RESEARCH

 Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

Proximinality in Banach space valued Musielak-Orlicz spaces

Jingshi Xu^{*}

*Correspondence: jingshixu@126.com Department of Mathematics, Hainan Normal University, Haikou, 571158, China

Abstract

Let (A, \mathbf{A}, μ) be a σ -finite complete measure space and let Y be a subspace of a Banach space X. Let φ be a generalized Φ -function on (A, \mathbf{A}, μ) . Denote by $L^{\varphi}(A, Y)$ and $L^{\varphi}(A, X)$ the Musielak-Orlicz spaces whose functions take values in Y and X, respectively. Firstly, let $f \in L^{\varphi}(A, X)$, we characterize the distance of f from $L^{\varphi}(A, Y)$. Then, if Y is weakly \mathcal{K} -analytic and proximinal in X, we show that $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$. Finally, we give the connection between the proximinality of $L^{\varphi}(A, Y)$ in $L^{\varphi}(A, X)$ and the proximinality of $L^{1}(A, Y)$ in $L^{1}(A, X)$.

Keywords: proximinality; Musielak-Orlicz space; best approximation; weakly \mathcal{K} -analytic

1 Introduction

It is well known that Musielak-Orlicz spaces include many spaces as special spaces, such as Lebesgue spaces, weighted Lebesgue spaces, variable Lebesgue spaces and Orlicz spaces; see [1]. Especially, in recent decades, variable exponent function spaces, such as Lebesgue, Sobolev, Besov, Triebel-Lizorkin, Hardy, Morrey, and Herz spaces with variable exponents, have attracted much attention; see [2–16] and references therein. Cheng and the author discussed geometric properties of Banach space valued Bochner-Lebesgue and Bochner-Sobolev spaces with a variable exponent in [17]. Very recently, Musielak-Orlicz-Hardy spaces have been systemically developed; see, for example, [18–22]. These spaces have many applications in various fields such as PDE, electrorheological fluids, and image restoration; see [6, 23–25].

In recent years, proximinality in Banach space valued Bochner-Lebesgue spaces with constant exponent have been extensively studied; see [26–33]. Proximinality in Banach space valued Bochner-Lebesgue spaces with variable exponent was discussed by the author in [34]. In fact, we generalized those results in [29, 31] to Banach space valued Bochner-Lebesgue spaces with a variable exponent. Khandaqji, Khalil and Hussein considered proximinality in Orlicz-Bochner function spaces on the unit interval in [35], and Al-Minawi and Ayesh consider the same problem on finite measures in [36]. The best simultaneous approximation in Banach space valued Orlicz spaces was discussed in [37, 38]. Micherda discussed proximinality of subspaces of vector-valued Musielak-Orlicz spaces via modular in [39]. However, as usual, one considers the best approximation via the norm, so in this paper, we will discuss proximinality of subspaces of vector-valued Musielak-Orlicz spaces via the norm. To proceed, we need to recall some definitions. Our results will be given in the next section.

©2014 Xu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In what follows, (A, A, μ) will be a σ -finite complete measure space. Suppose D is a subset of A, let χ_D be the indicator function on D. Let $(X, \|\cdot\|)$ be a Banach space. The dual space of X is the vector space X^* of all continuous linear mappings from X to \mathbb{R} or \mathbb{C} . To avoid a double definition we let \mathbb{K} be either \mathbb{R} or \mathbb{C} .

Definition 1 A convex, left-continuous function $\varphi : [0, \infty) \to [0, \infty]$ with $\varphi(0) = 0$, $\lim_{t\to 0^+} \varphi(t) = 0$, $\lim_{t\to\infty} \varphi(t) = \infty$ is called a Φ -function. It is called positive if $\varphi(t) > 0$ for all t > 0.

It is easy to see that if φ is a Φ -function, then it is nondecreasing on $[0, \infty)$.

Definition 2 Let (A, \mathcal{A}, μ) be a σ -finite complete measure space. A real function $\varphi : A \times [0, \infty) \rightarrow [0, \infty]$ is called a generalized Φ -function on (A, \mathcal{A}, μ) if

- (a) $\varphi(y, \cdot)$ is a Φ -function for all $y \in A$,
- (b) $y \mapsto \varphi(y, t)$ is measurable for all $t \ge 0$.
- If φ is a generalized Φ -function on (A, \mathcal{A}, μ) , we write $\varphi \in \Phi(A, \mu)$.

