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Abstract

Background: RNA molecules play diverse functional and structural roles in cells. They function as messengers for
transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts
(ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene
expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA
molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and
bind RNA is essential for comprehending the functional implications of these interactions, but the recognition ‘code’
that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would
dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as
AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an
increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins.
However, because of differences in the choice of datasets, performance measures, and data representations used, it
has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction.

Results: We provide a review of published approaches for predicting RNA-binding residues in proteins and a
systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these
approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine
learning algorithms (Naı̈ve Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in
which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-
based classifiers that use a position-specific scoring matrix (PSSM)-based representation (PSSMSeq) outperform those
that use an amino acid identity based representation (IDSeq) or a smoothed PSSM (SmoPSSMSeq); (ii) Structure-based
classifiers that use smoothed PSSM representation (SmoPSSMStr) outperform those that use PSSM (PSSMStr) as well as
sequence identity based representation (IDStr). PSSMSeq classifiers, when tested on an independent test set of 44
proteins, achieve performance that is comparable to that of three state-of-the-art structure-based predictors
(including those that exploit geometric features) in terms ofMatthews Correlation Coefficient (MCC), although the
structure-based methods achieve substantially higher Specificity (albeit at the expense of Sensitivity) compared to
sequence-based methods. We also find that the expected performance of the classifiers on a residue level can be
markedly different from that on a protein level. Our experiments show that the classifiers trained on three different
non-redundant protein-RNA interface datasets achieve comparable cross-validation performance. However, we find
that the results are significantly affected by differences in the distance threshold used to define interface residues.
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Conclusions: Our results demonstrate that protein-RNA interface residue predictors that use a PSSM-based
encoding of sequence windows outperform classifiers that use other encodings of sequence windows. While
structure-based methods that exploit geometric features can yield significant increases in the Specificity of
protein-RNA interface residue predictions, such increases are offset by decreases in Sensitivity. These results
underscore the importance of comparing alternative methods using rigorous statistical procedures, multiple
performance measures, and datasets that are constructed based on several alternative definitions of interface residues
and redundancy cutoffs as well as including evaluations on independent test sets into the comparisons.

Background
RNA molecules play important roles in all phases of pro-
tein production and processing in the cell [1-4]. They
carry the genetic message from DNA to the ribosome,
help catalyze the addition of amino acids to a grow-
ing peptide chain, and regulate gene expression through
miRNA pathways. RNA molecules also serve as the
genetic material of many viruses. Many of the key func-
tions of RNA molecules are mediated through their
interactions with proteins. These interactions involve
sequence-specific recognition and recognition of struc-
tural features of the RNA by proteins, as well as non-
specific interactions. Consequently, understanding the
sequence and structural determinants of protein-RNA
interactions is important both for understanding their
fundamental roles in biological networks and for develop-
ing therapeutic applications.
The most definitive way to verify RNA-binding sites

in proteins is to determine the structure of the relevant
protein-RNA complex by X-ray crystallography or NMR
spectroscopy. Unfortunately, protein-RNA complex struc-
tures have proven difficult to solve experimentally. Other
methods for determining RNA-binding sites in proteins
are costly and time consuming, usually requiring site-
directed mutagenesis and low-throughput RNA-binding
assays [5-7]. Despite experimental challenges, the num-
ber of protein-RNA complexes in the PDB has grown
rapidly in recent years (yet still lags behind protein-DNA
complexes). As of March 2012, there were 1,186 protein-
RNA complexes in the Protein Data Bank [8] and 2,200
protein-DNA complexes.
The difficulties associated with experimental determi-

nation of RNA-binding sites in proteins and their bio-
logical importance have motivated several computational
approaches to these problems [9,10]. Computational
methods can rapidly identify the most likely RNA-binding
sites, thus focusing experimental efforts to identify them.
Ideally, such methods rely on readily available infor-
mation about the RNA-binding protein, such as its
amino acid sequence. Accurate prediction of protein-RNA
interactions can contribute to the development of new
molecular tools formodifying gene expression, novel ther-
apies for infectious and genetic diseases, and a detailed
understanding of molecular mechanisms involved in

