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Abstract

In this paper, a special class of probabilistic contraction will be considered. Using the
theory of countable extension of t-norms, we proved a fixed point theorem for such
a class of mappings f : S ® S, where (S,F ,T) is a Menger space.
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1 Introduction
The notion of a probabilistic metric spaces is introduced in 1942 by K. Menger. The

first idea of K. Menger was to use distribution function instead of nonnegative real

numbers as values of the metric. Since then, the theory of probabilistic metric spaces

has been developed in many directions [1]. The Banach fixed point theorem for con-

traction mappings has been generalized in different ways, see for example [2-7]. For

example, Mihet [4] has worked on the existence and the uniqueness of fixed points of

Sehgal contraction, Lj. Ćirić at all in [2] worked on a concept of monotone generalized

contraction in partially ordered probabilistic metric spaces. Many interesting fixed

point results for contraction mappings for singlevalued and multivalued mappings in

probabilistic metric spaces can be found in [8].

First, we shall give some definitions and notations.

Definition 1 [9]The ordered pair (S,F) is said to be a probabilistic metric space if S

is a nonempty set and F : S × S → �+ (Δ+ is the set of all distribution functions F

such that F(0) = 0) so that the following conditions are satisfied (where F(p, q) is writ-

ten by Fp,q for every (p, q) Î S × S):

1. Fp,q(x) = 1 for every x > 0 ⇔ p = q (p, q Î S).

2. Fp,q = Fq,p for every p, q Î S.

3. Fp,q(x) = 1 and Fq,r(y) = 1 ⇒ Fp,r(x + y) = 1 for p, q, r Î S and x, y Î ℝ+.

Definition 2 [9]A mapping T : [0, 1] × [0, 1] ® [0, 1] is called a triangular norm (a

t-norm) if the following conditions are satisfied:

T(a, 1) = a for every a Î [0, 1];
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T(a, b) = T(b, a) for every a, b Î [0, 1];

a ≥ b, c ≥ d ⇒ T(a, c) ≥ T(b, d) (a, b, c, d Î [0, 1]);

T(a, T(b, c)) = T(T(a, b), c) (a, b, c Î [0, 1]).

Definition 3 If T is a t-norm, then its dual t-conorm S : [0, 1]2 ® [0, 1] is given by

S(x, y) = 1 − T(1 − x, 1 − y).

Example 1 Basic examples are as follows:

TM(x, y) = min(x, y), SM(x, y) = max(x, y)

TP(x, y) = x · y, SP(x, y) = x + y − xy

TL(x, y) = max(x + y − 1, 0)

SL(x, y) = min(x + y, 1)

TD(x, y) =
{
min(x, y) if max(x, y) = 1,
0 otherwise

SD(x, y) =
{
max(x, y) if min(x, y) = 0,
1 otherwise

Definition 4 [9]A Menger space is an ordered triple (S,F ,T) , where (S,F) is a

probabilistic metric space, T is a t-norm and the generalized triangle inequality

Fp,q(x + y) ≥ T(Fp,r(x), Fq,r(y))

holds for every p, q, r Î S and every x > 0, y > 0.

Definition 5 (i) A t-norm T is said to be strictly monotone if T(x, y) <T(x, z) when-

ever x Î (0, 1) and y <z.

(ii) A t-norm T is called strict if it is continuous and strictly monotone.

(iii) A continuous t-norm T is called Archimedean if T(x, x) <x, for all x Î (0, 1).

Theorem 1 A function T : [0, 1]2 ® [0, 1] is a continuous Archimedean t-norm if

and only if there exists a continuous, strictly decreasing function t:[0, 1] ® [0, +∞] with

t(1) = 0 such that for all x, y Î [0, 1]

T(x, y) = t−1(min(t(x) + t(y), t(0))).

The function t is then called an additive generator of T; it is uniquely determined by

T up to a positive multiplicative constant.

The (ε, l)–topology in S is introduced by the family of neighborhoods of v Î S,

Uv = {Uv(ε,λ)}(ε,λ)∈�+×(0,1) , where

Uv(ε,λ) = {u; Fu,v(ε) > 1 − λ}.

If a t-norm T is such that sup
x<1

T(x, x) = 1, then {Uv}v∈S defines on S a metrizable

topology.

Definition 6 A sequence {xn}nÎN in S is a Cauchy sequence if and only if for every ε

>0 and l Î (0,1) there exists n0(ε, l) Î N such that for every n ≥ n0(ε, l) and every p

Î N

Fxn+p ,xn(ε) > 1 − λ.