Definition 3 Let $\varphi \in \Phi(A, \mu)$. Define

$$\varrho_{\varphi}(f) := \int_{A} \varphi(y, \|f(y)\|) \,\mathrm{d}\mu(y)$$

for strongly μ -measurable functions $f : A \to X$. Then the Bochner-Musielak-Orlicz space $L^{\varphi}(A, X)$ is the collection of all strongly μ -measurable functions $f : A \to X$ endowed with the norm:

$$\|f\|_{L^{\varphi}(A,X)} := \inf \{\lambda > 0, \varrho_{\varphi}(f/\lambda) \le 1\}.$$

Let

$$E^{\varphi}(A, X) := \{ f \in L^{\varphi}(A, X) : \rho_{\varphi}(\lambda f) < \infty \text{ for all } \lambda > 0 \}.$$

Definition 4 Let $\varphi \in \Phi(A, \mu)$. The function φ is said to obey the Δ_2 -condition if there exists $K \ge 2$ such that

$$\varphi(s, 2t) \le K\varphi(s, t)$$

for all $s \in A$ and all $t \ge 0$.

When X is \mathbb{R} or \mathbb{C} , we simply denote $L^{\varphi}(A, X)$ by $L^{\varphi}(A)$, and $E^{\varphi}(A, X)$ by $E^{\varphi}(A)$. Usually, $E^{\varphi}(A, X)$ is a proper subspace of $L^{\varphi}(A, X)$. But when the φ satisfies the Δ_2 -condition, they are the same. It is easy to see that $E^{\varphi}(A, X) = L^{\varphi}(A, X)$ is equivalent to $E^{\varphi}(A) = L^{\varphi}(A)$, this means that the equality depends only on φ .

We remark that ρ_{φ} is a semimodular on the space of all *X*-valued strongly μ -measurable functions on *A*. For a semimodular, we recommend the reader reference [6]. Let ρ be a semimodular on vector space *E*, $E_{\rho} = \{x \in E : \rho(x/\lambda) < \infty \text{ for some } \lambda > 0\}$, $||x||_{\rho} = \inf\{\lambda > 0 : \rho(x/\lambda) \le 1\}$. We will use the following elementary result for a semimodular, which is Corollary 2.1.15 in [6].

- (i) If $||x||_{\rho} \le 1$, then $\rho(x) \le ||x||_{\rho}$.
- (ii) If $1 < ||x||_{\rho}$, then $||x||_{\rho} \le \rho(x)$.

Let *X* be a Banach space and let *Y* be a closed subspace of *X*. Then *Y* is called proximinal in *X* if for any $x \in X$ there exists $y \in Y$ such that

$$||x - y|| = \operatorname{dist}(x, Y) = \inf\{||x - u|| : u \in Y\}.$$

In this case *y* is called a best approximation of *x* in *Y*. If this best approximation is unique for any $x \in X$, then *Y* is said to be Chebyshev.

For simplicity, we denote $\|\cdot\|_{L^{\varphi}(A,X)}$ or $\|\cdot\|_{L^{\varphi}(A)}$ by $\|\cdot\|_{\varphi}$. For $f \in L^{\varphi}(A,X)$, $Y \subset X$, let

$$\operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y)) := \inf \{ \|f - g\|_{\varphi} : g \in L^{\varphi}(A, Y) \}.$$

2 Main results

Firstly, we estimate $dist_{\varphi}(f, L^{\varphi}(A, Y))$.

Theorem 1 Let Y be a subspace of Banach space X. Suppose $\varphi \in \Phi(A, \mu)$. For $f \in L^{\varphi}(A, X)$, define $\phi : A \to \mathbb{R}$ by $\phi(s) := \text{dist}(f(s), Y)$. Then

- (i) $\phi \in L^{\varphi}(A)$ and $\operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y)) \geq ||\phi||_{\varphi};$
- (ii) dist_{φ}(f, $L^{\varphi}(A, Y)$) = $\|\phi\|_{\varphi}$ for $f \in E^{\varphi}(A, X)$.

