
International Scholarly Research Network
ISRN Electronics
Volume 2012, Article ID 859820, 10 pages
doi:10.5402/2012/859820

Research Article

Polynomial Time Instances for the IKHO Problem

Romeo Rizzi1 and Luca Nardin2

1 Department of Computer Science, University of Verona, 37134 Verona, Italy
2 Department of Information Engineering and Computer Science, University of Trento, 38123 Povo, Italy

Correspondence should be addressed to Luca Nardin, luk.nardin@gmail.com

Received 20 January 2012; Accepted 7 February 2012

Academic Editors: C. W. Chiou and T. L. Kunii

Copyright © 2012 R. Rizzi and L. Nardin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Interactive Knapsacks Heuristic Optimization (IKHO) problem is a particular knapsacks model in which, given an array of
knapsacks, every insertion in a knapsack affects also the other knapsacks, in terms of weight and profit. The IKHO model was
introduced by Isto Aho to model instances of the load clipping problem. The IKHO problem is known to be APX-hard and,
motivated by this negative fact, Aho exhibited a few classes of polynomial instances for the IKHO problem. These instances were
obtained by limiting the ranges of two structural parameters, c and u, which describe the extent to which an insertion in a knapsack
in uences the nearby knapsacks. We identify a new and broad class of instances allowing for a polynomial time algorithm. More
precisely, we show that the restriction of IKHO to instances where (c+ 2u)/c is bounded by a constant can be solved in polynomial
time, using dynamic programming.

1. Introduction

Interactive Knapsacks Heuristic Optimization problem
(IKHO) is a particular knapsacks model in which, given an
array of knapsacks, an insertion in a knapsack influences the
nearest knapsacks, in terms both of weight and of profit. It
was introduced by Aho in [1], for solving the load clipping
problem arising in electricity management application. It
belongs to the general framework of the Interactive Knap-
sacks problems (IK) (also defined in [1]) which has several
other applications, for example, in electricity management,
single and multiprocessor scheduling, and packing of n-
dimensional items to different knapsacks. Since IKHO is NP-
complete [1] and APX-hard [2], the research of polynomial
time instances is very important. In [3], Aho introduces a
few classes of such instances restricting the values of certain
parameters of the problem: c and u, which determine the
dimension of the influence on other knapsacks caused by
an insertion, and K , that limits the number of insertions.
We keep on this line of investigation by adding a wide and
significant class of polynomial time instances for the IKHO
problem in the case when (c + 2u)/c is bounded.

Intuitively, in IKHO, when we insert an item in a
knapsack, this item is replicated (cloned) to the c next knap-
sacks (hence forming a cloning block over c + 1 consecutive
knapsacks), and it causes an arbitrary but predetermined
modification (radiation) of the weight and profit of the
knapsacks at distance at most u from the cloning block (on
both sides of the cloning block). After a knapsack is involved
in a cloning operation, we are not allowed to insert any
other item in that knapsack. Therefore, the cloning blocks
are disjoint. In this paper, we are mainly interested in the
case where the ratio between the whole width c + 2u of the
influenced zone (cloning plus radiation zones) and the width
c of the cloning part is bounded by a constant r. We propose
a dynamic programming algorithm based on a matrix of size
O(cr × K), and having time complexity of O(cr × m × K),
where m is the number of knapsacks and K represents the
maximum number of cloning block that we can insert in the
knapsacks array.

In Section 2, we give the original formulation of the
problem from [1] and we then simplify it to ease our
exposition in later sections. In Section 3, we give the
algorithm. In Section 4, we sharpen the complexity result.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194272862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 ISRN Electronics

Finally, in Section 5, we design a memory saving version of
that algorithm.

We conclude this section by defining some useful nota-
tion. Henceforth, we write 0m to denote a zero constant
vector of length m, that is, 0m

i = 0 for i = 1, . . . ,m. Moreover,
if x, y ∈ {0, 1}m, we write x · y to indicate the concatenation
of the two binary strings. Furthermore, [a, b] always denotes
a range of integers and, if a > b, we assume that [a, b] is
empty. In the same way, if a > b, the notation for i = a, . . . , b
means for no i.

2. Formulation of the IKHO Problem

We are given an array of m knapsacks, each one of capacity
b� , for � = 1, . . . ,m. There is a single item that we are asked
to insert at most K times in the knapsacks array, where K is
a natural given as part of the input. The profit and weight
of an insertion depend on the knapsack in which we insert
for i = 1, . . . ,m the naturals wi and pi represent the weight
and the profit of an insertion in the knapsack i. The main
feature of IK problems is that every insertion has also an
influence on the weight and profit of the nearby knapsacks.
In this way, the weight charged on and the profit relative
to a knapsack are established by the insertions in all the
knapsacks. To describe this mechanism, Aho introduces a
function (called interactive function) Ii for each knapsack
i = 1, . . . ,m, that determines the interaction from a knapsack
i to every other knapsack. In particular, given naturals c and
u, for each knapsack i, we know that

Ii(�) = 1 for knapsacks � ∈ [i, i + c],

Ii(�) ∈ Q arbitrary for knapsacks � ∈ [i− u, i− 1]

∪ [i + c + 1, i + c + u],

Ii(�) = 0 for all other knapsacks.
(1)

The range [i, i + c] is called cloning block and the range [i −
u, i− 1]∪ [i + c + 1, i + c + u] radiation part. The role of the
functions Ii gets clear in formulas (2)–(5).

The decision variables used to denote in which knapsacks
we do the insertions are xi ∈ {0, 1} for i = 1, . . . ,m. Given
in input m, pi,wi, bi, c,u ∈ N and K ∈ N \ {0}, an IKHO
problem is to

maximize
m∑

i=1

xi

m∑

�=1

Ii(�)p� (2)

subject to
m∑

i=1

xiIi(�)wi ≤ b� , for � = 1, . . . ,m, (3)

m∑

i=1

xi ≤ K , (4)

xj = 0, for i < j ≤ i + c, when xi = 1, (5)

where i = 1, . . . ,m in (5). Clearly, since a feasible x must
belong to {0, 1}m, then at most one item may be put in
each single knapsack. Moreover, notice that in Constraint

(3), imposing that the knapsacks are not overfilled, Ii(�) is
multiplied by the weight wi. Thus, when we insert in the
knapsack i(xi = 1), the weight wi is equivalently charged on
the knapsacks � ∈ [i, i + c], for which Ii(�) = 1. This is the
reason of calling the range [i, i + c] cloning block. Regarding
the knapsacks in the radiation part [i − u, i − 1] ∪ [i + c +
1, i + c + u], we get that an arbitrary portion of the weight
wi is added or subtracted (since Ii(�) can be negative) to
them. Similar operations are performed in the maximization
function (2) with the profits p� . Furthermore, Constraint (4)
specifies the maximum number of cloning blocks to be put
into the knapsacks array, while Constraint (5) tells that the
cloning blocks must be disjoint. The IKHO model is more
widely explained and motivated in [1, 4].

