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A mathematical model of seropositivity to malaria
antigen, allowing seropositivity to be prolonged
by exposure
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Abstract

Background: Malaria transmission intensity is traditionally estimated from entomological studies as the
entomological inoculation rate (EIR), but this is labour intensive and also raises sampling issues due to the large
variation from house to house. Incidence of malaria in the control group of a trial or in a cohort study can be used
but is difficult to interpret and to compare between different places and between age groups because of
differences in levels of acquired immunity. The reversible catalytic model has been developed to estimate malaria
transmission intensity using age-stratified serological data. However, the limitation of this model is that it does not allow
for persons to have their seropositivity boosted by exposure while they are already seropositive. The aim of this paper is
to develop superinfection mathematical models that allow for antibody response to be boosted by exposure.

Method: The superinfection models were fitted to age-stratified serological data using maximum likelihood method.

Results: The results showed that estimates of seroconversion rate were higher using the superinfection model than
catalytic model. This difference was milder when the level of transmission was lower. This suggests that the catalytic
model is underestimating the transmission intensity by up to 31%. The duration of seropositivity is shorter with
superinfection model, but still seems too long.

Conclusion: The model is important because it can produce more realistic estimates of the duration of seropositivity.
This is analogous to Dietz model, which allowed for superinfection and produced more realistic estimates of the
duration of infection as compared to the original Ross-MacDonald malaria model, which also ignores superinfection.
Background
Measurement of malaria transmission intensity is important
for several reasons. It can be used to assess the impact of
public health measures on transmission and to understand
epidemiological patterns, such as the age distribution of
malaria illness. It can also be used for planning intervention
studies and interpreting their results. Malaria transmission
intensity is traditionally estimated from entomological
studies as the entomological inoculation rate (EIR) but
this is labour intensive and also raises sampling issues due
to the large variation from house to house. Incidence of
malaria in the control group of a trial or in a cohort study
can be used but is difficult to interpret and to compare
between different places and between age groups because
of differences in levels of acquired immunity. For common
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viral infections such as measles, persons can be classed
simply as either susceptible or immune, and the force of
infection estimated from incidence data, allowing for the
fact that individuals become immune after an infection, an
approach first developed by [1] who introduce the catalytic
model. For common viral diseases such as measles the
presence of antibodies indicates the person has been
infected and is immune to subsequent infection, the force
of infection can then be estimated directly from antibody
prevalence by age in cross-sectional serological surveys.
This approach has been used to estimate the force of
infection for measles and other infections [2-4], using
an extension of Muench’s method, which allows that the
force of infection may vary with age, but assuming that
immunity is lifelong.
Drakeley et al. [5] have developed the use of serological

data for estimating malaria transmission intensity, using
the concentration of antibodies to MSP119 measured in
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surveys of all age groups. They employed a reversible
catalytic model, which assumes a constant rate of serocon-
version (SCR) and assumes a constant rate of reversion
to the seronegative state, independent of the level of
transmission. They fitted this model to age-stratified
serological data from 12 sites in Tanzania with varying
entomological inoculation rate. The model was constrained
to fit a single value for the annual rate of reversion to the
seronegative state, which was estimated as 0.01393 per year,
suggesting that antibodies persist for an average time of 72
years. The authors discussed possible reasons for this long
duration. One possible further contributory factor for
the estimated long duration is that the model does not
incorporate boosting. In high transmission areas, exposure
while seropositive prolongs the seropositive state. This
feature can be incorporated, allowing each exposure to
infection to prolong the seropositive state using a model of
superinfection. The aim of this paper is to develop a math-
ematical model of seropositivity to malaria antigens that al-
lows seropositivity to be prolonged by exposure. The model
was validated against the field data used in Drakeley et al.
[5]. It was also validated against field data from Bioko, where
a change in transmission has been established [6].

Methods
Ethical statement
Ethical approval was obtained from the institutional review
boards of the National Institute of Medical Research of
Tanzania, Kilimanjaro Christian Medical Centre, and the
London School of Hygiene and Tropical Medicine [5].

Data source
Two datasets have been used for assessing the malaria
transmission intensity. The study design and methods
of data collection are similar. The first dataset involved
serum samples collected on 250 people in each of 12
villages in three transects (North Pare, South Pare, and
West Usambara) with different transmission intensities
in Tanzania. The study design has been described in detail
elsewhere [5]. The second dataset is a subset of serum
samples from the 5th BIMCP survey in 2008 in 18 sentinel
sites in Bioko, which was aimed at evaluating malaria
intervention using serological measures. The 18 sentinel
sites have been grouped into 5 based on geography for
purposes of analysis. Group 3 involving three sentinel sites
(Rebola, Bakake and Baney) where interventions have seen
the most success was identified as the most obvious to
model in terms of change in malaria transmission. The
study design has been described in detail elsewhere [6].

