RESEARCH

Open Access

brought to you by

CORE

Hybrid projection methods for a bifunction and relatively asymptotically nonexpansive mappings

Wenxin Wang^{1*} and Jianmin Song²

*Correspondence: hdwangwx@sohu.com 1Department of Applied Mathematics and Physics, North China Electric Power University, Baoding, 071003, China Full list of author information is available at the end of the article

Abstract

The purpose of this paper is to investigate a bifunction equilibrium problem and a fixed point problem of relatively asymptotically nonexpansive mappings based on a generalized projection method. A weak convergence theorem for common solutions is established in a uniformly smooth and uniformly convex Banach space.

Keywords: bifunction; equilibrium problem; fixed point; generalized projection; relatively asymptotically nonexpansive mapping

1 Introduction and preliminaries

Let *E* be a real Banach space, E^* be the dual space of *E*, and *C* be a nonempty subset of *E*. Let *F* be a bifunction from $C \times C$ to \mathbb{R} , where \mathbb{R} denotes the set of real numbers. Recall the following equilibrium problem: Find $\bar{x} \in C$ such that

$$F(\bar{x}, y) \ge 0, \quad \forall y \in C. \tag{1.1}$$

From now on, we use EP(F) to denote the solution set of equilibrium problem (1.1) and assume that *F* satisfies the following conditions:

(A1) $F(x,x) = 0, \forall x \in C;$ (A2) *F* is monotone, *i.e.*, $F(x,y) + F(y,x) \le 0, \forall x, y \in C;$ (A3)

$$\limsup_{t\downarrow 0} F(tz + (1-t)x, y) \le F(x, y), \quad \forall x, y, z \in C;$$

(A4) for each $x \in C$, $y \mapsto F(x, y)$ is convex and weakly lower semi-continuous.

Let $U_E = \{x \in E : ||x|| = 1\}$ be the unit sphere of *E*. Then the Banach space *E* is said to be smooth iff

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each $x, y \in U_E$. It is also said to be uniformly smooth iff the above limit is attained uniformly for $x, y \in U_E$. It is well known that if *E* is uniformly smooth, then *J* is uniformly norm-to-norm continuous on each bounded subset of *E*. Recall that *E* is said to be uniformly convex iff $\lim_{n\to\infty} ||x_n - y_n|| = 0$ for any two sequences $\{x_n\}$ and $\{y_n\}$ in *E* such that

©2013 Wang and Song; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

D Springer

 $||x_n|| = ||y_n|| = 1$ and $\lim_{n\to\infty} ||\frac{x_n+y_n}{2}|| = 1$. It is well known that *E* is uniformly smooth if and only if *E*^{*} is uniformly convex.

Recall that a Banach space *E* enjoys the Kadec-Klee property if for any sequence $\{x_n\} \subset E$, and $x \in E$ with $x_n \rightarrow x$, and $||x_n|| \rightarrow ||x||$, then $||x_n - x|| \rightarrow 0$ as $n \rightarrow \infty$. For more details on the Kadec-Klee property, the readers can refer to [1] and the references therein. It is well known that if *E* is a uniformly convex Banach space, then *E* enjoys the Kadec-Klee property.

Let $T : C \to C$ be a mapping. From now on, we use F(T) to denote the fixed point set of *T*. Recall that *T* is said to be closed if for any sequence $\{x_n\} \subset C$ such that $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} Tx_n = y_0$, then $Tx_0 = y_0$. In this paper, we use \to and \rightharpoonup to denote the strong convergence and the weak convergence, respectively.