Došenović et al. Fixed Point Theory and Applications 2011, 2011:74
http://www.fixedpointtheoryandapplications.com/content/2011/1/74

Page 2 of 11



If a probabilistic metric space (S,F) is such that every Cauchy sequence {xn}nÎN in S

converges in S, then (S,F) is a complete space.

In [10], a class of t-norms is introduced, which is useful in the fixed point theory in

probabilistic metric spaces.

Let T be a t-norm and Tn : [0, 1] ® [0, 1] (n Î N) be defined in the following way:

T1(x) = T(x, x), Tn+1(x) = T(Tn(x), x) (n ∈ �, x ∈ [0, 1]).

We say that t-norm T is of H-type if the family {Tn(x)}nÎN is equicontinuous at x =

1.

One of the most important results for the fixed point theory in metric space (M, d)

is the Banach contraction principle.

A mapping f : M ® M is said to be a q-contraction if there exists q Î [0, 1) such

that

d(fx, fy) ≤ qd(x, y)

for every x, y Î M.

Every q-contraction f : M ® M on a complete metric space (M, d) has one and only

one fixed point.

Sehgal and Bharucha-Reid introduced in [11] the notion of a probabilistic q-contrac-

tion (q Î (0, 1)) in probabilistic metric space.

Definition 7 Let (S,F)be a probabilistic metric space. A mapping f : S ® S is a

probabilistic q-contraction if

Ffp1,f p2(x) ≥ Fp1,p2 (
x
q
)

for every p1, p2 Î S and every x Î ℝ.

The first fixed point theorem in probabilistic metric space was proved by Sehgal and

Bharucha-Reid in [11].

Theorem 2 Let (S,F ,TM) be a complete Menger space and f : S ® S a probabilistic

q-contraction. Then, there exists a unique fixed point x of the mapping f and

x = lim
n→∞ f np for every p Î S.

In [12], Mihet introduced the following definition.

Definition 8 Let (S,F) be a probabilistic metric space. A mapping f : S ® S is said

to be a q-contraction of (ε, l)-type, if the following implication holds for every p1, p2 Î
S:

(∀ε > 0)(∀λ ∈ (0, 1))(Fp1,p2 (ε) > 1 − λ ⇒ Ffp1,f p2(qε) > 1 − qλ). (1)

It is obvious that (1) implies that f is a probabilistic q-contraction.

In [12], the following theorem was proved.

Theorem 3 Let (S,F ,TL) be a complete Menger space and f : S ® S a q-contraction

of (ε, l)-type. Then, there exists a unique fixed point x Î S of the mapping f and

x = lim
n→∞ f np for every p Î S.

In [8], Hadžić and Pap proved that Mihet’s theorem holds for a more general class of

Menger space. In order to formulate the theorem, the notion of geometrical conver-

gence of a t-norm is defined.

Došenović et al. Fixed Point Theory and Applications 2011, 2011:74
http://www.fixedpointtheoryandapplications.com/content/2011/1/74

Page 3 of 11



Definition 9 We say that a t-norm T is geometrically convergent if

lim
n→∞ T∞

i=n(1 − qi) = 1,

for every q Î (0, 1).

Theorem 4 Let (S,F ,T) be a complete Menger space such that and f : S ® S a q-

contraction of (ε, l)-type. If T is geometrically convergent, then there exists a unique

fixed point x Î S of the mapping f and x = lim
n→∞ f np for every p Î S.

In this paper, the definition of a strong (bn)-contraction is introduced. Using the the-

ory of countable extension of a t-norm given in [8], we prove a fixed point theorem

where the mapping f : S ® S is a strong (bn)-contraction, and (S,F ,T) is a complete

Menger space and T satisfies an additional condition. In corollaries, we prove that this

condition is satisfied if T belongs to the class of t-norms of Dombi, Aczél-Alsina and

Sugeno-Weber.

2 Countable extension of t-norms
Each t-norm T can be extended (by associativity see [13]) in a unique way to an nary

operation taking for (x1,..., xn) Î 0[1]n the values

T0i=1xi = 1, Tni=1xi = T(Tn−1
i=1 xi, xn).

A t-norm T can be extended to a countable infinitary operation taking for any

sequence (xn)nÎN from [0, 1] the value

T∞
i=1xi = lim

n→∞ Tni=1xi.