2.1. Simplifying the Formulation. Our first step here is
to simplify the formulation of the problem by making
the notion of weight independent from the interaction
functions, and the profit dependent only on the knapsack
where we insert. This is accomplished by exploiting the
transformation proposed by Aho in [2], in order to reduce
IKHO to MDKP, an IPL formulation surveyed in [5]. We
define

p′i =
m∑

�=1

Ii(�)p� ,

w′i� = Ii(�)wi,

(6)

so that p′i represents the total profit of an insertion in the
knapsack i, and w′i� is the weight that an insertion in the
knapsack i charges over the knapsack �. From the features
of Ii(�) exposed in (1), it follows that w′i� and p′i are both
rational numbers. Thus, notice that they can be also negative.

Now, we can reformulate the problem as follows:

maximize
m∑

i=1

xi p
′
i (7)

subject to
m∑

i=1

xiw
′
i� ≤ b� , for � = 1, . . . ,m,

(4) and (5).

(8)

Henceforth we refer always to the latter formulation of the
problem, since it simplifies the description of the algorithm.

Let us restate the behavior of parameter w′ as inherited
by functions Ii. For i = 1, . . . ,m, we have that

w′i� = wi (and then it is constant) for � ∈ [i, i + c],

w′i� is arbitrary for � ∈ [i− u, i− 1]∪ [i + c + 1, i + c + u],

w′i� = 0 for all other � ∈ [1, . . . ,m].
(9)

2.2. Polynomial Time Instances. The classes of instances iso-
lated by Aho are the following:

(a) the instances with c = u = 0;

(b) those with K = O(1);

ISRN Electronics 3

(c) those with u = 0;

(d) those with c + 2u + 1 = O(log(mα)), for a constant α.

The restriction of IKHO obtained by considering only the
instances in (a) corresponds to the situation in which there
are no interactions, whence the decision on whether to insert
an item can be taken independently on each knapsack. As
for (b), notice that any instance of IKHO admits at most
mK feasible solutions, which is only a polynomial number of
possibilities whenever K = O(1). We refer to [3] for details
on Aho’s algorithm for instances of type (c) and (d).

In Section 3, we describe an algorithm for IKHO that has
time complexity of O(m × K × c(c+2u)/c). When (c + 2u)/c is
bounded by a constant, it clearly becomes a polynomial time
algorithm. Indeed, note that the term c(c+2u)/c is polynomial
also when c + 2u = O(ln(mα)), for a constant α. In fact,
c(c+2u)/c = (c1/c)

c+2u
, and c1/c is a decreasing function on c.

Therefore, our results imply those reported in (a), (c), and
(d).

3. The Algorithm

In the following, A = (m, b, c,u,w′, p′,K) always denotes the
input IKHO instance. Let L := c + 2u. A binary string s ∈
{0, 1}L is called a signature if it obeys Constraint (5), that is,
if si + s j ≤ 1 for all i, j ∈ [1,L] such that 1 ≤ |i− j| ≤ c. We
denote by S the set of all signatures.

Given a solution x ∈ {0, 1}m, |x| := ∑m
i=1 xi denotes the

number of insertions prescribed by x. Moreover, for each
� ∈ [1,m], w(x, �) := ∑m

i=1 xiw
′
i� is the weight charged

on the knapsack � by the solution x. Then, we say that a
solution x obeys the capacity constraint (Constraint (8)) on
the knapsacks [α,β] if and only if w(x, �) ≤ b� for each
� ∈ [α,β]. Furthermore, we write x � (s,h) when xh+ j = s j
for each j ∈ [1,L] and xi = 0 for each i ∈ [1,h], that is, when
x starts with the signature s in the knapsacks [h + 1,h + L],
whence having the form x = 0 · · · 0︸ ︷︷ ︸

h

sx′.

3.1. The Subproblems of Our DP Approach. Given a natural
k ≤ K , a natural h ≤ m − L, and a signature s, we consider
a modified problem Sub[k,h, s], whose solutions are those
x ∈ {0, 1}m which obey

x � (s,h), (10)

w(x, �) ≤ b� ∀� ∈ [h + c + u + 1,m], (11)

|x| ≤ k,

and (5).
(12)

The objective function is the same as in the IKHO formu-
lation. The differences between the IKHO problem and the
above-defined subproblems are in the additional parameters
s, h, k and their use in the constraints.

(i) Constraint (10) fixes the first insertions in compli-
ance to the signature s.

(ii) The range on which we check the capacity constraint
in (11) is [h+c+u+1,m], a subset of the range [1,m]
checked in IKHO.

(iii) By Constraint (12), we can do at most k insertions.
Notice that in general (12) is more restrictive than
(4).

In the following, we denote by X[A] the space of solutions to
the IKHO instance A, and by X[k,h, s] the space of solutions
to the modified problem Sub[k,h, s]. Moreover, let opt[A] be
the maximum value of a solution in X[A] and opt[k,h, s] the
maximum value of a solution in X[k,h, s]. It is assumed that
opt[k,h, s] = −∞ when X[k,h, s] is empty.

3.2. The Dynamic Programming Algorithm. Our dynamic
programming approach is based on Lemmas 1 and 2, whose
proofs are given later in this subsection. In particular,
Lemma 1 shows how to read out an optimal solution to
the IKHO instance, from the optimal solutions to the
subproblems.

Lemma 1. Let S0 ⊆ S be the set of the signatures s such that
y = s · 0m−L obeys the capacity constraint on all knapsacks
� ∈ [1, c + u]. Then,

opt[A] = max
s∈S0

opt[K , 0, s]. (13)

Indeed, X[A] = ⋃s∈S0
X[K , 0, s].