Recall that the normalized duality mapping *J* from *E* to 2^{E^*} is defined by

$$Jx = \{f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2\},\$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. Next, we assume that *E* is a smooth Banach space. Consider the functional defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2, \quad \forall x, y \in E.$$

Observe that in a Hilbert space H the equality is reduced to $\phi(x, y) = ||x - y||^2$, $x, y \in H$. As we all know, if C is a nonempty closed convex subset of a Hilbert space H and P_C : $H \to C$ is the metric projection of H onto C, then P_C is nonexpansive. This fact actually characterizes Hilbert spaces and, consequently, it is not available in more general Banach spaces. In this connection, Alber [2] recently introduced a generalized projection operator Π_C in a Banach space E which is an analogue of the metric projection P_C in Hilbert spaces. Recall that the generalized projection $\Pi_C : E \to C$ is a map that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem

$$\phi(\bar{x},x) = \min_{y \in C} \phi(y,x).$$

Existence and uniqueness of the operator Π_C follow from the properties of the functional $\phi(x, y)$ and strict monotonicity of the mapping *J*. In Hilbert spaces, $\Pi_C = P_C$. It is obvious from the definition of a function ϕ that

$$(\|x\| - \|y\|)^{2} \le \phi(x, y) \le (\|y\| + \|x\|)^{2}, \quad \forall x, y \in E.$$
(1.2)

Remark 1.1 If *E* is a reflexive, strictly convex, and smooth Banach space, then $\phi(x, y) = 0$ if and only if x = y; for more details, see [2] and the references therein.

Recall that a point *p* in *C* is said to be an asymptotic fixed point of a mapping *T* iff *C* contains a sequence $\{x_n\}$ which converges weakly to *p* so that $\lim_{n\to\infty} ||x_n - T^n x_n|| = 0$. The set of asymptotic fixed points of *T* will be denoted by $\widetilde{F}(T)$.

Recall that a mapping T is said to be relatively nonexpansive iff

$$\widetilde{F}(T) = F(T) \neq \emptyset, \qquad \phi(p, Tx) \le \phi(p, x), \quad \forall x \in C, \forall p \in F(T)$$

Recall that a mapping T is said to be relatively asymptotically nonexpansive iff

$$\widetilde{F}(T) = F(T) \neq \emptyset, \qquad \phi(p, T^n x) \le (1 + \mu_n)\phi(p, x), \quad \forall x \in C, \forall p \in F(T), \forall n \ge 1,$$

where $\{\mu_n\} \subset [0, \infty)$ is a sequence such that $\mu_n \to 0$ as $n \to \infty$.

Remark 1.2 The class of relatively nonexpansive mappings was first considered in Butnariu *et al.* [3]. The class of relatively asymptotically nonexpansive mappings was first considered in Agarwal *et al.* [4] and the references therein.

Recently, many authors investigated fixed point problems of a (relatively) nonexpansive mapping based on hybrid projection methods; for more details, see [5–37] and the references therein. However, most of the results are on strong convergence. In this article, we investigate a bifunction equilibrium problem and a fixed point problem of relatively asymptotically nonexpansive mappings based on a generalized projection method. A weak convergence theorem for common solutions is established in a uniformly smooth and uniformly convex Banach space.

The following lemmas play an important role in this paper.

Lemma 1.3 [37, 38] Let C be a closed convex subset of a uniformly smooth and uniformly convex Banach space E. Let F be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let r > 0 and $x \in E$. Then there exists $z \in C$ such that $F(z,y) + \frac{1}{r}\langle y - z, Jz - Jx \rangle \ge 0$, $\forall y \in C$. Define a mapping $S_r : E \to C$ by $S_r x = \{z \in C : F(z,y) + \frac{1}{r}\langle y - z, Jz - Jx \rangle, \forall y \in C\}$. Then the following conclusions hold:

- (a) S_r is single-valued;
- (b) S_r is a firmly nonexpansive-type mapping, i.e., for all $x, y \in E$,

$$\langle S_r x - S_r y, J S_r x - J S_r y \rangle \leq \langle S_r x - S_r y, J x - J y \rangle;$$

- (c) $F(S_r) = EP(F)$ is closed and convex;
- (d) S_r is relatively nonexpansive;
- (e) $\phi(q, S_r x) + \phi(S_r x, x) \le \phi(q, x), \forall q \in F(S_r).$

Lemma 1.4 [4] Let *E* be a uniformly smooth and uniformly convex Banach space. Let *C* be a nonempty closed and convex subset of *E*. Let $T : C \to C$ be a relatively asymptotically nonexpansive mapping. Then F(T) is a closed convex subset of *C*.