Statistical analysis
The superinfection models:
The concept of superinfection has been used to describe
periods of infection prolonged by repeated exposure to
infection [7-10]. Persons in endemic areas often have
pre-existing partial immunity. But when these persons
are removed from exposure the immunity can be lost
gradually. When the person is re-exposed while seropositive
the level of antibody response can be boosted. A simple
way to allow for the antibody response to be boosted by
exposure is to consider that each exposure gives rise to
an antibody response. This can be thought of as a set
of antibody-producing cells that are triggered by the
exposure. Suppose the random variable v represents the
number of such sets of cells, and xi is the probability
P(v = i). For every exposure the value of v has a one-unit
increase, and when any of the sets of cells dies the value
of v has a one-unit decrease. If the average duration of a
set of cells is 1/r, the rate for the transition from v = i to
v = i-1 is the product of i and r (i.e. ixr). Because there
are i sets of cells the value of v reverts from i to i-1 when
any of the i sets of cells dies off (see Figure 1).
The compartmental model (Figure 1) can be represented

in differential equation as shown in equation (1) below.

dxi
da

¼ −λxi þ λxi−1−irxi þ iþ 1ð Þrxiþ1; i

¼ 0;…;∞; xi ¼ 0 for i < 0

ð1Þ

where xi = Probability (number of exposures, v = i), so that
∑∞
i¼0xi ¼ 1.
These equations can be solved by a standard method,

using generating functions [11].
The basic superinfection model with seroconversion

rate, λ, assumed constant over time has been derived as:

P að Þ ¼ 1− exp −
λ

r
1− exp −rað Þð Þ

� �
ð2Þ

where r is the annual rate of reversion from seropositive
to seronegative state per exposure. It follows that the
number of exposures in a person aged, a follows a Poisson
distribution with mean:

μ ¼ λ

r
1− exp −rað Þð Þ ð3Þ

Suppose that λ has changed abruptly from λ1 to λ2 at a
certain point in calendar time, μ, but is otherwise constant
for different ages (i.e. λ(t) = λ1 (t < μ), λ(t) = λ2 (t ≥ μ)) , and
people were observed at time t =μ+c, where c > 0. The
seroprevalence at age a at time t is therefore given by:

P t;að Þ ¼ 1−exp

"
−

(
λ1
r

exp −r t−μð Þ½ �−exp −ra½ �ð Þ
� �

f t−að Þ

þ λ2
r

1−exp −r t−μð Þ½ �ð Þ
)#

ð4Þ
This is the superinfection model with an abrupt change

in seroconversion rate, λ. This model can be used to



1-P P P P P

r 2r 3r ir

P = Probability of individual being seropositive

r = Annual rate of reversion from seropositive to seronegative per exposure 
[exp(λ/r) –1]/λ = Annual mean duration of seropositive state

The number of exposures in a person age, a, follows a Poisson distribution  
with mean = (λ/r)(1-exp(-ra))

λ

λ = Annual rate of conversion to seropositive

λ λ λ

Figure 1 Compartmental superinfection model.
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investigate abrupt changes in malaria transmission in the
recent time past.
Estimation of parameters:
In the specification of the basic superinfection model there
are two main parameters (λ, r). But in the specification of
the superinfection model, which allowed an abrupt change
in seroconversion rate there are three main parameters
(λ1, λ2, r). The model was fitted to age-stratified serological
data using the method of maximum likelihood. In this
model, the dependent variable Y is an indicator variable,
meaning that it takes on only the values 0 (= seronegative
state) or 1 (= seropositive state). The probability mass
Figure 2 Comparison of superinfection estimates and catalytic estima
2005, Tanzania.
function from the Bernoulli distribution - the distribution
for the random indicator variable - is:

f yj;πj

� �
¼ πj if yj ¼ 1

1−πj if yj ¼ 0

�

where 0 ≤ πj ≤ 1
and πj was identified as the probability for a success

(arbitrarily yj = 1 is called a success).
The log-likelihood function for the jth observation is:

lnℓj ¼
ln P αj

� �� �
if yj ¼ 1

ln 1−P αj
� �� �

if yj ¼ 0

(

tes for each village, original data used by Drakeley et al.,



Table 1 Comparison of estimates of seroconversion rate (SCR) and duration of seropositivity to MSP119 using catalytic
and superinfection models fitted to data from 12 villages/sites in Tanzania

Villages Altitude
(meters)

§ Catalytic model [5] (1) § Superinfection model (2) ((2) – (1))*100 / (1) % change
in Std. Err.