Lemma 2 explains how to recursively solve the subprob-
lems. We need some additional notation. Given x ∈ {0, 1}m,
b ∈ {0, 1}, for i = 1, . . . ,m, we write x + (b, i) to denote the
binary string obtained from x by setting its i-th element to b.
Moreover, if X ⊆ {0, 1}m, we let X + (b, i) := {x + (b, i) : x ∈
X}. Furthermore, for each b ∈ {0, 1}, and h ∈ [0,m − L], a
signature s ∈ S is called (h, b)-good if z := 0h · s·b ·0m−h−L−1

obeys the capacity constraint for the knapsack h + c + u + 1
and if s′ := (s2, s3, . . . , sL, b) ∈ S.

Lemma 2. For k = 1, . . . ,K , h = 0, . . . ,m− L− 1, s ∈ S,

opt[k,h, s] = max
b∈{0,1}: s is (h,b)-good

opt

× [k − s1,h + 1, s′ := (s2, s3, . . . , sL, b)]

+ s1p
′
h+1.

(14)

Indeed,

X[k,h, s]

=
⋃

b∈{0,1}: s is (h,b)-good

X[k − s1,h + 1, s′ := (s2, s3, . . . , sL, b)]

+ (s1,h + 1).
(15)

The base for the recursion, that is, the cases where h =
m− L and k = 0, is handled in Section 3.3.

In order to prove Lemmas 1 and 2, let us begin by
pointing out some basic facts that directly derive from the
IKHO formulation. Observations 1 and 2 play an important

4 ISRN Electronics

[1, a− u]

a− u

x

y

a

? ? ? ? ??

? ? ? ? ??

Figure 1: Representing Observation 1. The gray area indicates
where x is equal to y, that is, the knapsacks [1, a]. The arrow
represents the left most possible radiation as starting from the left
most possible different bit. Since this radiation cannot reach the
knapsacks [1, a − u], then, for � ∈ [1, a − u], w(x, �) and w(y, �)
cannot differ as they depend only on the common bits [1, a].

role in the formal proofs of these lemmas. For this reason,
these observations and their proofs are visualized in Figures
1 and 2, respectively.

Observation 1. Assume a > u. Let x, y ∈ {0, 1}m such that
xi = yi for i = 1, . . . , a. Then, for each � ≤ a − u, x satisfies
the capacity constraint if and only if y satisfies it. Indeed, for
each � ≤ a− u, w(x, �) = w(y, �).

Proof. Let � ≤ a − u. Remember that w(x, �) := ∑m
i=1 xiw

′
i� .

However, by (9), w′i� = 0 for � < i − u, that is, when i >
l + u. Moreover, xi = yi for i = 1, . . . , � + u, since � + u ≤ a.
Therefore,

w(x, �) :=
m∑

i=1

xiw
′
i� =

�+u∑

i=1

xiw
′
i� =

�+u∑

i=1

yiw
′
i�

=
m∑

i=1

yiw
′
i� =: w

(
y, �
)
.

(16)

Observation 2 covers the left/right-reverse situation.

Observation 2. Assume a ≤ m − c − u. Let x, y ∈ {0, 1}m
such that xi = yi for each i = a, . . . ,m. Then, for each � ≥
a + c + u, x satisfies the capacity constraint if and only if y
satisfies it. Indeed, for each � ≥ a + c + u, w(x, �) = w(y, �).

Proof. Let � ≥ a + c + u. By (9), w′i� = 0 for � > i+ c+u, that
is, when i < �−c−u. Moreover, xi = yi for i = �−c−u, . . . ,m,
since � − c − u ≥ a. Therefore,

w(x, �) :=
m∑

i=1

xiw
′
i� =

m∑

i=�−c−u
xiw

′
i� =

m∑

i=�−c−u
yiw

′
i�

=
m∑

i=1

yiw
′
i� =: w

(
y, �
)
.

(17)

Now, we are ready to prove Lemmas 1 and 2.

Proof of Lemma 1. First, let us show that every feasible solu-
tion to IKHO is a feasible solution to one of the subproblems
Sub[K , 0, s] for an s ∈ S0. Clearly, for each x ∈X[A], taking
s := (x1, x2, . . . , xL), we get that x ∈ X[K , 0, s]. By exploiting
Observation 1 with a = L, we get that y := s · 0m−L obeys
the capacity constraint on knapsacks [1, c + u], and then

x

y

a

? ? ? ? ??

? ? ? ? ??

a + c + u

[a + c + u,m]

Figure 2: Representing Observation 2.

h h + c + u + 1
x

y

0 0· · · 0 s1 s2 sL b ? ??.

Figure 3: Building a feasible solution to Sub[k,h, s]. In order
to construct a feasible solution x to the current subproblem
Sub[k,h, s], we exploit a feasible solution y to one of the subsequent
subproblems Sub[k−s1,h+1, s′ := (s2, s3, . . . , sL, b)], for a b ∈ {0, 1}.
Clearly, x must satisfy the capacity constraint on the knapsacks
[h + c + u + 1,m]. Moreover, notice that the radiation from the bit
s1 does not reach the knapsacks after h + c + u + 1, and then, for
those knapsacks, x satisfies the capacity constraint only if y does.
Therefore, we need to check the capacity constraint only for the
knapsack h+ c+u+ 1. Furthermore, the bits after b are not involved
when we check the capacity constraint on that knapsack. Thus, in
order to check the capacity constraint on the knapsack h + c + u + 1,
it is enough to know the bits of the string s · b. Notice that, for
a signature s, L is the smallest width that holds the properties we
showed above.

s ∈ S0. To prove the opposite inclusion, take s ∈ S0 and
x ∈ X[K , 0, s]. We show that x ∈ X[A]. Constraint (4),
Constraint (5), and the capacity constraint on knapsacks [c+
u + 1,m] are clearly satisfied. Since s ∈ S0, Observation 1 let
us verify the capacity constraint on knapsacks [1, c + u].

Lemma 2 directly follows from the two opposite inclu-
sions, that we show separately. While reading these proofs,
Figure 3 can be useful to visualize the structure of the vectors
x, y involved in the proofs.

Proof of Lemma 2. First, we show that

X[k,h, s]

⊆
⋃

b∈{0,1}: s is (h,b)-good

X[k − s1,h + 1, s′ := (s2, s3, . . . , sL, b)]

+ (s1,h + 1).
(18)

Proof. Suppose x ∈X[k,h, s]. Let b := xh+L+1. The inclusion
follows by two facts:

(a) s is (h, b)-good;

(b) x ∈X[k − s1,h + 1, s′] + (s1,h + 1).

