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Abstract
This work presents a new approach based on multilayered perceptrons (MLPs) to
compute the thermoluminescence glow curves in undoped and La-doped zinc
borate crystals. The MLP has been trained by a genetic algorithm (GA) and a
Levenberg-Marquardt learning algorithm. The results obtained using the MLP models
were tested with untrained experimental glow curve data. The comparison has
shown that the proposed model can predict more accurately and easily the
thermoluminescence glow curves.
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1 Introduction
Controlled measurement of the emitted light (glow curve) of a dosimetric material is nor-
mally used for determination of the radiation dose absorbed by that material []. To un-
derstand the behavior of the dosimetric material, it is necessary to analyze the glow curve
and evaluate the trap parameters []. Glow curve analysis is widely used for dosimetric
studies [–].
Most insulating or semiconducting materials generally exhibit thermoluminescence

(TL) glow curves with one ormore peaks when the charge carriers are released. The peaks
observed on this curve correspond to the ionization of traps at various energy levels of the
dosimetricmaterial. These traps are characterized by certain physical parameters. In order
to obtain these important physical parameters, one needs to fit the glow curve data to a TL
model that best describes the TL intensity as a function of these parameters. Thus, the de-
veloped TL model is very useful for getting detailed information on kinetic parameters of
trapping centers in the dosimetric material. Kinetic parameters are activation energy (E),
frequency factor (s) and the order of kinetics (b). E and s have been determined by variable
heating rate (VHR), initial rise (IR), isothermal decay (ID), and peak shape (PS) methods.
Also, b has been generally calculated by PS methods from the peak shape parameters.
The generalization ability, real-time operation, and ease of application have made arti-

ficial neural network (ANN) quite popular in the last years []. ANNs have been applied
in many areas because of these features [–]. The ANN software available today pro-
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videsmany neural network architectures and learning algorithms, to be applied to specific
problems.
The purpose of the present work is to model the thermoluminescence glow curves of

trapping centers in undoped and La-doped zinc borate crystals using GA, ANNs, and
experimental data. The proposed model is not time-consuming and can more accurately
and easily predict the thermoluminescence glow curves of zinc borate crystals.

2 Experimental details
Powder samples of undoped and La-doped ZnBO at %, %, %, %, %, and % (by
weight) were prepared by the nitric acidmethod. This method is relatively easy and cheap.
ZnBO powder samples were synthesized using zinc oxide (ZnO, with a minimum pu-
rity of .%) and boric acid (HBO, with a purity of .%). Appropriate amounts
of ZnO and HBO powders were separately weighted to prepare zinc borate. Starting
materials were mixed, while heating at ◦C, in  M nitric acid solution (HNO, standard
solution) by using amagnetic stirrer. All the experiments were carried out in a glass beaker
of  ml volume. For  g of initial powders,  ml acid was used. During this process, all
oxides and boric acid were converted into the metallic nitrates [i.e., Zn(NO), B(NO)
and La(NO)]. La-doped ZnBO powder samples were also prepared in a similar man-
ner by taking the startingmaterial in stoichiometric ratio and adding LaO to themixture
[].
Mixing was continued until a dry precursor was obtained. The precursor was ground

in an agate mortar for about  min. Then, it was calcined at ◦C for  h to remove
possible organic compounds. Gasses such as NO and NO were also released up to this
temperature, and metallic nitrates were converted into the oxides again []. Finally, the
precursor was pelletized under the pressure of  ton before annealing at temperatures
from ◦C to ◦C for  h which led to the formation of zinc borates. After annealing,
the powder samples were cooled to room temperature and triturated in an agate mortar
[].
The structure analysis of all the samples and the effect of doping on the structure of

undoped ZnBO powder sample were studied by X-ray powder diffraction. The X-ray
diffraction (XRD) measurements were taken at the interval of Bragg angle θ from (◦ <
θ < ◦), using a Rigaku Ultima IV X-ray diffractometer at  kV at  deg. min– and
 mA with Cu-Kα (λ = . Å) radiation [].
The TL glow curves of undoped and various La-doped ZnBO powder samples were

recorded with Risø TL/OSL DA- reader using Corning / and Schott BG/ optical
filters in nitrogen atmosphere. The measurements were carried out on  mg samples.
During measurements of all the powder samples, pre-heating process up to ◦C for the
heating rate of ◦C/s and the reading process up to ◦C for the heating rate of ◦C/s
were used. TL intensity for each glow peak was calculated by taking the area under dosi-
metric peak. The dose responses of all the powder samples exposed to Sr beta radiation
( mCi) were obtained in the dose range from  mGy to  Gy [].

