, the penalty
in performance of the second design rule is expected to
be around 0.25 dB, compared to a pattern P3 respecting
the second and third design rules, and 0.5 dB compared
to a pattern P1 respecting the second rule but not the
third rule.
Now let us compare the performance of both patterns

P1 and P3 when using the proposed soft demapping
algorithm. From Figure 6, for both patterns P1 and P3,
we do not notice any appreciable degradation when
using the proposed algorithm with threshold Nm = 8,
and without using the iterative process, compared to
when using the exhaustive search. This is an important
result as it shows the potential of the proposed algo-
rithm to reduce the complexity by tenfold without

Figure 5 Number of operations required for marginalization with and without the proposed low complexity algorithm.
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practical degradation in the FER performance. Further
reduction of the complexity by means of the iterative
process for example, does degrade the FER performance.
The degradation of the iterative process in the waterfall
region at target FER of 10-2 appears tolerable (up to 0.5
dB), whilst the degradation in the error floor region
appears significant. This reflects the trade-off someone
can obtain between FER performance and further reduc-
tion of the complexity with the iterative process.

Further analysis was carried out for the case of MIMO
64QAM. In such a case, we consider two different map-
ping patterns as illustrated in Table 9.
Both P1 and P2 respect the first and second rule, but

only P2 respects the third rule. With 64QAM, the pro-
posed algorithm must necessarily use the iterative pro-
cess, since there are no edge symbols falling under step
2 of the proposed algorithm. Similarly to the 16QAM
case, the sorting of the APP values should be taken into

Figure 6 Frame Error Rate for 16QAM with patterns P1 and P3 from Table 5.
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account in the computation of the complexity. Table 10
shows a complexity reduction of 35% with respect to
the exhaustive search when Nq is equal to 24 and 44%
when Nq is equal to 20.
Figure 7 also shows the FER performance results for

both patterns with and without the proposed algorithm
in the configurations given in Table 10. A circle marker
is used for the curves with pattern P1 and square mar-
ker for the curves with pattern P2.

Table 9 Used patterns for mapping GF(64) symbols to
STBC codewords (64QAM)

Number Antenna number Mapping pattern (m1 = 2, m2 = 2, m3

= 1)

I0 Q0

P1 A#1 a0a1a2 a3a4a5
A#2 b0b1b2 b3b4b5

P2 A#1 a0a1a2 b0b1b2
A#2 a3a4a5 b3b4b5

Table 10 Example of reduction of the number combinations for 64QAM

Number of combinations Without the algorithm Prop. algorithm with r = 3, Nq = 20 Prop. algorithm with r = 3, Nq = 24

GF(64) symbol a 64 × 26 = 4096 64 × 3 × Nq + 2 × 64 × 6 = 4608 64 × 3 × Nq + 2 × 64 × 6 = 5376

GF(64) symbol b 64 × 26 = 4096

Block of m1 GF symbols 2 × 64 × (26) = 8192 64 × 3 × Nq + 2 × 64 × 6 = 4608 64 × 3 × Nq + 2 × 64 × 6 = 5376

Figure 7 Frame Error Rate for 64QAM with patterns P1 and P2 from Table 9.
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From Figure 7, we can first appreciate a gain of nearly
0.8 dB for pattern P2 as compared to P1. This confirms
further the potential of the third rule in achieving much
higher diversity. Second, with pattern P2, we can clearly
appreciate a slight degradation in performance nearly
0.2 dB when using the proposed low complexity iterative
demapping algorithm with Nq = 24 (35% complexity
reduction). The degradation becomes higher 0.5 dB for
Nq = 20 (44% complexity reduction). So clearly, there is
a trade-off between the tolerable FER performance
degradation and the target complexity reduction, and
the proposed mapping strategy and low complexity
demapping algorithm provide the tools to achieve the
trade-off desired.

6. Conclusions
In this article, we have addressed the particular com-
plexity challenge of the soft ML demapping faced with
non-binary LDPC codes when one GF(q) symbol
spreads across multiple QAM symbols and STBC code-
words. A solution is proposed combining a mapping
strategy based on three design rules at the transmitter,
and a low complexity soft ML demapping algorithm at
the receiver.
At the transmitter side, the mapping strategy intro-

duced three design rules to achieve the best trade-off
between performance and complexity. In the first rule,
the I or Q component of an M-QAM symbol should
carry (in part or in full) the binary image of only one
GF(q) symbol. This rule was shown to bring an SNR
performance gain of approximately 0.5 dB compared to
mapping patterns not respecting this rule. In the second
rule, the I/Q components issued from one GF(q) symbol
are carried into the minimum possible number of STBC
codewords. This second rule clearly restricts the free-
dom to let the GF(q) symbol enjoy higher channel selec-
tivity, but fortunately has the advantage of reducing
drastically the complexity of the soft ML demapper. In
the third rule, the I/Q components issued from one GF
(q) symbol are mapped onto the transmission units
which ideally can experience independent channel fad-
ing within the STBC codeword carrying this GF(q) sym-
bol. This third rule aims at exploiting the last degree of
freedom left by the binding second rule to achieve high
channel selectivity within the GF(q) symbol. With map-
ping patterns respecting the second rule, it was shown
that a tenfold complexity reduction can be achieved
compared to patterns not respecting this second rule.
The trade-off in performance was shown to be small,
0.25 and 0.5 dB performance degradation for the pat-
terns respecting the second rule with and without the
third rule, respectively.
At the receiver side, an algorithm was proposed to

reduce the complexity of the soft ML demapper. The

algorithm exploits the correlation existing between GF
(q) symbols but also any knowledge available on the
APP values of the GF(q) symbols in the vector of m1 GF
(q) symbols, which map together onto the vector of m2

M-QAM symbols and further on onto the vector of m3

STBC codewords. The algorithm also considers only a
limited number of potential combinations for each GF
(q) symbol, those associated with this same limited
number of highest APP values for this symbol. This lat-
ter consideration has been inspired from the original
work done by the authors of [8,11] to reduce the com-
plexity of the non-binary LDPC decoder. Our proposed
algorithm was shown to further reduce the complexity
of the soft ML demapper by up to 85%.
The proposed solution mitigates the complexity chal-

lenge at the receiver faced with non-binary LDPC codes
when one GF(q) symbol spreads across multiple QAM
constellation symbols and STBC codewords, at the
expense of a slight performance degradation but not
sacrificing the performance merits of non-binary LDPC
codes. This removes any restriction on the size of the
GF order, QAM constellation order, and MIMO
scheme, whilst preserving the merits of non-binary
LDPC codes at very reasonable receiver complexity.
Future work will be focused on the assessment of the
MIMO schemes which are best suited for combination
with GF(64) non-binary LDPC codes, with the ultimate
goal of proposing non-binary LDPC codes for beyond 4
G wireless communication systems.
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