protein-RNA recognition. In addition to reducing the cost
and effort of experimental investigations, computational
methods for predicting RNA-binding sites in proteins may
provide insights into the recognition code(s) for protein-
RNA interactions. Several previous studies have analyzed
protein-RNA complexes to define and catalog properties
of RNA-binding sites [11-16]. These studies have iden-
tified specific interaction patterns between proteins and
RNA and suggested sequence and structural features of
interfaces that can be exploited inmachine learningmeth-
ods for analyzing and predicting interfacial residues in
protein-RNA complexes.
Over the past 5 years, a large number of methods

for predicting RNA-binding residues in proteins have
been published [12,13,17-34]. In these studies, a vari-
ety of sequence, structural, and evolutionary features
have been used as input to different machine learn-
ing methods such as Naı̈ve Bayes (NB), Support Vec-
tor Machine (SVM), and Random Forest (RF) classifiers
[9,10]. Most of the methods train classifiers or predic-
tors that accept a set of residues that are sequence or
structure neighbors of the target residue as input, and
produce, as output, a classification as to whether the tar-
get residue is an interface residue. Such methods can be
broadly classified into: (i) Sequence-based predictors that
encode the target residue and its sequence neighbors in
terms of sequence-derived features, e.g., identities of the
amino acids, dipeptide frequencies, position-specific scor-
ing matrices (PSSMs) generated by aligning the sequence
with its homologs, or physico-chemical properties of
amino acids; (ii) Structure-based predictors that encode
the target residue and its spatial neighbors in terms of
structure-derived features, e.g., parameters that describe
the local surface shape; and (iii) Methods that use both
sequence- and structure-derived features. The predictors
not only differ in terms of the specific choice of the
sequence- or structure-derived features used for encoding
the input, but also in the methods used (if any) to select a
subset of features from a larger set of candidate features,
and the specific machine learning algorithms used to train
the classifiers, e.g., NB, SVM, and RF classifiers.
Identifying the relative strengths and weaknesses of

the various combinations of machine learning methods
and data representations is a necessary prerequisite for
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developing improved methods. However, because of dif-
ferences in the criteria used to define protein-RNA inter-
faces, choice of datasets, performance measures, and data
representations used for training and assessing the per-
formance of the resulting predictors, as well as the gen-
eral lack of access to implementations or even complete
detailed descriptions of the methods, it has been diffi-
cult for users to compare the results reported by different
groups. Consequently, most existing comparisons of alter-
native approaches, including that of Perez-Cano et al. [9],
rely on extrapolations of results obtained using different
datasets, experimental protocols, and performance met-
rics. Implementations of some methods are only accessi-
ble in the form of web servers. Recently, Puton et al. [10]
presented a review of computational methods for predict-
ing protein-RNA interactions in which they compare the
performance of multiple web servers that implement dif-
ferent sequence- and/or structure-based predictors on a
dataset of 44 RNA-binding proteins (RB44). Such a com-
parison is valuable for users because it identifies servers
that provide more reliable predictions. Use of such servers
to compare different methods or data representations can
be problematic, however, because it is often impossible
to definitively exclude overlap between the training data
used for developing the prediction server and the test
data used for measuring the performance of the server.
In cases where one has access to the code used to gen-
erate data representations and implement the machine
learning methods, it is possible to use statistical cross-
validation to obtain rigorous estimates of the comparative
performance of the methods. Comparison of performance
of alternative methods based on published studies is
fraught with problems, because of differences in the
details of the evaluation procedures. For example, some
studies use sequence-based cross-validation [35] where,
on each cross-validation run, the predictor is trained
on a subset of the protein sequences and tested on the
remaining sequences. Other studies use window-based
cross-validation, where sequence windows extracted from
the dataset are partitioned into training and test sets
used in cross-validation runs. Still others report the per-
formance of classifiers on independent (blind) test sets.
Window-based cross-validation has been shown to yield
overly optimistic assessments of predictor performance
because it does not guarantee that the training and test
sequences are disjoint [36]. Even when sequence-based
cross-validation is used, the performance estimates can
be biased by the degree of sequence identity shared
among proteins included in the dataset. The lower the
percentage of sequence identity, i.e., redundancy, allowed
within the datasets, the smaller the number of sequences
in the datasets and the harder the prediction prob-
lem becomes. While some studies have used reduced-
redundancy datasets, others have reported performance