ISRN Electronics 5

Take z := 0h · s · b · 0m−h−L−1. Since x obeys the capacity
constraint on knapsacks [h + c + u + 1,m] and xi = zi for i =
1, . . . ,h+L+1, by exploiting Observation 1 with a = h+L+1,
we get that z satisfies the capacity constraint on the knapsack
h+c+u+1. Clearly, s′ := (s2, s3, . . . , sL, b) satisfies Constraint
(5), being a substring of x. Hence, s is (h, b)-good.

In order to show that x ∈X[k−s1,h+1, s′]+(s1,h+1), we
take y := x+(0,h+1) and we show that y ∈X[k−s1,h+1, s′].
By following the subproblems definition, it is simple to verify
that y obeys Constraint (10), (12), and (5) of Sub[k − s1,h +
1, s′]. Moreover, since x satisfies the capacity constraint for
each � ∈ [h + c + u + 1,m], by applying Observation 2 with
a = h + 2, we get that y satisfies the capacity constraint over
the knapsacks [h+ c+u+ 2,m], and then y obeys Constraint
(11) too.

Second, we prove that

⋃

b∈{0,1}: s is (h,b)-good

X[k − s1,h + 1, s′ := (s2, s3, . . . , sL, b)]

+ (s1,h + 1) ⊆X[k,h, s].
(19)

Proof. Take a b ∈ {0, 1} such that s is (h, b)-good and a
y ∈ X[k − s1,h + 1, s′ := s2, s3, . . . , sL, b]. We will show that
x := y + (s1,h + 1) ∈ X[k,h, s]. Constraint (10) and (12)
of Sub[k,h, s] easily follow from subproblems definition.
Moreover, since y satisfies Constraint (5) and s ∈ S, then
x satisfies Constraint (5).

It remains to verify Constraint (11). Since s is (h, b)-good,
then z := 0h · s·b ·0m−h−L−1 obeys the capacity constraint on
the knapsack h+c+u+1. By applying Observation 1 with a =
h+L+1, we derive that also x obeys the capacity constraint on
that knapsack. Moreover, since y ∈ X[k − s1,h + 1, s′], then
y obeys the capacity constraint on the knapsacks [h+ c + u+
2,m]. Since yi = xi for i = (h+2, . . . ,m), by Observation 2, x
obeys the capacity constraint also for the knapsacks [h + c +
u + 2,m].

3.3. The Base of the Recursion. We have two base cases.
Observation 3 handles the case when h = m − L, while
Observation 4 treats the case when k = 0.

Observation 3. Consider h = m− L, for all k = 1, . . . ,K , and
s ∈ S. Moreover, let z := 0h · s.

If |z| ≤ k and w(z, �) ≤ b� for each � ∈ [m−u+1,m],

then opt[k,h, s] = ∑m
i=1 zi p

′
i . Otherwise, opt[k,h, s]

= −∞.

Proof. Clearly, since h + L = m and by Constraint (10),
there cannot exist a solution to Sub[k,h, s] different from z.
Moreover, notice that h + c + u + 1 = m− u + 1.

Observation 4. Consider k = 0, for all h = 0, . . . ,m− L, and
s ∈ S.

If s = 0L, then opt[k,h, s] = 0,

Otherwise opt[k,h, s] = −∞.

Proof. Clearly, by Constraint (12), 0m can be the only
solution to Sub[0,h, s].

4. Complexity

In this section, we prove Lemma 3.

Lemma 3. Let r be a constant such that L/c is bounded by r
when c > 0, and L is bounded by r when c = 0. The above
algorithm takes time and space of O(cr ×m× K).

Clearly, our algorithm exploits a three-dimensional
matrix for storing the values opt[k,h, s], for k = 1, . . . ,K ,
h = 0, . . . ,m − L, and s ∈ S. We also need a matrix of the
same size which traces, for each subproblem Sub[k,h, s], the
subsequent subproblem used to compute opt[k,h, s]. This
makes us rebuild the optimum solution at the end. The space
complexity of the algorithm then is O(K×m×|S|). We need
to rate the value of |S|, but first let us to compute the time
complexity.

In order to evaluate the base case of our dynamic pro-
gramming algorithm, we first refer to Observation 3. Clearly,
for k < |s|, opt[k,h, s] = −∞, because there must be
at least |s| insertion in a solution that starts with the
signature s. Moreover, since z := 0h · s is the only feasible
solution to Sub[k,h, s], it is clear that, for each k > |s|,
opt[k,h, s] = opt[|s|,h, s], by Constraint (12). Therefore, we
have to compute only for k = |s|, and then, the number
of base case subproblems to be computed is only |S|. Since
s ∈ {0, 1}L, L is the time needed for computing both the
profit of z and w(z, �), for an � ∈ [m − u + 1,m]. Then,
to check the capacity constraint on all the knapsacks [m −
u + 1,m], we need u × L computations. Thus, the base case
h = m − L can be computed in time of O(|S| × L × u).
About the base case k = 0, as handled by Observation 4,
note that if we codify the signatures s ∈ S (a such codify
is given in Section 4.2), we can check the condition s = 0L

in O(1). Regarding the general case, by (14), for solving a
subproblem, we have to check if s is (h, b)-good, for b = 0, 1.
To check if z := 0h · s · b · 0m−h−L−1 satisfies the capacity
constraint on the knapsack h + c + u + 1, and if s′ ∈ S, we
spend O(L) computations. Since the number of subproblems
is K × (m−L)×|S|, we need O(|S|×m×L×K) time to fill
the matrix opt. Moreover, by (13), we have to scan over the
s ∈ S0 in order to find the maximum value of opt[K , 0, s].
Clearly, |S0| ≤ |S|, but we need L× (c + u) computations to
check the capacity constraints on all knapsacks � ∈ [1, c+u],
because each signature s has width L. Thus, we spend O(|S|×
L2) computations, to find opt[A]. Furthermore, rebuilding
the best solution takes O(m) time. Therefore, the part in
which we recursively compute the subproblems leads the
complexity of the entire algorithm. It depends on the value
of |S|, as well as the space complexity. In Section 4.1, we give
an estimate of this value. Moreover, in Section 4.2, we show
an ordering of the set S, that permits us to check the capacity
constraint on a knapsack in constant time.

6 ISRN Electronics

n− 1

n− c − 1c

0

0

0

1
1

11

0 · · · 0

0 · · · 0

0

· · ·
0 · · ·

· · ·

1 · · ·

Figure 4: The influence of the first bit choice.

4.1. Estimating |S|. In the case where c is a constant, we can
directly estimate |S|.

Observation 5. If c is a constant, then |S| = O(1).