Predicted
EIR [18]SCR (Std. Err.) SCR (Std. Err.) % change in SCR

Mgila 375 0.1228 (0.0139) 0.1451 (0.0116) 18 −17 39.1002

Kadando 528 0.0959 (0.0104) 0.1097 (0.0098) 14 −6 16.3467

Kambi ya Simba 746 0.0753 (0.0067) 0.0857 (0.0073) 14 6 4.7182

Ngulu 832 0.0869 (0.0077) 0.0980 (0.0080) 13 4 2.8899

Tamota 1055 0.0574 (0.0061) 0.0726 (0.0066) 26 8 0.8107

Goha 1163 0.0239 (0.0028) 0.0306 (0.0034) 28 24 0.438

Lambo 1188 0.0099 (0.0017) 0.0123 (0.0021) 25 24 0.3799

Funta 1240 0.1033 (0.0108) 0.1197 (0.0101) 16 −7 0.2824

Mpinji 1445 0.0065 (0.0012) 0.0083 (0.0015) 27 29 0.0878

Kilomeni 1556 0.0046 (0.0010) 0.0058 (0.0013) 27 27 0.0466

Kwadoe 1564 0.0071 (0.0015) 0.0092 (0.0019) 29 29 0.0445

Bwambo 1598 0.0041 (0.0009) 0.0054 (0.0012) 31 30 0.0367

Average 22

Reversion rate 0.0139 (0.0029) 0.0426 (0.0062)

Duration in years 72 23

§ The models were estimated using Stata software’s ml command; Standard errors were approximated to 4 decimal places but actual values were used in
calculating the % change.
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where yj is the indicator variable yj = 1 if person j is sero-
positive and yj = 0 if they are seronegative, and a j is their
age and P(aj) is the proportion seropositive at age aj.
The antibody titre was used to classify individuals as sero-

positive (or responder) or seronegative (or non-responder)
using the mixture model method [12]. Briefly, the distri-
bution of normalized optical density (OD) values was
fitted as the sum of two Gaussian distributions - a narrow
distribution of seronegatives and a broader distribution of
Figure 3 Association between altitudes and annual rate of seroconve
Catalytic models) or predicted EIR (Bodker et al., 2003) for the 12 site
seropositives - using maximum likelihood methods. The
mean OD of the Gaussian corresponding to the seronega-
tive population plus three standard deviations was used as
the cut-off for seropositivity [6]. A separate cut off was
generated for each antigen, say MSP1 & AMA1.
The seroconversion rate (SCR) was then estimated by

fitting the superinfection model to the observed seropreva-
lence data, stratified into yearly age groups, using the max-
imum likelihood methods. All members of the population
rsion from MSP119 seronegative to seropositive (Superinfection &
s in Tanzania.



Figure 4 Superinfection model of seropositivity to MSP119 for villages in North Pare, Tanzania.
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become susceptible at a certain age. This is the age when
maternal malaria immunity has sufficiently waned to make
the children susceptible to infection. This age is an un-
known constant, which can be dealt with using several
approaches. Remme et al. [4] estimated this age as part
of the model specification. Drakeley et al. [5] excluded
children below one year and fitted the model to all villages
simultaneously, allowing SCR to vary among villages but
with the reversion rate constrained to a single value.
Drakeley’s approach has been adopted to fit the super-
infection model. The maximum likelihood estimation
of the SCR has been executed using the ‘ml’ command in
Figure 5 Superinfection model of sero-positivity to MSP119 for village
Stata for Windows (College Stations, Texas, USA). Briefly,
the log-likelihood function of proportion seropositive
at age, a, and its first derivatives was evaluated using the
Method-d1 evaluators [13]. Ado-files were then written to
maximise the likelihood and predict the SCR using the
observed age-stratified seroprevalence data.

Results
The superinfection model was compared with the original
data from Tanzania. The results showed that estimates of
seroconversion rate were higher using the superinfection
model than catalytic model (Figure 2). This difference was
s in South Pare, Tanzania.



Table 2 Proportion seropositive to AMA1 and MSP119 in
three sites (Rabola, Bakake & Baney), Bioko, 2008

Age group
(years)