Lemma 1.5 [2] Let *E* be a reflexive, strictly convex, and smooth Banach space, let *C* be a nonempty, closed, and convex subset of *E*, and let $x \in E$. Then

$$\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \le \phi(y, x), \quad \forall y \in C.$$

Lemma 1.6 [2] Let C be a nonempty, closed, and convex subset of a smooth Banach space E, and let $x \in E$. Then $x_0 = \prod_C x$ if and only if

$$\langle x_0 - y, Jx - Jx_0 \rangle \ge 0, \quad \forall y \in C.$$

Lemma 1.7 [39] Let *E* be a smooth and uniformly convex Banach space, and let r > 0. Then there exists a strictly increasing, continuous, and convex function $g : [0, 2r] \rightarrow R$ such that g(0) = 0 and

$$\left\| tx + (1-t)y \right\|^2 \le t \|x\|^2 + (1-t)\|y\|^2 - t(1-t)g(\|x-y\|)$$

for all $x, y \in B_r = \{x \in E : ||x|| \le r\}$ and $t \in [0, 1]$.

Lemma 1.8 [40] Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be three nonnegative sequences satisfying the following condition:

 $a_{n+1} \leq (1+b_n)a_n + c_n, \quad \forall n \geq n_0,$

where n_0 is some nonnegative integer. If $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} c_n < \infty$, then the limit of the sequence $\{a_n\}$ exists. If, in addition, there exists a subsequence $\{\alpha_{n_i}\} \subset \{\alpha_n\}$ such that $\alpha_{n_i} \to 0$, then $\alpha_n \to 0$ as $n \to \infty$.

Lemma 1.9 [41] Let *E* be a smooth and uniformly convex Banach space, and let r > 0. Then there exists a strictly increasing, continuous, and convex function $g : [0, 2r] \rightarrow R$ such that g(0) = 0 and $g(||x - y||) \le \phi(x, y)$ for all $x, y \in B_r$.

2 Main results

Theorem 2.1 Let *E* be a uniformly smooth and uniformly convex Banach space, and let *C* be a nonempty closed and convex subset of *E*. Let *F* be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $T : C \to C$ be a relatively asymptotically nonexpansive mapping with the sequence $\{\mu_{n,1}\}$, and let $S : C \to C$ be a relatively asymptotically nonexpansive mapping with the sequence $\{\mu_{n,2}\}$. Assume that $\Phi := F(T) \cap F(S) \cap EP(F)$ is nonempty. Let $\{x_n\}$ be a sequence generated in the following manner:

$$\begin{cases} y_0 \in E \quad chosen \ arbitrarily, \\ x_n \in C \ such \ that \ F(x_n, x) + \frac{1}{r_n} \langle x - x_n, Jx_n - Jy_n \rangle \ge 0, \quad \forall x \in C, \\ y_{n+1} = J^{-1}(\alpha_n Jx_n + \beta_n JT^n x_n + \gamma_n JS^n x_n), \quad \forall n \ge 0, \end{cases}$$

where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are real sequences in [0,1] and $\{r_n\}$ is a real number sequence in $[r, \infty)$, where r > 0 is some real number. Assume that *J* is weakly sequentially continuous and the following restrictions hold:

- (i) $\alpha_n + \beta_n + \gamma_n = 1$;
- (ii) $\sum_{n=1}^{\infty} \mu_n < \infty;$
- (iii) $\liminf_{n\to\infty} \alpha_n \beta_n > 0$, $\liminf_{n\to\infty} \alpha_n \gamma_n > 0$.