Proof. Clearly, |S| ≤ 2L, because the number of binary
strings s ∈ {0, 1}L is 2L. Moreover, when c = 0, we supposed
L constant. When c > 0, since L/c ≤ r, we get that L ≤ rc,
with constant r and c.

For nonconstant values of c, let us find a general form for
|S|. Let Sc(n) denote the number of binary strings s ∈ {0, 1}n
such that s obeys Constraint (5). Note that Constraint (5)
contains the parameter c. When n ∈ [0, c], we have n places
where to insert, and at most one insertion is possible by
Constraint (5). Moreover, we have to count the string with no
insertions. Thus, we get that Sc(n) = n + 1 for all n ∈ [0, c].
For greater values of n, we refer to the recursion shown in
Figure 4. If the first bit of s is 0, the choice of the following bits
is not influenced. Therefore, it is enough to find the number
of strings s ∈ {0, 1}n−1 such that s obeys Constraint (5), that
is exactly Sc(n− 1). If the first bit is 1, by Constraint (5), the
following c bits are necessarily 0’s. In this case, we continue
to choose after the c + 1-th bit. Thus, we have Sc(n − c − 1)
ways to choose the remaining bits. Therefore, we can express
Sc(n) by the recurrence equation:

Sc(n) = Sc(n− 1) + Sc(n− c − 1),

Sc(n) = n + 1 ∀n ∈ [0, c].
(20)

Lemma 4 gives a general estimate of the recurrence Sc(n),
in order to bound |S| for nonconstant values of c.

Lemma 4. Let c ≥ e. For each n ≥ c, Sc(n) ≤ ((c + 1)/c) cn/c.

Proof. We prove the claim by induction on n, and we
postpone to the appendix the proof of the base of the
induction, that is, the case c ≤ n ≤ 2c. For n > 2c, we have
the step of induction. Clearly,

Sc(n) = Sc(n− 1) + Sc(n− c − 1)

≤ c + 1
c

c(n−1)/c +
c + 1
c

c(n−c−1)/c

= c + 1
c

(
c(n−1)/c + c(n−c−1)/c

)

0

0

1

1

··
·

··
·

|S| = Sc(L)

Sc(L− 1)

Figure 5: Ordering the signatures.

= c + 1
c

c(n−c−1)/c
(

1 + cc/c
)

= c + 1
c

c(n−c−1)/c(1 + c)

= c + 1
c

cn/c
(1 + c)
c(c+1)/c

.

(21)

Hence, it is sufficient to show that (1 + c)/c(c+1)/c ≤ 1 or
equivalently 1 + c ≤ c(c+1)/c. Since c(c+1)/c = c · c1/c, it remains
to show that (1 + 1/c) ≤ c1/c.

We know that ex ≥ x + 1 for each real x. By substituting
x with 1/c and noticing that c ≥ e, we get that (1 + 1/c) ≤
c1/c.

Since L = c + 2u ≥ c, we can apply Lemma 4 to deduce
that |S| = Sc(L) = O(cL/c), as (c + 1)/c ≤ 2 for c > 0.
Therefore, when L/c is bounded by a constant r, we get
|S| = O(cr).

4.2. Ranking the Set S. We use Recurrence (20) to define a
function pos : S → [0, |S| − 1], which provides a unique
index for each signature, and hence, it gives a ranking for the
set S.

Definition 5. For each s ∈ S,

pos(s) :=
L∑

i=1

si · Sc(L− i). (22)

Note that Sc(L − i) is the number of signatures having
length L− i, and it is equivalent to the number of signatures
of length L − i + 1 that start with a 0. Hence, as illustrated
in Figure 5, in the step of the sum where i = 1, we intend to
place the signatures with s1 = 1 after all the signatures with
s1 = 0, that are exactly Sc(L − 1). For i = 2, . . . ,L, we do
recursively the same, locating substrings of length L− i.

Conversely, given an integer p ∈ [0, |S| − 1], the
unranking procedure is the following. Take s := 0L. For
i = 1, . . . ,L, if p ≥ Sc(L− i), set si = 1 and p := p− Sc(L− i).

Evidently, in order to efficiently perform such ordering
on the set S, we need to compute and store the recurrence
Sc(n), for n = 1, . . . ,L− 1, at the beginning of the algorithm.

ISRN Electronics 7

This takes O(L) time and space, whereas the ranking and
unranking operations take O(L) time.

Indeed, we can avoid to encode and decode the signatures
for the computation of each subproblem. This can be done
by initializing a table at the beginning of the algorithm, that
stores, for each position pos(s′) relative to a signature s′, a
list of the bits that are changed from the previous signature s,
that is, the signature having pos(s) = pos(s′) − 1. It is easy
to verify the following procedure finds the next signature
from the previous one (it works similarly to the function
that increments a binary counter, but considering Constraint
(5)).

(i) Scan the previous string s starting from the least
significant bit (right most) and find the first range of
c+ 1 consecutive 0’s, or a range of consecutive 0’s that
includes the most significant bit (left most).

(ii) If such a range exists, the next string is obtained by
setting to 1 the right most bit of the range, and by
setting to 0 all the bits at the right of the range.

(iii) If such a range does not exist, s is the last signature.

Above all, observe that, by Constraint (5), there are at
most L/(c + 1) insertions in a signature s ∈ |S|, and we
know that L/(c + 1) ≤ L/c ≤ r. Therefore, for every kind
of ranking for the set S, the number of the bits changing
between two adjacent signatures is O(r). Thus, if we know
the changing bits from a signature s to the next s′, we can use
an incremental approach for computing the value w(s′, �),
from w(s, �), in constant time. This allows us to check in
constant time the capacity constraints of the (h, b)-goodness
(14), those regarding the definition of the set S0 (13), and
when computing the base case (Observation 3). Note that
also Constraint (5) of the (h, b)-goodness can be computed
in O(r) with the same technique.

Moreover, note that when computing the matrix opt,
if we place the cycle on the variable s, externally to the
cycle on the variable k, we can clearly find the next
signature and check the capacity constraints only once every
K subproblems. In this way, the cost of finding the next
signature is made inessential.

Thus, we can conclude that our algorithm has time and
space complexity of O(cr ×m× K).

5. Memory Saving Version

Consider (14). Given an h ∈ [1,m − L − 1], in order to
compute opt[k,h, s] for each s ∈ S and k ≤ K , we need only
the elements having h = h + 1 of the matrix opt. Moreover,
by (13), only the elements with h = 0 are required for
computing opt[A]. Thus, in order to work out the profit of a
best solution, we only need O(|S|×K) space. Unfortunately,
this simplification does not apply to the matrix used to
compute the best solution.

