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Abstract
The purpose of this paper is to investigate a bifunction equilibrium problem and a
fixed point problem of relatively asymptotically nonexpansive mappings based on a
generalized projection method. A weak convergence theorem for common solutions
is established in a uniformly smooth and uniformly convex Banach space.
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1 Introduction and preliminaries
Let E be a real Banach space, E∗ be the dual space of E, and C be a nonempty subset of E.
Let F be a bifunction from C × C to R, where R denotes the set of real numbers. Recall
the following equilibrium problem: Find x̄ ∈ C such that

F(x̄, y) ≥ , ∀y ∈ C. (.)

From now on, we use EP(F) to denote the solution set of equilibrium problem (.) and
assume that F satisfies the following conditions:
(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;
(A)

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y), ∀x, y, z ∈ C;

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.
Let UE = {x ∈ E : ‖x‖ = } be the unit sphere of E. Then the Banach space E is said to be

smooth iff

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈UE . It is also said to be uniformly smooth iff the above limit is attained
uniformly for x, y ∈UE . It is well known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on each bounded subset of E. Recall that E is said to be uni-
formly convex iff limn→∞ ‖xn – yn‖ =  for any two sequences {xn} and {yn} in E such that
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‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn
 ‖ = . It is well known that E is uniformly smooth if and

only if E∗ is uniformly convex.
Recall that a Banach spaceE enjoys theKadec-Klee property if for any sequence {xn} ⊂ E,

and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, then ‖xn – x‖ →  as n → ∞. For more details
on the Kadec-Klee property, the readers can refer to [] and the references therein. It is
well known that if E is a uniformly convex Banach space, then E enjoys the Kadec-Klee
property.
Let T : C → C be a mapping. From now on, we use F(T) to denote the fixed point set

ofT . Recall thatT is said to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x
and limn→∞ Txn = y, then Tx = y. In this paper, we use → and ⇀ to denote the strong
convergence and the weak convergence, respectively.
Recall that the normalized duality mapping J from E to E∗ is defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing. Next, we assume that E is a smooth
Banach space. Consider the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖, ∀x, y ∈ E.

Observe that in a Hilbert space H the equality is reduced to φ(x, y) = ‖x – y‖, x, y ∈ H .
As we all know, if C is a nonempty closed convex subset of a Hilbert space H and PC :
H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and, consequently, it is not available in more general Banach
spaces. In this connection, Alber [] recently introduced a generalized projection operator
�C in a Banach space E which is an analogue of themetric projection PC in Hilbert spaces.
Recall that the generalized projection �C : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the
solution to the minimization problem

φ(x̄,x) =min
y∈C φ(y,x).

Existence and uniqueness of the operator �C follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J . In Hilbert spaces, �C = PC . It is obvious
from the definition of a function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

Remark . If E is a reflexive, strictly convex, and smooth Banach space, then φ(x, y) = 
if and only if x = y; for more details, see [] and the references therein.

Recall that a point p in C is said to be an asymptotic fixed point of a mapping T iff C
contains a sequence {xn} which converges weakly to p so that limn→∞ ‖xn – Tnxn‖ = .
The set of asymptotic fixed points of T will be denoted by F̃(T).
Recall that a mapping T is said to be relatively nonexpansive iff

F̃(T) = F(T) �= ∅, φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,∀p ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/294
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Recall that a mapping T is said to be relatively asymptotically nonexpansive iff

F̃(T) = F(T) �= ∅, φ
(
p,Tnx

) ≤ ( +μn)φ(p,x), ∀x ∈ C,∀p ∈ F(T),∀n≥ ,

where {μn} ⊂ [,∞) is a sequence such that μn →  as n→ ∞.

Remark . The class of relatively nonexpansive mappings was first considered in But-
nariu et al. []. The class of relatively asymptotically nonexpansive mappings was first
considered in Agarwal et al. [] and the references therein.

Recently, many authors investigated fixed point problems of a (relatively) nonexpan-
sive mapping based on hybrid projection methods; for more details, see [–] and the
references therein. However, most of the results are on strong convergence. In this arti-
cle, we investigate a bifunction equilibrium problem and a fixed point problem of rela-
tively asymptotically nonexpansive mappings based on a generalized projection method.
A weak convergence theorem for common solutions is established in a uniformly smooth
and uniformly convex Banach space.
The following lemmas play an important role in this paper.