Then the sequence $\{x_n\}$ *converges weakly to* $\bar{x} \in \Phi$ *, where* $\bar{x} = \lim_{n \to \infty} \prod_{\Phi} x_n$ *.*

Proof Set $\mu_n = \max{\{\mu_{n,1}, \mu_{n,2}\}}$. Fixing $p \in \Phi$, we find that

$$\phi(p, x_{n+1}) = \phi(p, S_{r_{n+1}}y_{n+1})$$
$$\leq \phi(p, y_{n+1})$$

$$= \|p\|^{2} - 2\langle p, \alpha_{n}Jx_{n} + \beta_{n}JT^{n}x_{n} + \gamma_{n}JS^{n}x_{n} \rangle$$

+ $\|\alpha_{n}Jx_{n} + \beta_{n}JT^{n}x_{n} + \gamma_{n}JS^{n}x_{n}\|^{2}$ (2.1)
$$\leq \|p\|^{2} - 2\alpha_{n}\langle p, Jx_{n} \rangle - 2\beta_{n}\langle p, JT^{n}x_{n} \rangle - 2\gamma_{n}\langle p, JS^{n}x_{n} \rangle$$

+ $\alpha_{n}\|x_{n}\|^{2} + \beta_{n}\|T^{n}x_{n}\|^{2} + \gamma_{n}\|S^{n}x_{n}\|^{2}$
= $\alpha_{n}\phi(p, x_{n}) + \beta_{n}\phi(p, T^{n}x_{n}) + \gamma_{n}\phi(p, S^{n}x_{n})$
$$\leq \phi(p, x_{n}) + \beta_{n}\mu_{n}\phi(p, x_{n}) + \gamma_{n}\mu_{n}\phi(p, x_{n})$$

$$\leq (1 + \mu_{n})\phi(p, x_{n}).$$
 (2.2)

In view of Lemma 1.8, we obtain that $\lim_{n\to\infty} \phi(p, x_n)$ exits. This implies that the sequence $\{x_n\}$ is bounded. In the light of Lemma 1.7, we find that

$$\begin{split} \phi(p, x_{n+1}) &= \phi(p, S_{r_{n+1}} y_{n+1}) \\ &\leq \|p\|^2 - 2 \langle p, \alpha_n J x_n + \beta_n J T^n x_n + \gamma_n J S^n x_n \rangle \\ &+ \|\alpha_n J x_n + \beta_n J T^n x_n + \gamma_n J S^n x_n \|^2 \\ &\leq \|p\|^2 - 2 \alpha_n \langle p, J x_n \rangle - 2 \beta_n \langle p, J T^n x_n \rangle - 2 \gamma_n \langle p, J S^n x_n \rangle \\ &+ \alpha_n \|x_n\|^2 + \beta_n \|T^n x_n\|^2 + \gamma_n \|S^n x_n\|^2 - \alpha_n \beta_n g(\|J T^n x_n - J x_n\|) \\ &\leq \phi(p, x_n) + \beta_n \mu_n \phi(p, x_n) + \gamma_n \mu_n \phi(p, x_n) - \alpha_n \beta_n g(\|J T^n x_n - J x_n\|) \\ &\leq (1 + \mu_n) \phi(p, x_n) - \alpha_n \beta_n g(\|J T^n x_n - J x_n\|). \end{split}$$

It follows that

$$\alpha_n\beta_ng\big(\big\|JT^nx_n-Jx_n\big\|\big)\leq (1+\mu_n)\phi(p,x_n)-\phi(p,x_{n+1}).$$

This finds from the restrictions (ii) and (iii) that

$$\lim_{n\to\infty}g(\|JT^nx_n-Jx_n\|)=0.$$

This implies that

$$\lim_{n\to\infty}\left\|JT^nx_n-Jx_n\right\|=0.$$

Since J^{-1} is uniformly norm-to-norm continuous on bounded sets, we find that

$$\lim_{n\to\infty} \left\| T^n x_n - x_n \right\| = 0.$$

In the same way, we find that

$$\lim_{n\to\infty} \left\| S^n x_n - x_n \right\| = 0.$$

Since $\{x_n\}$ is bounded, we see that there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\{x_{n_i}\}$ converges weakly to $p \in C$. It follows that $p \in F(T) \cap F(S)$. Next, we prove that $p \in EP(F)$.