The sequence (Tni=1xi)n∈� is nonincreasing and bounded from below, and hence, the

limit T∞
i=1xi exists.

In the fixed point theory (see [8]), it is of interest to investigate the classes of t-

norms T and sequences (xn) from the interval [0, 1] such that lim
n→∞ xn = 1 and

lim
n→∞ T∞

i=nxi = lim
n→∞ T∞

i=1xn+i = 1. (2)

It is obvious that

lim
n→∞T∞

i=nxi = 1 ⇔
∞∑
i=1

(1 − xi) < ∞

for T = TL and T = Tp.

For T ≥ TL, we have the following implication

lim
n→∞ T∞

i=nxi = 1 ⇒
∞∑
i=1

(1 − xi) < ∞.

Important classes of t-norms are given in the following example.
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Example 2 (i) The Dombi family of t-norms (TD
λ )λ∈[0,∞] is defined by

TD
λ (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
TD(x, y), λ = 0
TM(x, y), λ = ∞

1

1 + ((1−x
x )λ + (1−y

y )
λ
)
1/λ

, λ ∈ (0,∞).

(ii) The Aczél-Alsina family of t-norms (TAA
λ )λ∈[0,∞] is defined by

TAA
λ (x, y) =

⎧⎪⎨⎪⎩
TD(x, y), λ = 0
TM(x, y), λ = ∞
e−((− log x)λ+(− log y)λ)

1/λ

, λ ∈ (0,∞).

(iii) The family (TSW
λ )λ∈[−1,∞]of Sugeno-Weber t-norms is given by

TSW
λ (x, y) =

⎧⎨⎩
TD(x, y), λ = −1
TP(x, y), λ = ∞
max(0, x+y−1+λxy

1+λ
), λ ∈ (−1,∞).

(iv) The Schweizer-Sklar family of t-norms (TSS
λ )λ∈[−∞,∞] is defined by

TSS
λ (x, y) =

⎧⎪⎪⎨⎪⎪⎩
TM(x, y), λ = −∞
TP(x, y), λ = 0

(max(xλ + yλ − 1, 0))1/λ, λ ∈ (−∞, 0) ∪ (0,∞)
TD(x, y), λ = ∞.

The condition T ≥ TL is fulfilled by the families (TSS
λ )λ∈(−∞,1) , (TSW

λ )λ∈[0,∞] .

On the other side, there exists a member of the family (TD
λ )λ∈(0,∞) which is incom-

parable with TL, and there exists a member of the family (TAA
λ )λ∈(0,∞) which is incom-

parable with TL.

In [8], the following results are obtained:

(a) If (TD
λ )λ∈(0,∞) is the Dombi family of t-norms and (xn)nÎN a sequence of elements

from (0, 1] such that lim
n→∞ xn = 1 , then we have the following equivalence

∞∑
n=1

(1 − xn)
λ

< ∞ ⇔ lim
n→∞(TD

λ )
∞
i=nxi = 1. (3)

(b) If (TSW
λ )λ∈(−1,∞] is the Sugeno-Weber family of t-norms and (xn)nÎN a sequence

of elements from (0, 1] such that lim
n→∞ xn = 1 , then we have the following equivalence

∞∑
n=1

(1 − xn) < ∞ ⇔ lim
n→∞(TSW

λ )∞i=nxi = 1. (4)

(c) The equivalence (3) holds also for the family (TAA
λ )λ∈(0,∞) , i.e.,

∞∑
n=1

(1 − xn)
λ

< ∞ ⇔ lim
n→∞(TAA

λ )∞i=nxi = 1. (5)

In [8], the following Proposition is obtained.
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Proposition 1 Let (xn)nÎN be a sequence of numbers from [0, 1] such that

lim
n→∞ xn = 1and t-norm T is of H-type. Then, lim

n→∞ T∞
i=nxi = lim

n→∞ T∞
i=1xn+i = 1.

In the fixed point theory in probabilistic spaces, it is of interest to investigate condi-

tion (2) for a special sequence (1 - qn)nÎN for q Î (0, 1).

In [14], the following Proposition is proved.

Proposition 2 If for a t-norm T there exists q0 Î (0, 1) such that

lim
n→∞ T∞

i=n(1 − qi0) = 1,

then

lim
n→∞ T∞

i=n(1 − qi) = 1,

for every q Î (0, 1).

In [8] the following definition is given.