Lemma . [, ] Let C be a closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Let F be a bifunction from C × C to R satisfying (A)-(A). Let
r >  and x ∈ E. Then there exists z ∈ C such that F(z, y) + 

r 〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.
Define a mapping Sr : E → C by Srx = {z ∈ C : F(z, y) + 

r 〈y – z, Jz – Jx〉,∀y ∈ C}. Then the
following conclusions hold:
(a) Sr is single-valued;
(b) Sr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Srx – Sry, JSrx – JSry〉 ≤ 〈Srx – Sry, Jx – Jy〉;

(c) F(Sr) = EP(F) is closed and convex;
(d) Sr is relatively nonexpansive;
(e) φ(q,Srx) + φ(Srx,x)≤ φ(q,x), ∀q ∈ F(Sr).

Lemma . [] Let E be a uniformly smooth and uniformly convex Banach space. Let C
be a nonempty closed and convex subset of E. Let T : C → C be a relatively asymptotically
nonexpansive mapping. Then F(T) is a closed convex subset of C.

Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty, closed, and convex subset of E, and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma. [] Let C be a nonempty, closed,and convex subset of a smoothBanach space E,
and let x ∈ E. Then x =�Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

http://www.fixedpointtheoryandapplications.com/content/2013/1/294
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Lemma . [] Let E be a smooth and uniformly convex Banach space, and let r > .Then
there exists a strictly increasing, continuous, and convex function g : [, r] → R such that
g() =  and

∥∥tx + ( – t)y
∥∥ ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g

(‖x – y‖)
for all x, y ∈ Br = {x ∈ E : ‖x‖ ≤ r} and t ∈ [, ].

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ n,

where n is some nonnegative integer. If
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞, then the limit of
the sequence {an} exists. If, in addition, there exists a subsequence {αni} ⊂ {αn} such that
αni → , then αn →  as n → ∞.

Lemma . [] Let E be a smooth and uniformly convex Banach space, and let r > .Then
there exists a strictly increasing, continuous, and convex function g : [, r] → R such that
g() =  and g(‖x – y‖)≤ φ(x, y) for all x, y ∈ Br .

2 Main results
Theorem . Let E be a uniformly smooth and uniformly convex Banach space, and let
C be a nonempty closed and convex subset of E. Let F be a bifunction from C × C to R

satisfying (A)-(A). Let T : C → C be a relatively asymptotically nonexpansive mapping
with the sequence {μn,}, and let S : C → C be a relatively asymptotically nonexpansive
mapping with the sequence {μn,}. Assume that � := F(T)∩ F(S)∩ EP(F) is nonempty. Let
{xn} be a sequence generated in the following manner:

⎧⎪⎪⎨⎪⎪⎩
y ∈ E chosen arbitrarily,

xn ∈ C such that F(xn,x) + 
rn 〈x – xn, Jxn – Jyn〉 ≥ , ∀x ∈ C,

yn+ = J–(αnJxn + βnJTnxn + γnJSnxn), ∀n≥ ,

where {αn}, {βn}, {γn} are real sequences in [, ] and {rn} is a real number sequence in
[r,∞), where r >  is some real number. Assume that J is weakly sequentially continuous
and the following restrictions hold:

(i) αn + βn + γn = ;
(ii)

∑∞
n= μn < ∞;

(iii) lim infn→∞ αnβn > , lim infn→∞ αnγn > .
Then the sequence {xn} converges weakly to x̄ ∈ �, where x̄ = limn→∞ ��xn.

Proof Set μn =max{μn,,μn,}. Fixing p ∈ �, we find that

φ(p,xn+) = φ(p,Srn+yn+)

≤ φ(p, yn+)

http://www.fixedpointtheoryandapplications.com/content/2013/1/294
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= ‖p‖ – 
〈
p,αnJxn + βnJTnxn + γnJSnxn

〉
+ ‖αnJxn + βnJTnxn + γnJSnxn‖ (.)