Let $r = \sup_{n \ge 1} \{ \|x_n\|, \|y_n\| \}$. In view of Lemma 1.9, we find that there exists a continuous, strictly increasing and convex function *h* with h(0) = 0 such that

$$h(x, y) \le \phi(x, y), \quad \forall x, y \in B_r.$$

It follows from (2.1) that

$$\begin{split} h\big(\|x_n - y_n\|\big) &\leq \phi(x_n, y_n) \\ &\leq \phi(p, y_n) - \phi(p, x_n) \\ &\leq \phi(p, x_{n-1}) - \phi(p, x_n) + \mu_{n-1}\phi(p, x_{n-1}). \end{split}$$

This implies that

$$\lim_{n\to\infty}h\bigl(\|x_n-y_n\|\bigr)=0.$$

It follows from the property of *h* that

$$\lim_{n\to\infty}\|x_n-y_n\|=0.$$

Since J is uniformly norm-to-norm continuous on bounded sets, one has

$$\lim_{n\to\infty}\|Jx_n-Jy_n\|=0.$$

Since $\{r_n\}$ is a real number sequence in $[r, \infty)$, where r > 0 is some real number, one finds that

$$\lim_{n\to\infty}\frac{\|Jx_n-Jy_n\|}{r_n}=0.$$

Notice that $x_n = S_{r_n} y_n$, one sees that

$$F(x_n, x) + \frac{1}{r_n} \langle x - x_n, Jx_n - Jy_n \rangle \ge 0, \quad \forall x \in C.$$

By replacing n by n_i , one finds from (A2) that

$$\|x - x_{n_i}\| \frac{\|Jx_{n_i} - Jy_{n_i}\|}{r_{n_i}} \ge \frac{1}{r_{n_i}} \langle x - x_{n_i}, Jx_{n_i} - Jy_{n_i} \rangle$$
$$\ge F(x, x_{n_i}).$$

Letting $i \rightarrow \infty$ in the above inequality, one obtains from (A4) that

$$F(x,p) \le 0, \quad \forall x \in C.$$

For 0 < t < 1 and $y \in C$, define $x_t = tx + (1 - t)p$. It follows that $x_t \in C$, which yields that $F(x_t, p) \le 0$. It follows from (A1) and (A4) that

$$0 = F(x_t, x_t) \le tF(x_t, x) + (1 - t)F(x_x, p) \le tF(x_t, x).$$

That is,

$$F(x_t, x) \geq 0.$$

Letting $t \downarrow 0$, we obtain from (A3) that $F(p, x) \ge 0$, $\forall x \in C$. This implies that $p \in EP(F)$. This completes the proof that $p \in F(T) \cap F(S) \cap EP(F)$. Define $z_n = \prod_{F(T) \cap F(S) \cap EP(F)} x_n$. It follows from (2.1) that

$$\phi(z_n, x_{n+1}) \le (1 + \mu_n)\phi(z_n, x_n). \tag{2.3}$$

This in turn implies from Lemma 1.5 that

$$\begin{split} \phi(z_{n+1}, x_{n+1}) &= \phi(\Pi_{F(T) \cap F(S) \cap EP(F)} x_{n+1}, x_{n+1}) \\ &\leq \phi(z_n, x_{n+1}) - \phi(z_n, \Pi_{F(T) \cap F(S) \cap EP(F)} x_{n+1}) \\ &\leq \phi(z_n, x_{n+1}) - \phi(z_n, z_{n+1}) \\ &\leq \phi(z_n, x_{n+1}). \end{split}$$