Seropositive to AMA1 Seropositive to MSP119

Number of
participants

% Number of
participants

%

<1 611 13.9 615 6.5

1 <2 292 13.4 300 8

2 <5 720 22.6 728 13.3

5 <10 938 45 934 13.9

10 <15 617 61.8 621 21.4

15 <20 275 80.7 269 33.5

20 <25 349 78.8 358 39.1

25 <35 568 76.9 566 43.6

35 <50 650 69.1 635 41.9

50+ 533 65.3 528 44.9

Total 5553 50.8 5554 25.3
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milder when the level of transmission was lower. This sug-
gests that the catalytic model might be underestimating
the transmission intensity by up to 31% (Table 1). The
duration is shorter with superinfection model, but still
seems too long (Table 1). This may be because the model
assumes a constant reversion rate. The estimates of
seroconversion rate were lower than the predicted ento-
mological inoculation rate (Figure 3). It may be that the
predictive model is no longer valid. The seroprevalence
profiles appeared to suggest that the model fits the serocon-
version rate quite well but it may be difficult to discriminate
the model on the basis of fit alone (Figures 4, 5 and 6).
The superinfection model was also fitted to data from
Bioko (Table 2) where a change in transmission has been
established using the catalytic model. The superinfection
model predicts a change in transmission, which is consist-
ent with the catalytic model (Figure 7 and Table 3). The
model, which allowed an abrupt change in seroconversion
rate were better fit than the model, which did not assume
that seroconversion rate has changed (Likelihood ratio test
for AMA1: LR chi2 (1) = 60.11; P-value < 0.0001; and for
MSP119: LR chi2 (1) = 3.09; P-value = 0.08).

Discussion
In this paper, a mathematical model of seropositivity to
malaria antigens that allows seropositivity to be prolonged
by exposure was developed. This model is important
because it can produce more realistic estimates of the
duration of seropositivity. This is analogous to Dietz model,
which allowed for superinfection and produced more realis-
tic estimates of the duration of infection as compared to
the original Ross-MacDonald malaria model [14-17], which
also ignores superinfection. However, some discrepancies
may remain, considering the simplifying assumptions in-
cluded in the model. In particular, the reversion rate may
Figure 6 Superinfection model of sero-positivity to MSP119 for village
depend on age and the seroconversion rate may also
depend on age.
The estimates of seroconversion rates at the 12 villages in

Tanzania were lower than Bodker and colleague’s predicted
EIR [18]. It may be that the predictive model developed
by Bodker et al. [18] is no longer valid: the dynamics of
malaria transmission might have changed and the data
used for the predictive model was collected a decade
(1995/96) before the current study by Drakeley et al.,
to which the model is being applied. The estimate of the
mean duration of seropositivity was lower in the super-
infection model than the catalytic model but it still seems
too long. One possible reason is that the model assumed a
constant reversion rate but it may depend on age. For ex-
ample, in a cohort study of young children, aged six years
s in West Usambara, Tanzania.



Figure 7 Log-likelihood profiles and superinfection models of probability seropositive to AMA1 & MSP119, allowing abrupt change in
incidence rate (Rabola,Bakake, Baney), Bioko, 2008.
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and below, conducted in The Gambia to investigate the
determinants of antibody response longevity, Akpogheneta
and collegues have demonstrated that antibodies decayed
more slowly among children in the oldest age group and
more rapidly among children in the youngest age group
[19]. The superinfection model also assumes a constant
seroconversion rate but it may also depend on age. For
example, Nasell has shown that young children may ex-
perience superinfection up to age 5 but it is not com-
mon in adults [10]. In a multistrain model, Milligan and
Downham found similar conclusions that the fraction of
infection increased more rapidly in younger children
than in adults as they acquire immunity to different
strains of pathogens [9]. In a recent study, Portugal and
colleagues held an opposite view that superinfections are
Table 3 Parameter estimates for the superinfection
model, Bioko, 2008

Parameters AMA1 MSP1

Estimate Std. error. Estimate Std. error.

λ1 0.611 0.216 0.071 0.059

λ2 0.04 0.007 0.022 0.003

r 0.178 0.033 0.072 0.039

λ1 = Previous seroconversion rate; λ2 = Current seroconversion rate;
r = reversion rate.
uncommon in younger children [20]. A model that allowed
the mean duration of seropositivity to depend on age may
give a more realistic estimate of the seroconversion rate.
A better fit could probably be obtained only at the cost

of complex model specification. Future work should con-
sider extending the model to allow the reversion rate to
depend on age according to an exponential function. The
function can be chosen such that the duration of seroposi-
tivity is three years for adults, which is consistent with
results from longitudinal studies. A model that allowed
the seroconversion rate to drop gradually according to a
logistic function is also an important consideration. This
may be a more realistic model for how seroconversion rate
changes over time than the model that assumes an abrupt
change. It may not be possible to fit complex models with
age-dependent duration, the parameters may not be
identifiable. It may be necessary to consider the mean
duration (as a function of age) to be fixed, determined
from field data, and then use the superinfection model
with the duration parameters fixed, to estimate the sero-
conversion rate, perhaps with the more flexible logistic
function used to estimate trends over time. This then is a
topic for further research, to find out if the mean duration
can be considered constant for a particular type of antigen
and it would be necessary to find reliable estimates.
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Conclusion
The superinfection model is important because it can
produce more realistic estimates of the duration of
seropositivity. This is analogous to Dietz model, which
allowed for superinfection and produced more realistic
estimates of the duration of infection as compared to the
original Ross-MacDonald malaria model, which also
ignores superinfection.
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