3 Multilayered perceptron neural network
There are many types of neural networks for various applications available in the litera-
ture. Multilayered perceptrons (MLPs) are feed-forward networks and universal approx-
imators. MLPs are the simplest and therefore most commonly used neural network ar-
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chitectures []. In this paper, they have been adapted to the computation of the ther-
moluminescence glow curves of trapping centers in undoped and La-doped zinc borate
crystals.
The MLP used in this work is trained with the GA. An MLP consists of three layers: an

input layer, an output layer, and an intermediate or hidden layer. Processing elements (PE)
or neurons in the input layer only act as buffers for distributing the input signals xi (i shows
the ith input PE) to PEs in the hidden layer. Each PEj (j shows the jth PE in the hidden layer
and output layers) in the hidden layer sums up its input signals xi after weighting with the
values of the respective connections wji from the input layer and computes its output yj as
a function f of the sum,

yj = f
(∑

wjixj
)
, ()

f can be a simple threshold function, a sigmoid or hyperbolic tangent function. The output
of PEs in the output layer is computed similarly. Training a network consists of adjusting its
weights using a training algorithm. The training algorithms adopted in this study optimize
the weights by attempting tominimize the sum of squared differences between the desired
and the actual values of the output neurons [], namely

E =



∑
j

(ydj – yj), ()

where ydj is the desired value of an output neuron j and yj is the actual output of that
neuron. Each weight wji is adjusted by adding an increment �wji to it. �wji is selected to
reduce E as rapidly as possible. The adjustment is carried out over several training itera-
tions until a satisfactorily small value of E is obtained or a given number of iterations are
reached. The computed�wji depends on the training algorithmadopted. There are a num-
ber of training algorithms used to train aMLP, and a frequently used one is called the back
propagation (BP) training algorithm []. The BP algorithm, which is based on searching
an error surface using gradient descent for points with minimum error, is relatively easy
to implement. However, the BP algorithm has some problems for many applications [].
The algorithm is not guaranteed to find the global minimum of the error function since
gradient descent may get stuck in local minima, where it may remain indefinitely. In addi-
tion to this, long training sessions are often required in order to find an acceptable weight
solution because of the well-known difficulties inherent in gradient descent optimization
[].
In this work target TL intensity (I) for the MLP has been determined by a GA. The

computation process is carried out with a set of thermally stimulated luminescence (TSL)
measurements.

4 Determination of target TL intensity with a genetic algorithm
The GA method is based on a computer simulation of biological evolution and initially
works with a randomly generated population with several variables to be estimated [].
The population size is usually related to the problem under consideration and can be de-
termined by a number of variables. Eachmember or individual of the population is usually
called a chromosome or a string consisting of genes or bits, and encoded into one variable
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(I) for this work. A new population is built up by selecting individuals among members of
the initial population according to their fitnesses through a fundamental genetic process
of selection criterion based on the roulette wheel. The fitness function (ff ) is calculated by

ff =
∑n

k=(It–d,k – It–c,k)
, ()

where n is the population size, It–d and It–c are the desired and computed TL intensities,
respectively.
Fitness value for each string was calculated using the fitness function, and hence new

members were chosen for reproduction according to their fitness based on the specified
selection criterion. Thus, the fittest had a greater chance to be selected for next population.
Once the reproduction was completed, a crossover operation was implemented by simply
exchanging bits between two randomly selected members in the population. The final
genetic process was mutation that randomly changes a particular bit in a particular string,
that is, a zero bit may change to a one or vice versa.