It follows from (2.3) that

$$\phi(z_{n+1}, x_{n+1}) \leq (1 + \mu_n)\phi(z_n, x_n).$$

This finds from Lemma 1.8 that the sequence $\{\phi(z_n, x_n)\}$ is a convergence sequence. It follows from (2.1) that

$$\phi(p, x_{n+m}) \le \phi(p, x_n) + L\left(\sum_{i=1}^m \mu_{n+m-i}\right),$$
(2.4)

where $L = \sup_{n \ge 1} \phi(p, x_n)$. Since $z_n \in F(T) \cap F(S) \cap EP(F)$, we find that

$$\phi(z_n, x_{n+m}) \leq \phi(z_n, x_n) + M\left(\sum_{i=1}^m \mu_{n+m-i}\right),$$

where $M = \sup_{n \ge 1} \phi(z_n, x_n)$. Since $z_{n+m} = \prod_{F(T) \cap F(S) \cap EP(F)} x_{n+m}$, we find from Lemma 1.5 that

$$\phi(z_n, z_{n+m}) + \phi(z_{n+m}, x_{n+m}) \le \phi(z_n, x_{n+m}) \le \phi(z_n, x_n) + M\left(\sum_{i=1}^m \mu_{n+m-i}\right).$$

It follows that

$$\phi(z_n, z_{n+m}) \le \phi(z_n, x_n) - \phi(z_{n+m}, x_{n+m}) + M\left(\sum_{i=1}^m \mu_{n+m-i}\right).$$

In view of Lemma 1.9, we find that there exists a continuous, strictly increasing, and convex function g with

$$g(||z_n - z_m||) \le \phi(z_n, z_m) \le \phi(z_n, x_n) - \phi(z_{n+m}, x_{n+m}) + M\left(\sum_{i=1}^m \mu_{n+m-i}\right).$$

This shows that $\{z_n\}$ is a Cauchy sequence. Since $F(T) \cap F(S) \cap EP(F)$ is closed, one sees that $\{z_n\}$ converges strongly to $z \in F(T) \cap F(S) \cap EP(F)$. Since $p \in F(T) \cap F(S) \cap EP(F)$, we find from Lemma 1.6 that

$$\langle z_{n_k}-p, Jx_{n_k}-Jz_{n_k}\rangle \geq 0.$$

Notice that *J* is weakly sequentially continuous. Letting $k \to \infty$, we find that $\langle z - p, Jp - Jz \rangle \ge 0$. It follows from the monotonicity of *J* that $\langle z - p, Jp - Jz \rangle \le 0$. Since the space is uniformly convex, we find that z = p. This completes the proof.

Remark 2.2 Theorem 2.1 improves Theorem 2.5 in Qin *et al.* [36] on the mappings from the class of relatively nonexpansive mappings to the class of relatively asymptotically non-expansive mappings.

If T = S, then Theorem 2.1 is reduced to the following.

Corollary 2.3 Let *E* be a uniformly smooth and uniformly convex Banach space, and let *C* be a nonempty closed and convex subset of *E*. Let *F* be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $T : C \to C$ be a relatively asymptotically nonexpansive mapping with the sequence $\{\mu_n\}$. Assume that $\Phi := F(T) \cap EP(F)$ is nonempty. Let $\{x_n\}$ be a sequence generated in the following manner:

$$\begin{cases} y_0 \in E \quad chosen \ arbitrarily, \\ x_n \in C \ such \ that \ F(x_n, x) + \frac{1}{r_n} \langle x - x_n, Jx_n - Jy_n \rangle \ge 0, \quad \forall x \in C, \\ y_{n+1} = J^{-1}(\alpha_n Jx_n + (1 - \alpha_n) JT^n x_n), \quad \forall n \ge 0, \end{cases}$$

where $\{\alpha_n\}$ is a real sequence in [0,1] and $\{r_n\}$ is a real number sequence in $[r,\infty)$, where r > 0 is some real number. Assume that J is weakly sequentially continuous and the following restrictions hold:

(i) $\sum_{n=1}^{\infty} \mu_n < \infty;$

(ii) $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$.