Proof (i) Given $f \in L^{\varphi}(A, X)$, we see that there exists a sequence of simple functions $\{f_n\}$ which converges to f almost everywhere and in $L^{\varphi}(A, X)$. Since the distance function d(x, Y) is a continuous function of $x \in X$, $||f_n(s) - f(s)|| \to 0$ implies that $|\operatorname{dist}(f_n(s), Y) - \operatorname{dist}(f(s), Y)| \to 0$. Moreover, each function $\phi_n : A \to \mathbb{R}$ defined by $\phi_n(s) := \operatorname{dist}(f_n(s), Y)$ is a simple function; therefore we conclude that ϕ is measurable. Now, for any $g \in L^{\varphi}(A, Y)$ and any $\lambda > 0$,

$$\begin{split} \rho_{\varphi}\big(\lambda(f-g)\big) &= \int_{A} \varphi\big(s,\lambda \left\|f(s) - g(s)\right\|\big) \,\mathrm{d}\mu(s) \\ &\geq \int_{A} \varphi\big(s,\lambda \operatorname{dist}\big(f(s),Y\big)\big) \,\mathrm{d}\mu(s) \\ &= \rho_{\varphi}(\lambda\phi). \end{split}$$

Thus, we have

$$\|f-g\|_{\varphi} \ge \|\phi\|_{\varphi}.$$

This implies $\phi \in L^{\varphi}(A)$ and, by taking an infimum on $g \in L^{\varphi}(A, Y)$, we have

$$\operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y)) \geq \|\phi\|_{\varphi}.$$

(ii) We first assume that f is a simple function. Let $f(s) := \sum_{i=1}^{m} \chi_{A_i} x_i$ where $\{A_i\}_{i=1}^{m}$ are disjoint measurable subsets in A such that $0 < \mu(A_i) < \infty$ and $0 \neq x_i \in X$ for $i \in \{1, ..., m\}$. Without loss of generality, we suppose that $\operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y)) = 1$. Let $0 < \epsilon < 1$. Since $\phi(s) \leq 1$.

||f(s)||, we have $\rho_{\varphi}(\lambda \phi) \leq \rho_{\varphi}(\lambda f) < \infty$ for any $\lambda > 0$. Then, by the dominated convergence theorem, we find that there exists $\delta > 0$ such that

$$\int_{A_i} \varphi(s, \operatorname{dist}(x_i, Y) + \delta) \, \mathrm{d}\mu(s) \leq \int_{A_i} \varphi(s, \operatorname{dist}(x_i, Y)) \, \mathrm{d}\mu(s) + \frac{\epsilon}{m}, \quad \forall i \in \{1, \dots, m\}.$$

Now take $y_i \in Y$ such that $||x_i - y_i|| < \text{dist}(x_i, Y) + \delta$ for $i \in \{1, \dots, m\}$. Let $g(s) = \sum_{i=1}^m \chi_{A_i} y_i$. Therefore $||f - g||_{\varphi} \ge \text{dist}_{\varphi}(f, L^{\varphi}(A, Y)) = 1$. By Lemma 1, we see that

$$1 \leq \|f - g\|_{\varphi} \leq \rho_{\varphi}(f - g) = \sum_{i=1}^{m} \int_{A_{i}} \varphi(s, \|x_{i} - y_{i}\|) d\mu(s)$$
$$\leq \sum_{i=1}^{m} \int_{A_{i}} \varphi(s, \operatorname{dist}(x_{i}, Y) + \delta) d\mu(s)$$
$$\leq \sum_{i=1}^{m} \left(\int_{A_{i}} \varphi(s, \operatorname{dist}(x_{i}, Y)) d\mu(s) + \frac{\epsilon}{m} \right)$$
$$= \int_{A} \varphi(s, \operatorname{dist}(f(s), Y)) d\mu(s) + \epsilon.$$

Thus, $\rho_{\varphi}(\phi) \ge 1 - \epsilon$. Since ϵ is arbitrary, we have $\rho_{\varphi}(\phi) \ge 1$. By Lemma 1 again, we have $\|\phi\|_{\varphi} \ge 1$. This means that $\|\operatorname{dist}(f(\cdot), Y)\|_{\varphi} \ge \operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y))$. Therefore, we have proved that $\|\operatorname{dist}(f(\cdot), Y)\|_{\varphi} = \operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y))$ for simple functions.