Since lim
n→∞(1 − qn) = 1 and

∑∞
n=1 (1 − (1 − qn)) < ∞ for every s > 0 it follows that

all t-norms from the family

T0 =
⋃

λ∈(0,∞)

{TD
λ }

⋃ ⋃
λ∈(0,∞)

{TAA
λ }

⋃
T H

⋃
λ∈(−1,∞]

{TSW
λ }

are geometrically convergent, where T H is the class of all t-norms of H-type.

3 A fixed point theorem
Definition 10 Let (S,F) be a probabilistic metric space and (bn)nÎN a sequence from

(0, 1) such that lim
n→∞ bn = 1 . The mapping f : S ® S is a strong (bn)-contraction if the

following implication holds

(∃q ∈ (0, 1))(∀n ∈ �)(∀ε > 0)(∀x, y ∈ S)

Fx,y(ε) > bn ⇒ Ffx,fy(qε) > bn+1.

Each q-contraction (ε, l)-type is a strong bn-contraction, where q Î (0, 1), if a

sequence (bn)nÎN is defined in the following way:

bm+1 = 1 − qmλ, m ∈ �, for some λ ∈ (0, 1).

Theorem 5 Let (S,F ,T) be a complete Menger space and (bn)nÎN a sequence from

(0, 1) such that lim
n→∞ bn = 1 . If t-norm T satisfies the following condition

lim
n→∞ T∞

i=nbi = 1

and f : S ® S is a strong (bn)-contraction, then there exists a unique fixed point x Î S

of the mapping f and x = lim
n→∞ f np for every p Î S.

Proof: We will show that mapping f : S ® S is uniformly continuous since f is a

strong (bn)-contraction. Let δ > 0 and l Î (0, 1) be given. Since lim
n→∞ bn = 1 , there

exists m Î N such that bm+1 > 1 - l. Let ε = δ
q , q Î (0, 1).
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Then, the following implication holds

Fx,y(ε) > bm ⇒ Ffx,fy(qε) = Ffx,fy(δ) > bm+1 > 1 − λ.

Let N(ε, l) = {(u, v): u, v Î S, Fu,v(ε) > 1 - l}.

It follows that (x, y) ∈ N( δ
q , 1 − bm) ⇒ (fx, fy) ∈ N(δ,λ), which means that a map-

ping f is uniformly continuous.

We shall prove that a sequence (fnp)nÎN is Cauchy sequence for every p Î S, i.e., that

for every ε > 0 and l Î (0, 1), there exists n0(ε, l) Î N such that for every n >n0(ε, l)
and r Î N the following condition is satisfied

Ff np,f n+r p(ε) > 1 − λ. (6)

Since t-norm T satisfies the condition lim
n→∞ T∞

i=nbi = 1 , it follows that there exists m0

Î N such that

T∞
i=m0

bi > 1 − λ. (7)

Let p Î S. Since Fp,fp Î Δ+, there exists h such that

Fp,fp(η) > bm0 . (8)

The mapping f is a strong (bn)-contraction and (8) implies

Ffp,f 2p(qη) > bm0+1.

Continuing in this way, we got that for every k Î N

Ff kp,f k+1p(q
kη) > bm0+k. (9)

Let k0 Î N be such that
∑∞

k=k0 q
k < ε

η and k0 >m0. Then for every l Î N and every r

≥ 2, it follows

Ff k0+lp,f k0+l+rp(ε) ≥ Ff k0+lp,f k0+l+rp

⎛⎝η

∞∑
k=k0

qk

⎞⎠
≥ Ff k0+lp,f k0+l+rp

⎛⎝η

k0+l+r−1∑
k=k0+l

qk

⎞⎠
≥ T(T . . . T︸ ︷︷ ︸

(r−1)−times

(Ff k0+lp,f k0+l+1p(ηq
k0+l),

Ff k0+l+1p,f k0+l+2p(ηq
k0+l+1))

. . . Ff k0+l+r−1p,f k0+l+r p(ηq
k0+l+r−1))

≥ T∞
i=m0

bi

> 1 − λ.