Then the sequence $\{x_n\}$ *converges weakly to* $\bar{x} \in \Phi$ *, where* $\bar{x} = \lim_{n \to \infty} \prod_{\Phi} x_n$ *.*

Remark 2.4 Corollary 2.3 is an improvement of Theorem 4.1 in Zembayashi and Takahashi [37] on the nonlinear mapping.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally and read and approved the final manuscript.

Author details

¹Department of Applied Mathematics and Physics, North China Electric Power University, Baoding, 071003, China. ²Department of Mathematics and Sciences, Shijiazhuang University of Economics, Shijiazhuang, Hebei 050031, China.

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (Grant No.: 9161013002). The authors are grateful to the editor and the anonymous reviewers' suggestions which improved the contents of the article.

Received: 8 July 2013 Accepted: 4 September 2013 Published: 09 Nov 2013

References

- 1. Cioranescu, I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic, Dordrecht (1990)
- 2. Alber, YI: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Dekker, New York (1996)
- Butnariu, D, Reich, S, Zaslavski, AJ: Weak convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer. Funct. Anal. Optim. 24, 489-508 (2003)
- 4. Agarwal, RP, Cho, YJ, Qin, X: Generalized projection algorithms for nonlinear operators. Numer. Funct. Anal. Optim. 28, 1197-1215 (2007)
- Qin, X, Agarwal, RP: Shrinking projection methods for a pair of asymptotically quasi *p*-nonexpansive mappings. Numer. Funct. Anal. Optim. 31, 1072-1089 (2010)
- 6. Ye, J, Huang, J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 1, 1-18 (2011)
- Kang, SM, Cho, SY, Liu, Z: Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings. J. Inequal. Appl. 2010, Article ID 827082 (2010)
- 8. Shen, J, Pang, LP: An approximate bundle method for solving variational inequalities. Commun. Optim. Theory 1, 1-18 (2012)
- 9. Zegeye, H, Shahzad, N: Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv. Fixed Point Theory **2**, 374-397 (2012)
- 10. Qin, X, Chang, SS, Cho, YJ: Iterative methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal. 11, 2963-2972 (2010)
- 11. Noor, MA, Noor, KI, Waseem, M: Decompsition method for solving system of linear equations. Eng. Math. Lett. 2, 34-41 (2012)
- 12. Luo, H, Wang, Y: Iterative approximation for the common solutions of a infinite variational inequality system for inverse-strongly accretive mappings. J. Math. Comput. Sci. 2, 1660-1670 (2012)
- Qin, X, Cho, SY, Kang, SM: On hybrid projection methods for asymptotically quasi-*φ*-nonexpansive mappings. Appl. Math. Comput. 215, 3874-3883 (2010)
- Chang, SS, Wang, L, Tang, YK, Zao, YH, Wang, B: Strong convergence theorems of quasi-*φ*-asymptotically nonexpansive semi-groups in Banach spaces. Fixed Point Theory Appl. 2012, Article ID 15 (2012)
- Chang, SS, Kim, JK, Wang, L: Total quasi-φ-asymptotically nonexpansive semigroups and strong convergence theorems in Banach spaces. Fixed Point Theory Appl. 2012, Article ID 153 (2012)
- Cho, SY, Li, W, Kang, SM: Convergence analysis of an iterative algorithm for monotone operators. J. Inequal. Appl. 2013, Article ID 199 (2013)
- 17. Zuo, P, Chang, SS, Liu, M: On a hybrid algorithm for a family of total quasi-*φ*-asymptotically nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. **2012**, Article ID 70 (2012)
- Kim, JK: Hybrid projection algorithms for generalized equilibrium problems and strictly pseudocontractive mappings. J. Inequal. Appl. 2010, Article ID 312602 (2010)