Finally, let $f \in E^{\varphi}(A, X)$, there exists a sequence of simple functions $\{g_n\}_{n \in \mathbb{N}}$ convergent to $f \mu$ -almost everywhere, $||g_n(s)|| \le ||f(s)|| \mu$ -almost everywhere and $||f - g_n||_{\varphi} \to 0$ as n tends to ∞ . Let $\phi_n(s) = \text{dist}(g_n(s), Y)$. From the previous proof, we have

$$\|\phi_n\|_{\varphi} = \operatorname{dist}_{\varphi}(g_n, L^{\varphi}(A, Y)).$$

It is easy to see that $\operatorname{dist}_{\varphi}(g_n, L^{\varphi}(A, Y)) \to \operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y))$ as $n \to \infty$. Since $\phi_n(s) \leq ||g_n(s)|| \leq ||f(s)|| \mu$ -almost everywhere, and $\phi_n(s) \to \phi(s) \mu$ -almost everywhere as n tends to ∞ , by Lemma 2.3.16(c) in [6], we conclude that $\phi_n \to \phi$ in $L^{\varphi}(A)$. Hence, letting $n \to \infty$, we see that

$$\|\phi\|_{\varphi} = \operatorname{dist}_{\varphi}(f, L^{\varphi}(A, Y)),$$

which completes the proof of Theorem 1.

Corollary 1 Let Y be a closed subspace of a Banach space X. Suppose $\varphi \in \Phi(A, \mu)$. An element g of $L^{\varphi}(A, Y)$ is a best approximation to an element f in $E^{\varphi}(A, X)$ if and only if g(s) is a best approximation in Y to f(s) for almost every $s \in A$. Furthermore, if φ satisfies the Δ_2 -condition, then an element g of $L^{\varphi}(A, Y)$ is a best approximation to an element f in $L^{\varphi}(A, X)$ if and only if g(s) is a best approximation in Y to f(s) for almost every $s \in A$.

Corollary 2 Let Y be a Chebyshev subspace of a Banach space X. Suppose $\varphi \in \Phi(A, \mu)$ satisfies the Δ_2 -condition. If $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$, then it is a Chebyshev subspace of $L^{\varphi}(A, X)$.

Remark 1 Our results Theorem 1, Corollaries 1 and 2 cover the results for vector Orlicz spaces in [36]. Indeed, in [36] the authors only considered vector Orlicz spaces on finite

measures. Analogous results for best simultaneous approximation were obtained in [37, 38] for vector Orlicz spaces on finite measures.

Next, we transfer the proximinality of *Y* in *X* to $L^{\varphi}(A, Y)$ in $L^{\varphi}(A, X)$. To do so, we need some preliminaries.

Lemma 2 Let (A, A, μ) be a σ -finite complete measure space. Suppose $\varphi \in \Phi(A, \mu)$. Let Y be a proximinal subspace of a Banach space X. Suppose $f \in L^{\varphi}(A, X)$ and g is a strongly μ -measurable function such that g(s) is a best approximation to f(s) from Y for almost everywhere $s \in A$. Then g is a best approximation to f from $L^{\varphi}(A, Y)$.

Proof Since $0 \in Y$, it follows that $||g(s)|| \le 2||f(s)|| \mu$ -almost everywhere. Thus, $g \in L^{\varphi}(A, Y)$. For each $h \in L^{\varphi}(A, Y)$, by assumption we know that $||f(s) - g(s)|| \le ||f(s) - h(s)|| \mu$ -almost everywhere. So $\rho_{\varphi}(\lambda(f - g)) \le \rho_{\varphi}(\lambda(f - h))$ for any $\lambda > 0$. Thus, $||f - g||_{\varphi} \le ||f - h||_{\varphi}$. This ends the proof.

Definition 5 Let (T, τ) be a Polish space (*i.e.* a topological space which is separable and completely metrizable). A set $Q \subset T$ is analytic if it is empty or if there exists a continuous mapping $f : \mathbb{N}^{\mathbb{N}} \to T$ satisfying $f(\mathbb{N}^{\mathbb{N}}) = Q$, where $\mathbb{N}^{\mathbb{N}}$ denotes the space of all infinite sequences of natural numbers endowed with the Tychonoff topology.