≤ ‖p‖ – αn〈p, Jxn〉 – βn
〈
p, JTnxn

〉
– γn

〈
p, JSnxn

〉
+ αn‖xn‖ + βn

∥∥Tnxn
∥∥ + γn

∥∥Snxn∥∥

= αnφ(p,xn) + βnφ
(
p,Tnxn

)
+ γnφ

(
p,Snxn

)
≤ φ(p,xn) + βnμnφ(p,xn) + γnμnφ(p,xn)

≤ ( +μn)φ(p,xn). (.)

In view of Lemma ., we obtain that limn→∞ φ(p,xn) exits. This implies that the sequence
{xn} is bounded. In the light of Lemma ., we find that

φ(p,xn+) = φ(p,Srn+yn+)

≤ ‖p‖ – 
〈
p,αnJxn + βnJTnxn + γnJSnxn

〉
+

∥∥αnJxn + βnJTnxn + γnJSnxn
∥∥

≤ ‖p‖ – αn〈p, Jxn〉 – βn
〈
p, JTnxn

〉
– γn

〈
p, JSnxn

〉
+ αn‖xn‖ + βn

∥∥Tnxn
∥∥ + γn

∥∥Snxn∥∥ – αnβng
(∥∥JTnxn – Jxn

∥∥)
≤ φ(p,xn) + βnμnφ(p,xn) + γnμnφ(p,xn) – αnβng

(∥∥JTnxn – Jxn
∥∥)

≤ ( +μn)φ(p,xn) – αnβng
(∥∥JTnxn – Jxn

∥∥)
.

It follows that

αnβng
(∥∥JTnxn – Jxn

∥∥) ≤ ( +μn)φ(p,xn) – φ(p,xn+).

This finds from the restrictions (ii) and (iii) that

lim
n→∞ g

(∥∥JTnxn – Jxn
∥∥)

= .

This implies that

lim
n→∞

∥∥JTnxn – Jxn
∥∥ = .

Since J– is uniformly norm-to-norm continuous on bounded sets, we find that

lim
n→∞

∥∥Tnxn – xn
∥∥ = .

In the same way, we find that

lim
n→∞

∥∥Snxn – xn
∥∥ = .

Since {xn} is bounded, we see that there exists a subsequence {xni} of {xn} such that {xni}
converges weakly to p ∈ C. It follows that p ∈ F(T)∩ F(S). Next, we prove that p ∈ EP(F).

http://www.fixedpointtheoryandapplications.com/content/2013/1/294
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Let r = supn≥{‖xn‖,‖yn‖}. In view of Lemma ., we find that there exists a continuous,
strictly increasing and convex function h with h() =  such that

h(x, y) ≤ φ(x, y), ∀x, y ∈ Br .

It follows from (.) that

h
(‖xn – yn‖

) ≤ φ(xn, yn)

≤ φ(p, yn) – φ(p,xn)

≤ φ(p,xn–) – φ(p,xn) +μn–φ(p,xn–).

This implies that

lim
n→∞h

(‖xn – yn‖
)
= .

It follows from the property of h that

lim
n→∞‖xn – yn‖ = .

Since J is uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞‖Jxn – Jyn‖ = .

Since {rn} is a real number sequence in [r,∞), where r >  is some real number, one finds
that

lim
n→∞

‖Jxn – Jyn‖
rn

= .

Notice that xn = Srnyn, one sees that

F(xn,x) +

rn

〈x – xn, Jxn – Jyn〉 ≥ , ∀x ∈ C.

By replacing n by ni, one finds from (A) that

‖x – xni‖
‖Jxni – Jyni‖

rni
≥ 

rni
〈x – xni , Jxni – Jyni〉

≥ F(x,xni ).

Letting i → ∞ in the above inequality, one obtains from (A) that

F(x,p)≤ , ∀x ∈ C.

For  < t <  and y ∈ C, define xt = tx + ( – t)p. It follows that xt ∈ C, which yields that
F(xt ,p) ≤ . It follows from (A) and (A) that

 = F(xt ,xt)≤ tF(xt ,x) + ( – t)F(xx,p) ≤ tF(xt ,x).

http://www.fixedpointtheoryandapplications.com/content/2013/1/294
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That is,

F(xt ,x)≥ .