In [6], Hirschberg showed an elegant and practical space
reduction method for the longest common subsequence
problem, which works for many dynamic programming
algorithms (well exposed also in [7]). In general, this method
allows to compute an optimal solution, taking as much space

and time as if we had only to compute the optimal solution
value. This is accomplished by exploiting the equation which
handles the recursion in the original algorithm (in our
case (14)). Its space policy exploits the space improvement
mentioned at the beginning of this section.

Conceptually, the basic idea of the method is to halve
a dimension of the dynamic programming matrix and find
how the best solution is divided in the other dimensions. This
permits the two halves obtained to be solved separately and
recursively in the same way. In order to apply this method to
our algorithm, we follow the next steps.

(i) We halve the knapsack array.

(ii) We find how many insertions of the best solution are
placed in each half of the knapsack array.

(iii) We locate a number of insertions placed around
the middle of the knapsack array. This allows us to
break up the IKHO problem in two independent
subproblems, which are then solved recursively.

Notice that, in the last sentence, the word subproblems does
not refer to the subproblems Sub[k,h, s] defined in Section 3.

In Section 5.1, we implement this idea. In Section 5.2,
we show that the new defined algorithm decreases the space
complexity to O(|S| × K), without increasing the time
complexity.

5.1. The Algorithm. In the following, we write x�R(s,h)
when xh−L−1+ j = s j for each j ∈ [1,L] and xi = 0 for each
i ∈ [h,m], that is, when x ends with the signature s in the
knapsacks [h− L,h− 1].

Given a natural k ≤ K , a natural h ∈ [L + 1,m + 1], and
a signature s, we consider a modified problem SubR[k,h, s]
whose solutions are those x ∈ {0, 1}m which obey

x�R(s,h),

w(x, �) ≤ b� ∀� ∈ [1,h− u− 1],

|x| ≤ k,

and (5).

(23)

The subproblems SubR[k,h, s] are simply the symmetrical
transposition of the subproblems Sub[k,h, s]. The only
significant difference is that we check the capacity constraints
in the range [1,h − u − 1], that is, not symmetrical to the
range [h + c + u + 1,m]. This dissimilarity is caused by the
fact that also the radiations produced by an insertion are not
symmetrical too (see (9)).

We denote by XR[k,h, s] the space of the feasible
solutions to the modified problem SubR[k,h, s]. More-
over, optR[k,h, s] is the maximum profit of a solution in
XR[k,h, s] when XR[k,h, s] is not empty, and optR[k,h, s] =
−∞ when XR[k,h, s] is empty. Notice that, since the
subproblems Sub and SubR are symmetrical, the properties
proved for opt hold symmetrically for optR, bringing some
adjustments due to the fact that the radiations are not exactly
symmetrical. Thus, for computing the matrix optR, we take
the same space and time needed for computing the matrix
opt, that is, O(|S| × K) space and O(m× |S| × K) time.

8 ISRN Electronics

? ?? ? ??

y

h h

y

s

uuc

[1,h − u− 1] [h + c + u + 1,m]

Figure 6: Joining XR[k′,h′, s] with X[k,h, s]. The solution y
belongs to the space X[k,h, s], while y′ ∈ XR[k′,h′, s]. Note that
the knapsacks [h + c + u + 1,m], where y satisfies the capacity
constraint, are complementary to the knapsacks [1,h′−u−1], where
y′ satisfies that constraint.

In the following, let |s| to be the number of insertions
in a signature s. For each s ∈ S, and for h = 0, . . . ,m − L,
let p(s,h) :=∑L

i=1 si p
′
h+i. Clearly, this function holds for each

knapsack h the profit caused by placing the signature s in the
knapsacks [h + 1, . . . ,h + L]. Moreover, for α,β = 1, . . . ,m,
and y ∈ {0, 1}m, let y(α,β) be the substring of y composed
by the elements in the range [α,β] (we assume y(α,β) is
empty when α < β). Furthermore, for k, k′ ≤ K , for each
signature s, for h = 0, . . . ,m − L and h′ = L + 1, . . . ,m − L
such that h′ − h = L + 1, let XR[k′,h′, s] ⊗ X[k,h, s] :=
{y′(1,h)·s·y(h′,m) : y′ ∈XR[k′,h′, s], y ∈X[k,h, s]}. This
new operator defines a new space of solutions given by the
concatenation of the feasible solutions of two symmetrical
subproblems. Notice that the signature s represents the
joining point when concatenating the two strings. This
situation is represented in Figure 6, which is also useful to
visualize the proof of Lemma 6, which represents the main
innovation on our algorithm.

Lemma 6. Let h = m/2− L/2− 1, and h′ = h + L + 1.
Then,

opt[A]

= max
s∈S,|s|≤k≤K

(
optR[K − k + |s|,h′, s] + opt[k,h, s]− p(s,h)

)
.

(24)

Indeed,

X[A] =
⋃

s∈S,|s|≤k≤K

(
XR[K − k + |s|,h′, s]⊗X[k,h, s]

)
.

(25)

Proof. In order to show that X[A] ⊆ ⋃
s∈S,|s|≤k≤K (XR[K −

k+ |s|,h′, s]⊗X[k,h, s]), take x ∈X[A]. Moreover, take s :=
x(h+ 1,h′ −1), y := 0h · s·x(h′,m), y′ := x(1,h) · s·0m−h′+1,
and k := |y|. In the following, we prove that y′ ∈ XR[K −
k + |s|,h′, s] and y ∈ X[k,h, s]. Obviously, y � (s,h) and
y′�R(s,h′). For which concerning the number of insertions,
it is clear that y satisfies Constraint (12) of Sub[k,h, s], as
k = |y|. Moreover, note that |x| ≤ K , because x ∈ X[A],
and |y′| = |x| − |y| + |s|. Thus, |y′| ≤ K − k + |s|, and then
y′ satisfies Constraint (12) of Sub[K+|s|−k,h′, s]. About the

h h

K − kopt + |sopt|
kopt

|sopt|

Figure 7: The subdivision on the k dimension. A possible best
solution xopt is drawn. The black spots represent the insertions. It
is simple to see that the value kopt−|sopt| is a bound for the number
of insertions placed at the right of sopt, while K − kopt bounds the
number of insertions at the left of the signature.

h h

s

c u u

??? ???