Definition 6 Let (T, τ) be a Polish space, H a topological space and denote by $\sigma(\mathcal{A})$ the smallest σ -algebra containing all analytic subsets of T. Then a mapping $f : T \to H$ is said to be analytic measurable if $f^{-1}(C) \in \sigma(\mathcal{A})$ for every $C \in \mathcal{B}(H)$, where $\mathcal{B}(H)$ is for the Borel sets of H.

Definition 7 Let *H*, *T* be topological spaces. Then a multifunction $F : H \to 2^T$ is said to be upper semi-continuous if for every $x \in H$ and for every open set *U* satisfying $F(x) \subset U$, there exists an open neighborhood *V* of *x* such that $F(V) \subset U$.

Definition 8 A subset *C* of a topological space *T* is \mathcal{K} -analytic if it can be written as $C = \bigcup_{\sigma \in \mathbb{N}^{\mathbb{N}}} F(\sigma)$ for some upper semi-continuous mapping $F : \mathbb{N}^{\mathbb{N}} \to 2^{T}$ with compact values. In the case when *T* is a Banach space endowed with its weak topology, *C* is said to be weakly \mathcal{K} -analytic.

For the theory of \mathcal{K} -analytic sets, we recommend [40]. Specially, all reflexive and all separable Banach spaces are weakly \mathcal{K} -analytic. The following lemma is just Theorem 3.3 in [31].

Lemma 3 Let $(X, \|\cdot\|)$ be a real Banach space and let Y be a proximinal, weakly \mathcal{K} -analytic convex subset of X. Then, for each closed and separable set $M \subset X$, there exists an analytic measurable mapping $h: M \to Y$ such that h(M) is separable in Y and h(x) is a best approximation of x in Y for any $x \in M$.

Thus, following the argument of the proof of (i) \rightarrow (ii) in [39, p.185], we have the following conclusion, the details being omitted.

Theorem 2 Let (A, A, μ) be a σ -finite complete measure space. Suppose $\varphi \in \Phi(A, \mu)$, and Y is a weakly \mathcal{K} -analytic linear subspace of a real Banach space X. If Y is proximinal in X, then $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$.

Theorem 3 Let (A, A, μ) be a σ -finite measure space. Suppose $\varphi \in \Phi(A, \mu)$ such that $E^{\varphi}(A) = L^{\varphi}(A)$. Let Y be a linear subspace of a real Banach space X. If $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$, then Y is proximinal in X.

Proof Since the measure μ is σ -finite, let us choose positive measure set Q such that $\chi_Q \in L^{\varphi}(A)$. For any $x \in X$, let $f(t) := \chi_Q(t) \cdot x$, $t \in A$. Then $f \in L^{\varphi}(A, X)$. By the assumption, we know that there is a g in $L^{\varphi}(A, Y)$ which is a best approximation element of f. Consequently, g(s) is a best approximation to f(s) in Y for almost every $s \in A$ by Corollary 1. Therefore, there is a best approximation element of x in Y. Thus, Y is proximinal in X.

From Theorems 2 and 3, we deduce the following corollary.

Corollary 3 Let (A, A, μ) be a σ -finite complete measure space. Suppose $\varphi \in \Phi(A, \mu)$ such that $E^{\varphi}(A) = L^{\varphi}(A)$. Let Y be a weakly K-analytic linear subspace of a real Banach space X. Then the following conditions are equivalent:

- (i) *Y* is proximinal in *X*;
- (ii) $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$.

Remark 2 An analog to Corollary 3 in terms of a modular was obtained in [39].

Finally, we give a characterization of proximinity of $L^{\varphi}(A, Y)$ in $L^{\varphi}(A, X)$ via the proximinity of $L^{1}(A, Y)$ in $L^{1}(A, X)$. When $L^{\varphi}(A, X)$ is a Bochner-Lebesgue space, which was obtained in [29] and [32, 33] on finite measure spaces and σ finite measure spaces, respectively. $L^{\varphi}(A, X)$ is a Bochner-Orlicz space, which was discussed in [35].

Theorem 4 Let (A, A, μ) be a σ -finite complete measure space. Suppose $\varphi \in \Phi(A, \mu)$ such that the set of simple functions, $S(A, \mu)$, satisfies $S(A, \mu) \subset L^{\varphi^*}(A, \mu)$, where φ^* is the conjugate function of φ (see [6]). Let Y be a closed subspace of a Banach space X. If $L^1(A, Y)$ is proximinal in $L^1(A, X)$, then $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$.