5 Results and discussion
The proposed technique involves training an MLP to compute the thermoluminescence
glow curves when the values of sintering temperature (Ts), La-dope amount (DLa), dose
(DGy), and temperature (T ) are given. The ranges of training data set were ◦C ≤ Ts ≤
◦C at two points,  ≤ DLa ≤  at seven points,  Gy ≤ DGy ≤  Gy at seven points,
◦C ≤ T ≤ ◦C at  points. The TL intensity configuration to be modeled by the
neural network is shown in Figure . Training anMLP using the GA to compute I involves
presenting them with different sets (Ts, DLa, DGy, and T ) sequentially and/or randomly
and corresponding calculated values I . Differences between the target output (I) and the
actual outputs (I_ANN) of theMLP are calculated through the network to adapt its weights
using Eqs. ()-(). The adaptation is carried out after the presentation of each set (Ts, DLa,
DGy, and T ) until the calculation accuracy of the network is found satisfactory according
to some criterion (for example, when the errors between I and I_ANN for all the training
set fall below a given threshold) or the maximum allowable number of epochs (the time
periods that encompass all the iterations performed after all the patterns are presented to
the network) is reached.
Furthermore, in order to understand the MLPs prediction accuracy and generalization

capacity, the networks were also trained with the training set, cross-validation set and
checked with test data. The network memorizes the training set and does not generalize
well when the network is trained too much []. The training holds the key to an accurate
solution, so the criterion to stop training must be very well described. Cross-validation is
a highly recommended criterion for stopping the training of a network. When the error
in the cross-validation increases, the training should be stopped. A practical way to find
a point of better generalization is to use a small percentage (around %) of the training
set for cross-validation. To obtain a better generalization of the networks presented in this
work, , of training data, whichwere selected randomly, were used as a cross-validation
set.
In total , data sets were used in training and test phases.  data sets were used

to test the network. For the validation, untrained experimental data were used to test the
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Figure 1 Neural calculation for thermoluminescence glow curves.

neural model as well. The number of hidden layers and neurons in each layer was de-
termined through trial and error to be optimal including different transfer functions as
hyperbolic tangent, sigmoid and hybrid. After trials, a better result was obtained from
a three-layered network. In this network, the hyperbolic tangent function is used in the
hidden layer, and sigmoid function is used in the output layer. The number of epochs was
, for training, and the most suitable network configuration found was  ×  × . It
means that the number of neurons was  for the hidden layer.
In the proposed model,  thermoluminescence glow curves in undoped and La-doped

zinc borate were used. The estimates of I were found to be in a range from ,, to
– by use of measured TL intensity results in the zinc borate crystals at temperatures
varying from . to ◦C. The correlation coefficient for the trained data was found
to be ..
All tested thermoluminescence glow curves of zinc borate crystals in the range of

training data have high correlation coefficients. Figure  shows variation with tempera-
ture of TL intensity obtained from the neural network model and experimental data for
ZnBO:. La powder sample. The values of TL intensity achieved from the proposed
model are in % agreement with the experimental values of the TL intensity. The model
was assessed for ZnBO powder sample exposed to  Gy which is outside the range of
the training data. The variation of the TL intensity with temperature for ZnBO powder
sample given in Figure  also shows good correlation between measured and predicted
results.
The proposed method has some inherent limitations which make it not a general so-

lution. The trained neural network is based on a specific set of zinc borates. The trained
network can be only valid for the same doped and undoped zinc borates. For different
dosimetric materials, a series of experiments would have to be performed again to obtain
input data for the proposed ANN training. If the ANN input data could include the TL
glow curve information of new materials, many more experimental data would have to
be done to meet the accuracy requirements for a more general solution. However, since
the neural model presented in this work has accuracy and requires no tremendous com-
putational efforts and less background information about the thermoluminescence and
dosimeter, it can be very useful for the layered single crystals. This model capable of more
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Figure 2 The variation of predicted andmeasured TL intensity with temperature for ZnB2O4:0.03 La
powder sample exposed to different doses.

Figure 3 Comparison of predicted andmeasured TL glow curves for ZnB2O4 powder sample exposed
to 60 Gy.

accurately predicting thermoluminescence glow curves in La doped zinc borates is also
very useful to a researcher working in this field.

6 Conclusions
The predicted results from the ANN approach sound very satisfactory and in agreement
with experimental results concerning the thermoluminescence glow curves in undoped
and La doped zinc borates. The model is fast and allows the application of standard learn-
ing algorithms to the neural network.
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