Figure 8: The subdivision on the s dimension. The radiations of
weight coming from the right knapsacks do not reach those starting
from the left knapsacks.

capacity constraints, in order to show that y satisfies them on
the knapsacks [h + c + u + 1,m], we can apply Observation 2
with a = h + 1. Conversely, applying Observation 1 with a =
h′ − 1, we obtain that y′ satisfies the capacity constraint on
the knapsacks [1,h′ − u− 1].

To prove the converse inclusion, take s ∈ S, k such that
|s| ≤ k ≤ K , y′ ∈ XR[K − k + |s|,h′, s], and y ∈ X[k,h, s].
We prove that x := y′(1,h) · s · y(h′, s) ∈ X[A]. Clearly,
since |y′| ≤ K − k + |s| and |y| ≤ k, we get that |x| = |y′| +
|y|−|s| ≤ K , thus x satisfies Constraint (12). Moreover, since
L ≥ c, it is simple to verify that x satisfies also Constraint (5).
Furthermore, exploiting Observation 2 with a = h + 1, and
Observation 1 with a = h′ − 1, we get that x satisfies the
capacity constraint on all the knapsacks [1,m].

Let sopt and kopt be the values of s and k that maximize
(24). Moreover, let xopt ∈ {0, 1}m be a best solution for
an IKHO instance A. Clearly, the signature sopt represents a
piece of xopt, that is, sopt = xopt(h + 1,h′ − 1). In addition,
note that kopt determines a distribution of the best solution
insertions, that is, |xopt(h+1,m)| ≤ kopt and |xopt(1,h′−1)| ≤
K − kopt + |sopt|. If we do not consider the insertions given by
the signature sopt, we obtain |xopt(h′,m)| ≤ kopt − |sopt| and
|xopt(1,h)| ≤ K − kopt, as described in Figure 7.

Having fixed the L middle elements of xopt has an
important consequence. The radiations of weight starting
from the insertions at the left of sopt cannot interfere with
the radiations coming from the insertions placed at the right
of sopt, as shown in Figure 8. In particular, by (9), the right

ISRN Electronics 9

? ? ? ? ? ? ? ?

Sopt SoptSopt

Figure 9: Covering xopt recursively. An optimal solution xopt is
drawn. The black elements are determined by the first call of (24).
The more gray knapsacks are determined by the two next levels of
calls.

insertions affect only the range [h′ − u,m], while the left
insertions interest only the knapsacks [1, h + c + u].

Therefore, in order to compute the entire part of xopt

which stands at the right of sopt, it is enough to know
sopt, because the checks on the capacity constraints are
independent from the insertions at the left of sopt. The
same clearly holds also for finding the left piece of xopt.
Thus, we subdivided the main problem in two independent
subproblems, as follows:

(i) to find the best solution in the knapsacks [h′,m],
obeying the capacity constraints over the knapsacks
[h′ −u,m], having at most kopt−|sopt| insertions and
knowing that xopt(h + 1,h′ − 1) = sopt;

(ii) to find the best solution in the knapsacks [1,h],
obeying the capacity constraints over the knapsacks
[1,h + c + u], having at most K − kopt insertions and
knowing that xopt(h + 1,h′ − 1) = sopt.

The above-obtained subproblems are solvable as an
IKHO instance, by recursively applying (24) with some
adjustments. The only significant difference between the
main call and the recursive calls is that, in the second ones,
when checking the capacity constraints, we have to consider
the insertions given by the previously fixed sopt. Indeed, we
can simplify this task by progressively updating the vector of
capacities b, by subtracting w(sopt, �) for each � ∈ [1,m]. For
each step of recursion, the new vector b will be passed to the
input of the lower level subproblems. The solution of each
subproblem fixes over xopt a signature sopt, so as to recursively
cover xopt with substrings of length L. This is visualized in
Figure 9. Finally, note that the base cases for this recursion
are the subproblems which involve a number of knapsacks
lower than L. In order to compute the best solution for
them, we simply list all the feasible solutions and compare
the profits.

5.2. Complexity. As mentioned at the beginning of this
section, in the first call (root node of the recursion tree),
the computing of (24) takes O(|S| ×K) space. The recursive
calls occupy geometrically less memory than the first call, as
they deal with an halvened number of knapsacks (and with
a lower value of K), whence the total memory consumption
is of the same order as the memory consumption for the sole
first call. Note that, for each step of recursion, once we found
kopt and sopt, we can deallocate the matrices opt and optR.
Besides these matrices, we need O(m) space for dynamically
compose the best solution xopt. Therefore, the new algorithm
takes only O(m + [|S| × K]) space.

Let us now analyze its time complexity. In the first call,
for the computation of (24), the algorithm spends O(m ×
|S| × K) time to compute the matrices opt and optR, and
O(|S| × K) time to pick out the values sopt and kopt. It
also spends O(L2) time in order to update the vector b by
subtracting the radiations of weight given by sopt. In fact,
a signature has width L, and the range of influence of an
insertion is c + 2u + 1 = L + 1. To give an estimate for the
subproblems computation, we need to study how the two
terms found, O(L2) and O(m × |S| × K), propagate on the
next levels of calls. Moreover, let us write them as α · L2 and
β · (m× |S| × K), for some constants α,β.

First, note that the recursive calling scheme for (24) can
be approximated with a binary tree of height log2(m)�.
Indeed, since the calls on an input of L knapsacks are treated
as leaf cases, the height of the binary tree corresponds to the
first integer n such that L · 2n ≥ m, that is, log2(m/L)�.
Moreover, it is simple to find that such a binary tree has
O(m/L) nodes. In fact, since for each level i, we have at most
2i nodes, the total number of nodes is

log2(m/L)∑

i=0

2i = 1− 2log2(m/L)+1

1− 2
= 1− 2 · (m/L)

−1
= 2 · m

L
− 1.

(26)

Therefore, considering all the calls of (24), for the first term,
we obtain αL2 · γ(m/L) = O(m× L).

Note that, when we call the two children of a node,
both the knapsack array dimension and the K dimension are
subdivided. In particular, we call the children resolution on
two half of the knapsacks array (m/2 and m/2), and taking
parameters K ′ and K ′′ such that K ′ + K ′′ ≤ K . Thus, for
each level i, and each node j, the second term of complexity
is β × (m/2i) × Kj × |S|, such that

∑
j Kj ≤ K . Therefore,

for the second term, the complexity for each entire level i, is
clearly β × (m/2i) × K × |S|. Moreover, by adding up each
level, we get that the total complexity for the second term is

log2(m/L)∑

i=0

(
β × m

2i
× K × |S|

)
= βmK|S| ×

log2(m/L)∑

i=0

1
2i

≤ βmK|S| × 2

= O(mK|S|).