Proof Since *A* is σ -finite, we may write $A = \bigcup_{i=1}^{\infty} A_i$, where $\{A_i\}$ is a sequence of disjoint measurable sets each of finite measure. Let $f \in L^{\varphi}(A, X)$. For any $n \in \mathbb{N}$, since $\mu(A_n) < \infty$, then $\chi_{A_n} \in L^{\varphi^*}(A)$. Thus, by the norm conjugate formula (see Corollary 2.7.5 in [6]), we find that $f \chi_{A_n} \in L^1(A, X)$. By assumption, we know that there exists $g_n \in L^1(A, Y)$ such that

 $\|f\chi_{A_n} - g_n\|_{L^1} \le \|f\chi_{A_n} - h\|_{L^1}, \quad \forall h \in L^1(A, Y).$

By Corollary 1, we have, for all $y \in Y$,

$$\left\|f(t)\chi_{A_n}-g_n(t)\right\|\leq \left\|f(t)\chi_{A_n}-y\right\|$$

 μ -almost everywhere. Therefore $g_n(t) = 0$ μ -almost every $t \in A_n^c$. Let $g = \sum_{n=1}^{\infty} g_n$. Since $f = \sum_{n=1}^{\infty} f \chi_{A_n}$, it follows that for all $h \in L^{\varphi}(A, Y)$,

$$||f(t) - g(t)|| \le ||f(t) - h(t)||$$

 μ -almost everywhere. Because $0 \in Y$, it follows that $||g(t)|| \le 2||f(t)||$. Thus, $g \in L^{\varphi}(A, Y)$ and

$$\|f-g\|_{\varphi} \le \|f-h\|_{\varphi}$$

for all $h \in L^{\varphi}(A, Y)$. This finishes the proof.

Theorem 5 Let (A, A, μ) be a σ -finite complete measure space. Suppose $\varphi \in \Phi(A, \mu)$ satisfies $E^{\varphi}(A) = L^{\varphi}(A)$ and, for each $t \in A$, $\varphi(t, \cdot)$ is strictly increasing. Let Y be a closed subspace of a Banach space X. If $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$, then $L^{1}(A, Y)$ is proximinal in $L^{1}(A, X)$.

Proof We use the idea from [35]. Indeed in [35] the authors only considered Banach space valued Orlicz spaces on the unit interval. Since, for each $t \in A$, $\varphi(t, \cdot)$ is strictly increasing, let $\varphi^{-1}(t, \cdot)$ be its inverse function, which means, for each $s \in [0, \infty)$, $\varphi(t, \varphi^{-1}(t, s)) = s$. Define the map $J : L^1(A, X) \to L^{\varphi}(A, X)$ by setting

$$J(f)(t) := \begin{cases} \frac{\varphi^{-1}(t, \|f(t)\|)}{\|f(t)\|} f(t), & f(t) \neq 0; \\ 0, & f(t) = 0. \end{cases}$$

Then $||J(f)(t)|| = \varphi^{-1}(t, ||f(t)||)$. Therefore $\rho_{\varphi}(J(f)) = ||f||_{L^1}$. So *J* is injective. Moreover, if $g \in L^{\varphi}(A, X)$, let

$$f(t) := \begin{cases} \frac{\varphi(t, \|g(t)\|)}{\|g(t)\|} g(t), & g(t) \neq 0; \\ 0, & g(t) = 0. \end{cases}$$

Then $f(t) \in X$ and $||f(t)|| = \varphi(t, ||g(t)||)$. Thus, $f \in L^1(A, X)$. In addition, for $g(t) \neq 0$,

$$J(f)(t) = \frac{\varphi^{-1}(t,\varphi(t,\|g(t)\|))}{\varphi(t,\|g(t)\|)}f(t) = \frac{\|g(t)\|}{\varphi(t,\|g(t)\|)}f(t) = g(t).$$

If g(t) = 0, then f(t) = 0 also, thus J(f)(t) = 0 = g(t). Hence *J* is surjective and $J(L^1(A, Y)) = L^{\varphi}(A, Y)$ also.