on highly redundant datasets. Taken together, all of these
factors have made it difficult for the scientific community
to understand the relative strengths and weaknesses of the
different methods and to obtain an accurate assessment
of the current state of the art in protein-RNA interface
prediction.
Against this background, this paper presents a direct

comparison of sequence-based and structure-based clas-
sifiers for predicting protein-RNA interface residues,
using several alternative data representations and trained
and tested on three carefully curated benchmark datasets,
using two widely used machine learning algorithms (NB
and SVM). We also compare the performance of the
best sequence-based classifier with other more com-
plex structure-based classifiers on an independent test
set. The goal of this work is to systematically survey
some of the most commonly used methods for predict-
ing RNA-binding residues in proteins and to recommend
methodology to evaluate machine learning classifiers for
the problem. The main emphasis is the evaluation pro-
cedure of the different classifiers, i.e., the similarity of
protein chains within the datasets used, the way in which
cross-validation is carried out (sequence- versus window-
based), and the performancemetrics reported. Our results
suggest that the PSSM-based encoding using amino
acid sequence features outperforms other sequence-based
methods. In the case of simple structure-based predic-
tors, the best performance is achieved using a smoothed
PSSM representation. Interestingly, the performance of
the different classifiers was generally invariant across
the three non-redundant benchmark datasets (contain-
ing 106, 144, and 198 protein-RNA complexes) used in
this study. An implementation of the best performing
sequence-based predictor is available at http://einstein.cs.
iastate.edu/RNABindR/. We also make the datasets avail-
able to the community to facilitate direct comparison of
alternative machine learning approaches to protein-RNA
interface prediction.

Sequence-based Methods
Early work on the prediction of interface residues in com-
plexes of RNA and protein was carried out by Jeong
and Miyano [12], who implemented an artificial neural
network that used amino acid type and predicted sec-
ondary structure information as input. The dataset used
by Jeong and Miyano contained 96 protein chains solved
by X-ray crystallography with resolution better than 3Å
and was homology-reduced by eliminating sequences that
shared greater than 70% similarity over their matched
regions. They defined a residue as an interaction residue
if the closest distance between the atoms of a protein
and its partner RNA was less than 6Å. Terribilini et
al. [26] presented RNABindR, which used amino acid
sequence identity information to train a Naı̈ve Bayes (NB)

http://einstein.cs.iastate.edu/RNABindR/
http://einstein.cs.iastate.edu/RNABindR/
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classifier to predict RNA-binding residues in pro-
teins. Interface residues were defined using ENTAN-
GLE [37]. They generated and utilized the RB109
dataset (see Methods section) and used sequence-based
leave-one-out cross-validation to evaluate classification
performance.
Some studies [13,21] have shown that evolutionary

