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Abstract

A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic
acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA
and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation,
fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of
thiol-stabilized QDs in their bioapplication and provides an opportunity for direct biomedical use of QDs due to the
existence of biocompatible HPAMAM. The resulting CdTe QDs combine the mechanical, biocompatibility properties
of HPAMAM and the optical, electrical properties of CdTe QDs together.

Keywords: Hyperbranched poly (amidoamine) s; Quantum dots; Nanocomposites; Photoluminescence
Background
Fluorescent quantum dots (QDs) exhibit unique size and
shape-dependent optical and electronic properties [1-9].
They are of great interest to many applications such as
optoelectronics, photovoltaic devices, and biological la-
bels. Developing new method to prepare QDs with con-
trolled size and shape is always an important research
area. To be now, organometallic way [10-14], aqueous
route with small thiols as stabilizers [15-19], dendritic
polymers [20-22] as nanoreactors and biotemplate syn-
thesis [23] are the common methods to prepare QDs.
The QDs prepared by organometallic way or aqueous
route with small thiols as stabilizers usually have high
quantum yield, but they need to be modified in order to
be suitable for their biological application. The QDs pre-
pared by dendritic polymers or biotemplate always has
low quantum yield and broad emission spectrum. So we
would like to propose a new method by which highly
fluorescent CdTe QDs which can be directly used for
biomedical applications can be prepared.
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In this study, we used 3-mercaptopropionic acid
(MPA) and hyperbranched poly(amidoamine)s (HPA-
MAM) as co-stabilizers to prepare highly fluorescent
CdTe QDs. MPA is always used to prepare luminescent
CdTe QDs in aqueous phase. HPAMAM has low cyto-
toxicity and can be used to gene transfection and drug
delivery [24]. Consequently, by using MPA and HPA-
MAM as co-stabilizers, highly luminescent and biocompat-
ible CdTe QDs can be synthesized. The resulting CdTe
QDs can be directly applied to bioimaging, gene transfec-
tion, etc.
Methods
Materials
Amine-terminated HPAMAM was synthesized accord-
ing to our previous work [25]. After endcapping by
palmityl chloride, the weight average molecular weight
(Mw) of HPAMAM measured by gel permeation chro-
matography (GPC) was about 1.1 × 104 and the mo-
lecular weight polydispersity (PDI) was 2.7. CdCl2 · 2.5
H2O (99%), NaBH4 (96%), tellurium powder (99.999%),
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Figure 1 Illustration for the facile preparation of highly luminescent CdTe QDs with MPA and HPAMAM as co-stabilizers.

Shi et al. Nanoscale Research Letters 2014, 9:121 Page 2 of 5
http://www.nanoscalereslett.com/content/9/1/121
and methanol were purchased from Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China. 3-Mercaptopropionic
acid (MPA, >99%) was purchased from Fluka, St. Louis,
MO, USA. The ultrapure water with 18.2 MΩ · cm was
used in all experiments.

Synthesis of CdTe QDs with MPA and HPAMAM
as co-stabilizers
MPA (26 μL) was added to 100 mL CdCl2 (0.125 mmol)
aqueous solution. After stirring for several hours, pH
Figure 2 Photograph of different-sized CdTe QDs and the
corresponding absorption and photoluminescence spectra.
Photograph of different-sized CdTe QDs (stabilized by both HPAMAM and
MPA) made under an UV lamp (top) and the corresponding absorption
(bottom) and photoluminescence (PL) spectra (bottom). The PL
emission peaks were at 509, 546, 563, 578, 605, and 629 nm, respectively.
value of the aqueous solution was adjusted to 8.2 with
1 M NaOH. Then, 120 mg HPAMAM in 2 mL water
was drop-added under N2 atmosphere and stirred for
24 h. After deaeration with N2 for 15 min, 10 mL
oxygen-free NaHTe solution was injected at 5°C under
vigorous stirring; thus, CdTe precursor solution stabi-
lized by MPA and HPAMAM was obtained. Then, the
mixture was irradiated at different times under micro-
wave (PreeKem, Shanghai, China, 300 W, 100°C) to get
a series of samples with various colors.

Characterization of the as-prepared CdTe QDs
pH values were measured by a Starter 3C digital pH
meter, Ohaus, USA. Transmission electron microscopy
(TEM), selected area electron diffraction (SAED), and
elemental characterization were done on a JEOL 2010
microscope (Akishima-shi, Japan) with energy-dispersive
X-ray spectrometer (EDS) at an accelerating voltage of 200
kV. X-ray powder diffraction (XRD) spectrum was taken on
Rigaku Ultima III X-ray diffractometer (Shibuya-ku, Japan)
operated at 40 kV voltage and 30 mA current with Cu
Ka radiation. UV-visible (vis) spectra were recorded on a
Varian Cary 50 UV/Vis spectrometer, Agilent Technologies,
Inc., Santa Clara, CA, USA. Emission spectra were collected
using a Varian Cary spectrometer. Thermogravimetric
analysis (TGA) was done under nitrogen on a STA 409
PC thermal analyzer, Netzsch, Germany. The quantum
yield (QY) of CdTe QDs was measured according to the
methods described in [26] using rhodamine 6G as a refer-
ence standard (QY = 95%).