(27)

Since |S| = Sc(L) ≥ L, the second term O(m×|S|×K) always
bounds the first O(m × L). Therefore, the complexity of the
nodes computation is O(m× |S| × K).

Regarding the computation of the leaf cases, note that we
have to find the best feasible piece of solution, for an input
of at most L knapsacks. Since these pieces have length lower
than L, and they must obey Constraint (5), they are at most
|S|. Moreover, we have to consider the cost of checking the
capacity constraints on O(L) knapsacks. Thus, a leaf case can
be solved in O(|S| × L) time. Since we have O(m/L) leaf
cases, the total cost of the leaf cases is O(m× |S|), that is not
higher than the complexity needed for computing the nodes.
Therefore, the memory-saving version of the algorithm has
time complexity of O(m× |S| ×K), which is the same as for
the base version.

10 ISRN Electronics

6. Conclusions

In [3], Aho exhibited a few classes of polynomial instances
for the IKHO problem, motivated by the fact that IKHO is
NP-complete [1] and APX-hard [2]. The most important
class of instances identified by Aho is represented by the
instances where c + 2u + 1 = O(log(mα)), for a constant α.
Throughout Sections 3 and 4, we identified a new and wide
class of instances allowing for a polynomial time algorithm.
We achieved this by showing how to build a dynamic
programming algorithm which executes in time of O(cr ×
m × K) and takes space of O(cr × m × K) for the instances
where (c + 2u)/c is bounded by a constant r. These results
represent a significant improvement to the understanding of
the IKHO problem and more in general for the Interactive
Knapsacks problems to which IKHO belongs and that are
extensively presented by Aho in [4]. Note that our results
imply Aho’s results for IKHO, as shown in Section 2.2. In
Section 5, we also exploited Hirschberg’s approach in order
to create a memory saving version of our algorithm which
decreases the space complexity to O(cr × K + m) without
increasing the time complexity.

Extensive experimental evaluations have been performed
on the c++ implementations of both algorithms, confirming
the complexity estimates given in Sections 4 and 5. In
addition, these experiments pointed out that, despite the
heavy constants introduced in the time complexity bound of
the memory saving version, the last version of the algorithm
is often faster than the base version in the practice. This is
mainly due to the fact that the higher memory usage of the
base version brings the operative system to allocate data in
the slowest memory devices like the RAM and the hard disk,
instead of using the CPU cache.

Appendix

Proving the Base of Lemma 4

In this appendix, we prove the base of the induction of
Lemma 4. We have to show that, assuming c ≥ e, Sc(n) ≤
((c + 1)/c)cn/c for n ∈ [c, 2c].

In the following, let

Fc(i) = 1 + c + i +
i(i− 1)

2
. (A.1)

First, notice that Fc(i) = Sc(c + i) for i ∈ [0, c]. Indeed,
for i ∈ [0, c], we can compute Sc(c + i) by simply counting
the number of signatures of length c + i, and then verify
that this number is exactly Fc(i). By Constraint (5), in a
signature of length 2c, or smaller than 2c, there can be at
most two insertions. Thus, since c + i ≤ 2c, we can count
the signatures of length c + i, by grouping them according to
the number of insertions (no one, one, or two). Obviously,
only the signature 0c+i has no insertions. Moreover, there are
exactly c + i ways to place one insertion. For the case where
we have two insertions, note that the first one can be only
in the first i − 1 positions, because if we place it on the i-th
position, by Constraint (5), there cannot be later insertions
in a signature of length i + c. Moreover, notice that if we fix

the first insertion in position j, then we have i − j possible
places where to put the second one, again by Constraint (5).
Therefore, the number of signatures with two insertions is
clearly

i−1∑

j=1

i− j =
i−1∑

j=1

j = i(i− 1)
2

. (A.2)

So Fc(i) = Sc(c+i) for i ∈ [0, c], as anticipated. Therefore,
in order to prove the base of the induction of Lemma 4, it
is enough to show that Fc(i) ≤ fc(i), with fc(i) = ((c +
1)/c) c(c+i)/c = ((c + 1)/c)c1+i/c = (c + 1)ci/c.

Clearly, for i = 0, we get Fc(0) = c + 1 ≤ (c + 1) c0/c =
fc(0). Our plan is then to observe that ∂Fc(i)/∂i ≤ ∂ fc(i)/∂i
holds for every i ≥ 0, when c ≥ e. Indeed, ∂Fc(i)/∂i = i+ 1/2,
whereas ∂ fc(i)/∂i = (c + 1) ci/c(ln(c)/c). When i = 0, we get
F′c(0) = 1/2, and since c ≥ e,

f ′c (0) = (c + 1) c0 ln(c)
c

= ln(c)
c + 1
c

> 1. (A.3)

That is, F′c(0) ≤ f ′c (0). Moreover, it is simple to see that F′c(i)
is linear, whereas f ′c (i) is an exponential on the variable i,
and, therefore, f ′c (i) ≥ F′c(i) for every i ≥ 0, as anticipated.

References

[1] Isto Aho, “Interactive Knapsacks,” Fundamenta Informaticae,
vol. 44, no. 1-2, pp. 1–23, 2000.

[2] Isto Aho, “On the approximability of interactive knapsacks
problems,” in Proceedings of the 28th Annual Conference on
Current Trends in Theory and Practice of Informatics (SOFSEM
’01), vol. 2234 of Lecture Notes in Computer Science, pp. 152–
159, Piešt’any, Slovak Republic, November/December 2001.

[3] Isto Aho, “New polynomial-time instances to various knapsack-
type problems,” Fundamenta Informaticae, vol. 53, no. 3-4, pp.
199–228, 2002.

[4] Isto Aho, Interactive Knapsacks: Theory and Application, A-
2002-13, University of Tampere, 2002.

[5] E. Y.-H. Lin, “A bibliographical survey on some well-known
non-standard knapsack problems,” INFOR, vol. 36, no. 4, pp.
274–317, 1998.

[6] D. S. Hirschberg, “Algorithms for the longest common subse-
quence problem,” Journal of the ACM, vol. 24, no. 4, pp. 664–
675, 1977.

[7] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cam-
bridge University Press, Cambridge, UK, 1997.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