Now, let $f \in L^1(A, X)$. Without loss of generality we may suppose that $f(t) \neq 0$ μ -almost everywhere, for otherwise we can restrict our measure to the support of f. Since $J(f) \in L^{\varphi}(A, X)$, by the assumption, we know that there exists some $g \in L^1(A, Y)$ such that

$$\left\|J(f) - J(g)\right\|_{\varphi} \le \left\|J(f) - J(\nu)\right\|_{\varphi}$$

for all $v \in L^1(A, Y)$. By Corollary 1, we see that, for all $y \in Y$,

$$||J(f)(t) - J(g)(t)|| \le ||J(f)(t) - y||$$

 μ -almost everywhere. Multiplying both sides of the last inequality by $\frac{\|f(t)\|}{\varphi^{-1}(t,\|f(t)\|)}$, we obtain, for all $y \in Y$,

$$\left\|f(t) - \frac{\|f(t)\|}{\varphi^{-1}(t, \|f(t)\|)} \frac{\varphi^{-1}(t, \|g(t)\|)}{\|g(t)\|} g(t)\right\| \le \|f(t) - y\|.$$

Let $h(t) = \frac{\|f(t)\|}{\varphi^{-1}(t,\|g(t)\|)} \frac{\varphi^{-1}(t,\|g(t)\|)}{\|g(t)\|} g(t)$. Since h(t) is a best approximation of f(t) in Y, and $0 \in Y$, it follows that $\|h(t)\| \le 2\|f(t)\|$. Therefore, $h \in L^1(A, Y)$. Thus, for all $w \in L^1(A, Y)$,

$$||f(t) - h(t)|| \le ||f(t) - w(t)||$$

 μ -almost everywhere. Thus, by Corollary 1 *h* is a best approximation of *f* in $L^1(A, Y)$. This finishes the proof.

From Theorems 4 and 5, we deduce the following corollary.

Corollary 4 Let (A, A, μ) be a σ -finite complete measure space. Suppose $\varphi \in \Phi(A, \mu)$ such that $E^{\varphi}(A) = L^{\varphi}(A)$, for each $t \in A$, $\varphi(t, \cdot)$ is strictly increasing and the set of simple functions $S(A, \mu)$ satisfies $S(A, \mu) \subset L^{\varphi^*}(A, \mu)$. Let Y be a closed subspace of a Banach space X. Then the following conditions are equivalent:

(i) $L^1(A, Y)$ is proximinal in $L^1(A, X)$;

(ii) $L^{\varphi}(A, Y)$ is proximinal in $L^{\varphi}(A, X)$.

Remark 3 When (A, μ) is a finite measure and φ is a Orlicz function that satisfies the Δ_2 condition, the result of Corollary 4 was obtained in [36]. While (A, μ) is the unit interval
and φ is a Young function that satisfies the Δ_2 -condition, the result of Corollary 4 was
obtained in [35].

Competing interests

The author declare that he has no competing interests.

Acknowledgements

The author would like to thank the referee for carefully reading which made the presentation more readable and for his or her suggestion for references [36–38]. The author was supported by the National Natural Science Foundation of China (Grant No. 11361020) and the National Natural Science Foundation of Hainan Providence (113004).

Received: 22 December 2013 Accepted: 27 March 2014 Published: 09 Apr 2014

References

- 1. Musielak, J: Orlicz Spaces and Modular Spaces. Springer, Berlin (1983)
- 2. Kováčik, O, Rákosník, J: On spaces L^{p(x)} and W^{k,p(x)}. Czechoslov. Math. J. 41, 592-618 (1991)
- Almeida, A, Drihem, D: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394, 781-795 (2012)
- 4. Almeida, A, Hästö, P: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628-1655 (2010)
- 5. Diening, L, Hästö, P, Roudenko, S: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731-1768 (2009)
- Diening, L, Harjulehto, P, Hästö, P, Růžička, M: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)
- Harjulehto, P, Hästö, P, Le, UV, Nuortio, M: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551-4574 (2010)
- Izuki, M: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36, 33-50 (2010)
- 9. Izuki, M: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59, 199-213 (2010)
- Izuki, M: Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas. Mat. 45, 475-503 (2010)
- 11. Kempka, H: 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev. Mat. Complut. 22, 227-251 (2009)
- 12. Kempka, H: Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J. Funct. Spaces Appl. 8, 129-165 (2010)
- 13. Nakai, E, Sawano, Y: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665-3748 (2012)
- 14. Samko, S: Variable exponent Herz spaces. Mediterr. J. Math. 10, 2007-2025 (2013)
- 15. Xu, J: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math. 33, 511-522 (2008)