- 20. Cho, SY, Kang, SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 24, 224-228 (2011)
- 21. Ali, B, Minjibir, M: Convergence of a hybrid iterative method for finite families of generalized quasi-*φ*-asymptotically nonexpansive mappings. Fixed Point Theory Appl. **2012**, Article ID 121 (2012)
- 22. Qin, X, Cho, SY, Kang, SM: Strong convergence of shrinking projection methods for quasi-*φ*-nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 234, 750-760 (2010)
- Li, Y, Liu, H: Strong convergence theorems for modifying Halpern-Mann iterations for a quasi-*φ*-asymptotically nonexpansive multi-valued mapping in Banach spaces. Fixed Point Theory Appl. 2013, Article ID 132 (2013)
- 24. Zhang, J, Su, Y, Chen, Q: Simple projection algorithm for a countable family of weak relatively nonexpansive mappings and applications. Fixed Point Theory Appl. **2012**, Article ID 205 (2012)
- 25. Qin, X, Agarwal, RP, Cho, SY, Kang, SM: Convergence of algorithms for fixed points of generalized asymptotically quasi- ϕ -nonexpansive mappings with applications. Fixed Point Theory Appl. **2012**, Article ID 58 (2012)
- 26. Zhou, H, Gao, X: A strong convergence theorem for a family of quasi- ϕ -nonexpansive mappings in a Banach space. Fixed Point Theory Appl. **2009**, Article ID 351265 (2009)
- Qin, X, Cho, SY, Kang, SM: An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings. J. Glob. Optim. 49, 679-693 (2011)
- Kohsaka, F, Takahashi, W: Block iterative methods for a finite family of relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2007, Article ID 021972 (2007)
- 29. Hao, Y: Some results on a modified Mann iterative scheme in a reflexive Banach space. Fixed Point Theory Appl. 2013, Article ID 227 (2013)
- Qin, X, Cho, YJ, Kang, SM, Zhou, H: Convergence of a modified Halpern-type iteration algorithm for guasi-*φ*-nonexpansive mappings. Appl. Math. Lett. 22, 1051-1055 (2009)
- Wang, X, Hu, C, Guan, J: Strong convergence theorems for fixed point problems of infinite family of asymptotically quasi-phi-nonexpansive mappings and a system of equilibrium problems. Fixed Point Theory Appl. 2013, Article ID 221 (2013)
- 32. Kim, JK: Some results on generalized equilibrium problems involving strictly pseudocontractive mappings. Acta Math. Sci. **31**, 2041-2057 (2011)
- Su, Y, Qin, X: Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators. Nonlinear Anal. 68, 3657-3664 (2008)
- Cho, SY, Kang, SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 32, 1607-1618 (2012)
- Wangkeeree, R: A new hybrid approximation algorithm based on the shrinking projection method for two asymptotically quasi-*φ*-nonexpansive mappings. J. Comput. Anal. Appl. 14, 298-313 (2012)

- 36. Qin, X, Cho, YJ, Kang, SM: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. **225**, 20-30 (2009)
- 37. Zembayashi, WK, Takahashi, W: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. **70**, 45-57 (2009)
- Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145 (1994)
- 39. Zălinescu, C: On uniformly convex functions. J. Math. Anal. Appl. 95, 344-374 (1983)
- 40. Chang, SS, Cho, YJ, Zhou, H: Iterative Methods for Nonlinear Operator Equations in Banach Spaces. Nova Science Publishers, Huntington (2002)
- Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938-945 (2002)

10.1186/1687-1812-2013-294

Cite this article as: Wang and Song: Hybrid projection methods for a bifunction and relatively asymptotically nonexpansive mappings. *Fixed Point Theory and Applications* 2013, 2013:294

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com