Letting t ↓ , we obtain from (A) that F(p,x) ≥ , ∀x ∈ C. This implies that p ∈ EP(F).
This completes the proof that p ∈ F(T) ∩ F(S) ∩ EP(F). Define zn = �F(T)∩F(S)∩EP(F)xn. It
follows from (.) that

φ(zn,xn+) ≤ ( +μn)φ(zn,xn). (.)

This in turn implies from Lemma . that

φ(zn+,xn+) = φ(�F(T)∩F(S)∩EP(F)xn+,xn+)

≤ φ(zn,xn+) – φ(zn,�F(T)∩F(S)∩EP(F)xn+)

≤ φ(zn,xn+) – φ(zn, zn+)

≤ φ(zn,xn+).

It follows from (.) that

φ(zn+,xn+) ≤ ( +μn)φ(zn,xn).

This finds from Lemma . that the sequence {φ(zn,xn)} is a convergence sequence. It
follows from (.) that

φ(p,xn+m) ≤ φ(p,xn) + L

( m∑
i=

μn+m–i

)
, (.)

where L = supn≥ φ(p,xn). Since zn ∈ F(T)∩ F(S)∩ EP(F), we find that

φ(zn,xn+m)≤ φ(zn,xn) +M

( m∑
i=

μn+m–i

)
,

whereM = supn≥ φ(zn,xn). Since zn+m =�F(T)∩F(S)∩EP(F)xn+m, we find from Lemma . that

φ(zn, zn+m) + φ(zn+m,xn+m)≤ φ(zn,xn+m) ≤ φ(zn,xn) +M

( m∑
i=

μn+m–i

)
.

It follows that

φ(zn, zn+m) ≤ φ(zn,xn) – φ(zn+m,xn+m) +M

( m∑
i=

μn+m–i

)
.

In viewof Lemma ., we find that there exists a continuous, strictly increasing, and convex
function g with

g
(‖zn – zm‖) ≤ φ(zn, zm) ≤ φ(zn,xn) – φ(zn+m,xn+m) +M

( m∑
i=

μn+m–i

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/294
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This shows that {zn} is a Cauchy sequence. Since F(T) ∩ F(S) ∩ EP(F) is closed, one sees
that {zn} converges strongly to z ∈ F(T)∩ F(S)∩ EP(F). Since p ∈ F(T)∩ F(S)∩ EP(F), we
find from Lemma . that

〈znk – p, Jxnk – Jznk 〉 ≥ .

Notice that J is weakly sequentially continuous. Letting k → ∞, we find that 〈z – p, Jp –
Jz〉 ≥ . It follows from the monotonicity of J that 〈z – p, Jp – Jz〉 ≤ . Since the space is
uniformly convex, we find that z = p. This completes the proof. �

Remark . Theorem . improves Theorem . in Qin et al. [] on the mappings from
the class of relatively nonexpansive mappings to the class of relatively asymptotically non-
expansive mappings.

If T = S, then Theorem . is reduced to the following.

Corollary . Let E be a uniformly smooth and uniformly convex Banach space, and let
C be a nonempty closed and convex subset of E. Let F be a bifunction from C × C to R

satisfying (A)-(A). Let T : C → C be a relatively asymptotically nonexpansive mapping
with the sequence {μn}.Assume that� := F(T)∩EP(F) is nonempty. Let {xn} be a sequence
generated in the following manner:

⎧⎪⎪⎨⎪⎪⎩
y ∈ E chosen arbitrarily,

xn ∈ C such that F(xn,x) + 
rn 〈x – xn, Jxn – Jyn〉 ≥ , ∀x ∈ C,

yn+ = J–(αnJxn + ( – αn)JTnxn), ∀n≥ ,

where {αn} is a real sequence in [, ] and {rn} is a real number sequence in [r,∞), where
r >  is some real number.Assume that J is weakly sequentially continuous and the following
restrictions hold:

(i)
∑∞

n= μn < ∞;
(ii) lim infn→∞ αn( – αn) > .

Then the sequence {xn} converges weakly to x̄ ∈ �, where x̄ = limn→∞ ��xn.

Remark . Corollary . is an improvement of Theorem . in Zembayashi and Taka-
hashi [] on the nonlinear mapping.
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