- Xu, J: The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces. Integral Transforms Spec. Funct. 19, 599-605 (2008)
- Cheng, C, Xu, J: Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent. J. Math. Inequal. 7, 461-475 (2013)
- Cao, J, Chang, DC, Yang, D, Yang, S: Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans. Am. Math. Soc. 365, 4729-4809 (2013)
- Liang, Y, Huang, J, Yang, D: New real-variable characterizations of Musielak-Orlicz Hardy spaces. J. Math. Anal. Appl. 395, 413-428 (2012)
- 20. Yang, D, Yang, S: Orlicz-Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of \mathbb{R}^n . Indiana Univ. Math. J. **61**, 81-129 (2012)
- 21. Yang, D, Yang, S: Local Hardy spaces of Musielak-Orlicz type and their applications. Sci. China Math. 55, 1677-1720 (2012)
- 22. Yang, D, Yang, S: Musielak-Orlicz-Hardy spaces associated with operators and their applications. J. Geom. Anal. 24, 495-570 (2014)
- Chen, Y, Levine, S, Rao, R: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383-1406 (2006)
- 24. Li, F, Li, Z, Pi, L: Variable exponent functionals in image restoration. Appl. Math. Comput. 216, 870-882 (2010)
- 25. Růžička, M: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)
- 26. Abu-Sirhan, E: Simultaneous approximation in function spaces. In: Neamtu, M, Schumaker, L (eds.) Approximation Theory XIII: San Antonio, pp. 321-329 (2010)
- 27. Abu-Sirhan, E: Best simultaneous approximation in function and operator spaces. Turk. J. Math. 36, 101-112 (2012)
- 28. Khalil, R: Best approximation in $L_p(l, X)$. Math. Proc. Camb. Philos. Soc. **94**, 277-279 (1983)
- 29. Khalil, R, Deeb, W: Best approximation in $L_p(I, X)$. J. Approx. Theory **59**, 296-299 (1989)
- 30. Khalil, R, Saidi, F: Best approximation in *L*₁(*I*,*X*). Proc. Am. Math. Soc. **123**, 183-190 (1995)
- 31. Light, WA: Proximinality in *L*_p(*S*, *Y*). Rocky Mt. J. Math. **19**, 251-259 (1989)
- 32. Mendoza, J: Proximinality in $L_p(\mu, X)$. J. Approx. Theory **93**, 331-343 (1998)
- You, ZY, Guo, TX: Pointwise best approximation in the space of strongly measurable functions with applications to best approximation in L^p(μ, X). J. Approx. Theory **78**, 314-320 (1994)
- 34. Xu, J: Proximinality in Banach space valued Bochner-Lebesgue spaces with variable exponent (submitted)
- 35. Khandaqji, M, Khalil, R, Hussein, D: Proximinality in Orlicz-Bochner function spaces. Tamkang J. Math. 34, 71-75 (2003)
- 36. Al-Minawi, H, Ayesh, S: Best approximation in Orlicz spaces. Int. J. Math. Math. Sci. 14, 245-252 (1991)
- Khandaqji, M, Al-Sharif, S: Best simultaneous approximation in Orlicz spaces. Int. J. Math. Math. Sci. 2007, Article ID 68017 (2007)
- 38. Shen, ZS, Yang, ZY: Best simultaneous approximation in $L^{\Phi}(I, X)$. J. Math. Res. Expo. **30**, 863-868 (2010)
- 39. Micherda, B: On proximinal subspaces of vector-valued Orlicz-Musielak spaces. J. Approx. Theory 174, 182-191 (2013)
- Kakol, J, Kubiś, W, López-Pellicer, M: Descriptive Topology in Selected Topics of Functional Analysis. Springer, Berlin (2011)

10.1186/1029-242X-2014-146

Cite this article as: Xu: Proximinality in Banach space valued Musielak-Orlicz spaces. Journal of Inequalities and Applications 2014, 2014:146

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com