This means that the sequence (fnp)nÎN is a Cauchy, and since the space is complete,

there exists x Î S such that x = lim
n→∞ f np . From the continuity of the mapping f, it fol-

lows that x = fx. Let y = fy, for y Î S. It remains to be proved that x = y, i.e., we have

to prove that Fx,y(ε) > 1 - l for every ε > 0 and every l Î (0, 1). Let ε > 0 and l Î (0,
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1) be given. From the condition lim
n→∞ bn = 1 , it follows that there exists m Î N such

that bm > 1 - l. Since Fx,y Î Δ+, there exists δ > 0 such that Fx,y (δ) >bm. Because q Î
(0, 1), there exists k0 such that ε >qkδ, for every k ≥ k0 and there exists k1 >k0 such

that bm+k1 > bm . From the Definition 10, it follows

Fx,y(ε) > Fx,y(qk1δ) > bm+k1 > bm > 1 − λ .

The following Corollary is in fact Theorem 4.

Corollary 1 Let (S,F ,T) be a complete Menger space and f : S ® S is a q-contrac-

tion (ε, l)-type. If t-norm T is geometrically convergent, then there exists a unique fixed

point x Î S of the mapping f and x = lim
n→∞ f np for every p Î S.

Proof: Let (bn)nÎN be a sequence defined in the following way

bm+1 = 1 − qmλ,

m Î N, for some l Î (0, 1). Since l Î (0, 1), it follows that qil <qi and so

T∞
i=1(1 − qiλ) > T∞

i=1(1 − qi).

From that it follows that lim
n→∞ T∞

i=n(1 − qiλ) = lim
n→∞ T∞

i=nbi = 1 , and the whole condi-

tions of previous theorem are satisfied.

Remark In [12], Mihet introduced the following definition.

Definition 11 Let (S,F) be a probabilistic space and (bn)nÎN a sequence in (0, 1)

such that bn ↗ 1. We say that the mapping f : S ® S is a (bn)-contraction if for all n Î
N, there exists kn Î (0, 1) such that for every p, q Î S and every t > 0

Fp,q(t) > bn ⇒ Ffp,fq(knt) > bn.

In [12], Mihet proved that a bn-contraction in a complete Menger space under a t-

norm T = TH has a unique fixed point.

The class of strong (bn)-contraction is strictly included in the class of (bn)-contrac-

tion (for more details see [15]). For future work, it would be interesting to combine

Theorem 5 with the result given above, i.e., to use (bn)-contraction as the mapping and

a more general class of t-norms (for example, the one used in Theorem 5).

Corollary 2 Let (S,F , (TD
λ )λ∈(0,∞)) be a complete Menger space and (bn)nÎN a

sequence from (0, 1) such that lim
n→∞ bn = 1 . If

∑∞
i=1 (1 − bi)

λ < ∞ and f : S ® S is a

strong (bn)-contraction, then there exists a unique fixed point x Î S of the mapping f

and x = lim
n→∞ f np for every p Î S.

Proof: From equivalence (3), we have

∞∑
i=1

(1 − bi)
λ

< ∞ ⇔ lim
n→∞(TD

λ )
∞
i=nbi = 1.

Since
∑∞

i=1 (1 − bi)
λ < ∞ is satisfied, all the conditions of previous theorem are

fulfilled.

Corollary 3 Let (S,F , (TAA
λ )λ∈(0,∞)) be a complete Menger space and (bn)nÎN a

sequence from (0, 1) such that lim
n→∞ bn = 1 . If

∑∞
i=1 (1 − bi)

λ < ∞ and f : S ® S is a
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strong (bn)-contraction, then there exists a unique fixed point x Î S of the mapping f

and x = lim
n→∞ f np for every p Î S.

Proof: From equivalence (5), we have

∞∑
i=1

(1 − bi)
λ

< ∞ ⇔ lim
n→∞(TAA

λ )∞i=nbi = 1.

Since
∑∞

i=1 (1 − bi)
λ < ∞ is satisfied all the conditions of previous theorem are

fulfilled.

Corollary 4 Let (S,F , (TSW
λ )λ∈(−1,∞]) be a complete Menger space and (bn)nÎN a

sequence from (0, 1) such that lim
n→∞ bn = 1 . If

∑∞
i=1 (1 − bi) < ∞ and f : S ® S is a

strong (bn)-contraction, then there exists a unique fixed point x Î S of the mapping f

and x = lim
n→∞ f np for every p Î S.

Proof: From equivalence (4), we have

∞∑
i=1

(1 − bi) < ∞ ⇔ lim
n→∞(TSW

λ )∞i=nbi = 1.

Since
∑∞

i=1 (1 − bi) < ∞ is satisfied, all the conditions of previous theorem are

fulfilled.