Results and discussion
HPAMAM have three-dimensional topological struc-
tures, many inner cavities, and a large amount of terminal
functional groups. They have low cytotoxicity and have
been widely used in biomedical science, such as gene
transfections and drug delivery [24]. They also can be
used to prepare nanocrystals such as CdS nanocrystals,
but they cannot cap the nanocrystals very compactly



Figure 3 CdTe QDs emission peak position vs. reaction time (a) and PL QYs vs. emission peak (b). The reaction temperature was 100°C.
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compared to small thiols. If nanocrystals are not capped
closely, they might be unstable and tend to be oxidized.
Based on this, we proposed a new strategy for preparing
CdTe QDs with MPA and HPAMAM as co-stabilizers,
so the resulting CdTe QDs can be coated closely and
high QY can be reached. MPA and HPAMAM were
added in turn to coordinate Cd2+. After adding NaHTe
and further microwave irradiation, fluorescent CdTe
QDs stabilized by MPA and HPAMAM were obtained,
as illustrated in Figure 1. By preparing CdTe QDs by
MPA and HPAMAM, the mechanical, biocompatibility
properties of HPAMAM and the optical, electrical prop-
erties of CdTe QDs can be combined, endowing the
CdTe QDs with biocompatibility.
Figure 2 shows the photograph of different-sized CdTe

QDs (stabilized by both MPA and HPAMAM) made
under an UV lamp (top) and the corresponding absorption
Figure 4 The absorption and emission spectra of CdTe aqueous
solution before and after being aged for 2 months. The absorption
peak of CdTe QDs is 515 nm.
(bottom) and photoluminescence (PL) spectra (bottom).
The fluorescent color of CdTe QDs under UV light
changed from green to yellow orange, and red with
prolonging heating time. All the absorption shoulders
in the UV-vis spectra shifted to a longer wavelength
during the heating treatment, indicating the growth of
CdTe QDs. The maximum peak of PL emission also
shows red shift, and this can also be seen in Figure 3a.
While increasing the heating time, the QY of CdTe
QDs increased significantly. The QY increased mark-
edly from 11.2% at 15 min to a maximum value of
60.8% at 70 min. Further heating resulted in a slight
decrease of QY, as shown in Figure 3b. The sizes of
CdTe QDs can be estimated from the absorption peaks
using Peng's empirical formula [27]. From the absorp-
tion peaks, the Peng's empirical formula predicts that
the diameter of CdTe QDs is from 2.8 to 3.6 nm.
The stability of CdTe QDs is important for their applica-

tion, so we kept some samples taken at different irradiation
times to investigate their stability. Figure 4 shows the ab-
sorption and emission spectra of CdTe aqueous solution
before and after being aged for 2 months. After being kept
for 2 months, the absorption and photoluminescence spec-
tra of CdTe QDs (the excitonic absorption peak at 515 nm)
had only slight changes, indicating the high stability of
CdTe QDs.
The morphology of CdTe QDs (the excitonic absorp-

tion peak at 589 nm) was characterized by TEM, as
shown in Figure 5. From the TEM image, we can see the
size of CdTe QDs is about 3.5 nm, and the size is quite
uniform. The SAED pattern inside Figure 4a shows that
the synthesized fluorescent nanoparticles are polycrystal-
line. The corresponding EDS spectrum (Figure 5b) gives
the signals of Cd and Te elements, confirming the exist-
ence of CdTe QDs.
Figure 6 shows XRD pattern of the resulting CdTe

QDs (the excitonic absorption peak at 589 nm). The
CdTe QDs exhibit X-ray diffraction pattern consistent



Figure 5 TEM image and EDS spectrum of CdTe QDs. (a) TEM image (inset, the corresponding SAED pattern) and (b) EDS spectrum of CdTe
QDs stabilized both by MPA and HPAMAM (the excitonic absorption peak at 589 nm).
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with cubic (zinc blende) CdTe, as represented by the
broad diffraction peaks at 23.8° (111), 41.2° (220), and
48.1° (311).
Figure 7 shows a comparison of FT-IR spectra be-

tween 4,000 and 500 cm−1 of pure HPAMAM and
CdTe QDs stabilized both by MPA and HPAMAM.
The broad band at 3,298 cm−1 in Figure 7a is charac-
teristic for the N-H stretching bond frequency of pri-
mary and secondary amine groups, and it has shifted to
3,281 cm−1 in Figure 7b. The characteristic bands assigned
to amides I and II for HPAMAM are at 1,654 and 1,552
cm−1, while the band positions of amides I and II slightly
shift to 1,649 and 1,559 cm−1 for the CdTe QDs stabilized
both by MPA and HPAMAM. The band at 1,559 cm−1 in
Figure 7b can also be attributed to the asymmetric carb-
Figure 6 XRD spectrum of CdTe QDs stabilized both by MPA
and HPAMAM. The excitonic absorption peak at 589 nm.
oxylate peak, which is from the MPA stabilizer.
The composition of CdTe QDs stabilized both by

HPAMAM and MPA was characterized by TGA. From
the TGA thermogram in Figure 8a, we can see a long
temperature range from 200°C to 450°C, which is the
decomposition temperature for HPAMAM. For the
CdTe QDs stabilized both by HPAMAM and MPA, the
weight fraction is 45.6% at 794°C, as shown in Figure 8b.
This means that the content of CdTe QDs in the nanocom-
posites is 45.6%.

Conclusions
In conclusion, a new strategy for in situ preparation of
highly fluorescent CdTe QDs with MPA and HPAMAM as
co-stabilizers was proposed in this paper. The resulting
Figure 7 FT-IR spectra of HPAMAM (a) and CdTe QDs stabilized
both by MPA and HPAMAM (b). The excitonic absorption peak at
589 nm.



Figure 8 TGA weight loss curve of (a) pure HPAMAM and (b)
CdTe QDs stabilized both by MPA and HPAMAM. The excitonic
absorption peak at 589 nm.
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CdTe QDs combine the biocompatibility property of HPA-
MAM and the optical, electrical properties of CdTe QDs
together. They also have a high QY up to 60.8%. They do
not need to be post-treated and can be directly used in
biomedical fields due to the existence of biocompatible
HPAMAM.
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