Corollary 5 Let (S,F ,T) be a complete Menger space and (bn)nÎN a sequence from

(0, 1) such that lim
n→∞ bn = 1 . If t-norm T is of H-type and f : S ® S is a strong (bn)-con-

traction, then there exists a unique fixed point x Î S of the mapping f and x = lim
n→∞ f np

for every p Î S.

Proof: The proof results from the Proposition 1 directly.

4 Probabilistic metric space related to decomposable measure
Let A be a s-algebra of subsets of a given set Ω. A classical measure is a set function

m : A → [0,∞] such that m(∅) = 0 and

m

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

m(Ai) (10)

for every sequence (Ai)iÎN of pairwise disjoint set from A .

Definition 12 Let S be a t-conorm. A S -decomposable measure m is a set function

m : A → [0, 1] such that m(∅) = 0 and

m(A ∪ B) = S(m(A),m(B)) (11)

for every A,B ∈ A and A ∩ B = ∅.

A measure m is of (NSA)-type if and only if s ○ m is a finite additive measure, where

s is an additive generator of the t-conorm S, which is continuous, nonstrict, and Archi-

medean and with respect to which m is decomposable (s(1) = 1).

Proposition 3 Let (�,A,m) be a measure space, where m is a continuous

A decomposable measure of (NSA)-type with monotone increasing generator s. Then,

(S,F ,T) is a Menger space, where F and t-norm T are given in the following way
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FX̂,Ŷ(u) = m{ω : ω ∈ �, d(X(ω),Y(ω)) < u}
= m{d(X,Y) < u} :

FX̂,Ŷ(u) = m{ω : ω ∈ �, d(X(ω),Y(ω)) < u}
= m{d(X,Y) < u}

(for every X̂, Ŷ ∈ S, u ∈ � ),

T(x, y) = s−1(max(0, s(x) + s(y) − 1))

for every x, y Î [0, 1].

Proposition 4 Let (�,A,m) be as in Proposition 3 and (M, d) be a complete separ-

able metric space. Then, (S,F ,T) from Proposition 3 is a complete probabilistic metric

space.

Example 3 Let (�,A,P) be a probability measure space, (M, d) a separable metric

space, and BM the family of Borel subsets of M. A mapping f : Ω × M ® M is a ran-

dom operator if for every C ∈ BM and every x Î M

{ω; ω ∈ �, f (ω, x) ∈ C} ∈ A,

i.e., if the mapping ω ↦ f(ω, x) is measurable on Ω. A random operator f : Ω × M ®
M is continuous if for every ω Î Ω the mapping x ↦ f(ω, x) is continuous on M.

If f : Ω × M ® M is a continuous random operator, then for every measurable map-

ping X : Ω ® M the mapping ω ↦ f(ω, X(ω)) is measurable on Ω.

Let S be the set of all equivalence classes of measurable mappings X : Ω ® M and let

f be a continuous random operator. The mapping f̂ : S → S , defined by

(̂f X̂)(ω) = f (ω,X(ω)) for every X̂ ∈ S(ω ∈ �,X ∈ X̂),

is the so-called Nemytskij operator of f. If f : Ω × M ® M is a random operator, then

a measurable mapping X : Ω ® M is a random fixed point of the mapping f if

X(ω) = f (ω,X(ω)) a.e. (12)

If f is a continuous random operator, then (12) holds if and only if X̂ = f̂ X̂ , X ∈ X̂.In

this case, the problem of the existence of a random fixed point of a continuous random

operator f reduces to the problem of the existence of a fixed point of the Nemytskij

operator f̂ of f.

Corollary 6 Let (�,A,m) be a measure space, where m is a continuous S decompo-

sable measure of (NSA)-type, s is a monotone increasing additive generator of S , (M, d)

a complete separable metric space and f : Ω × S ® M a random operator such that for

some q Î (0, 1) and every measurable mappings X, Y : Ω ® M

(∀u > 0)(∀n ∈ �)(m{ω;ω ∈ �, d(X(ω),Y(ω)) < u}) > bn

⇒ m({ω;ω ∈ �, d((̂f X)(ω), (̂f Y)(ω)) < qu}) > bn+1,

where (bn)nÎN is a sequence from (0, 1) such that lim
n→∞ bn = 1and t-norm T defined by

T(x, y) = s−1(max(0, s(x) + s(y) − 1)), x, y ∈ [0, 1],
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satisfies condition

lim
n→∞ T∞

i=nbi = 1

then there exists a random fixed point of the operator f.
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