information in the form of position-specific scoringmatri-
ces (PSSMs) significantly improves prediction perfor-
mance over single sequence methods. For a given protein
sequence, a PSSM gives the likelihood of a particular
residue substitution at a specific position based on evolu-
tionary information. PSSM profiles have been successfully
used for a variety of prediction tasks, including the pre-
diction of protein secondary structure [38,39], protein
solvent accessibility [40,41], protein function [42], disor-
dered regions in proteins [43], and DNA-binding sites
in proteins [44]. Kumar et al. [21] developed a support
vector machine (SVM) model that was trained on 86
RNA-binding protein (RBP) chains and evaluated it using
window-based five-fold cross-validation. This dataset of
86 RBPs contained no two chains with more than 70%
sequence similarity with one another. A distance-based
cutoff of 6Å was used to define interacting residues. Mul-
tiple sequence alignments in the form of PSSM profiles
were used as input to the SVM classifier. Kumar et al. were
able to demonstrate a significant increase in the prediction
accuracy with the use of PSSMs.Wang et al. [30,45] devel-
oped BindN, an SVM classifier that uses physico-chemical
properties, such as hydrophobicity, side chain pKa, and
molecular mass, in addition to evolutionary information
in the form of PSSMs, to predict RNA-binding residues.
They evaluated the performance of their classifier by using
PSSMs and several combinations of the physico-chemical
properties, and found that an SVM classifier constructed
using all features gave the best predictive performance.
Their classifier was evaluated using window-based five-
fold cross-validation. BindN+ [46] was developed by
Wang et al. using PSSMs and several other descriptors
of evolutionary information. They used an SVM to build
their classifier. The method was evaluated using window-
based five-fold cross-validation. Cheng et al. introduced
smoothed PSSMs in RNAProB [18] to incorporate con-
text information from neighboring sequence residues. In
a smoothed PSSM, the score for the central residue i is
calculated by summing the scores of neighboring residues
within a specified window size (see Methods section for
additional details). Cheng et al. evaluated their SVM clas-
sifier using window-based five-fold cross-validation and
parameter optimization on the RB86 [21], RB109 [26] and
RB107 [45] datasets, all used in previous studies. Wang et
al. [29] have recently proposed a method that combines
amino acid sequence information, including PSSMs and
smoothed PSSMs, with physico-chemical properties and

predicted solvent accessibility (ASA) as input to an SVM
classifier. They utilized a non-redundant dataset of 77 pro-
teins, derived from the RB86 dataset used by Cheng et al.
[18] and Kumar et al. [21], by ensuring that no two pro-
tein chains shared a sequence identity of more than 25%.
Interface residues were defined as those residues in the
protein with at least one atom separated by ≤ 6Å from
any atom in the RNA molecule. RISP [27] is an SVM clas-
sifier that uses PSSM profiles for predicting RNA-binding
residues in proteins. An amino acid was defined as a bind-
ing residue if its side chain or backbone atoms fell within a
3.5Å distance cutoff from any atom in the RNA sequence.
Tong et al. evaluated their classifier using window-based
five-fold cross-validation on the RB147 [47] dataset.
ProteRNA [19] is another recent SVM classifier that
uses evolutionary information and sequence conserva-
tion to classify RNA-binding protein residues. Sequence-
based five-fold cross-validation on the RB147 dataset was
used to evaluate performance. A study that used PSSM
profiles, interface propensity, predicted solvent accessi-
bility, and hydrophobicity as features to train an SVM
classifier to predict protein-RNA interface residues was
conducted by Spriggs et al. [25]. Their method, PiRaNhA,
used a non-redundant dataset of 81 known RNA-binding
protein (RBP) sequences. It should be noted that the
dataset was only weakly redundancy reduced; protein
chains with 70% sequence identity over 90% of the
sequence length were included in the dataset. An inter-
face residue was defined as any amino acid residue within
3.9Å of the atoms in the RNA. NAPS [48] is a server
which uses sequence-derived features such as amino
acid identity, residue charge, and evolutionary informa-
tion in the form of PSSM profiles to predict residues
involved in DNA- or RNA-binding. It uses a modified
C4.5 decision tree algorithm. Zhang et al. [34] pre-
sented a method that uses sequence, evolutionary con-
servation (in the form of PSSMs), predicted secondary
structure, and predicted relative solvent accessibility as
features to train an SVM classifier. Performance was
evaluated using sequence-based five-fold cross-validation.
This study also analyzed the relationship between
the various features used and RNA-binding residues
(RBRs).
In summary, the primary differences among the

methods listed above are: (i) sequence features used, (ii)
classifier used, (iii) interface residue definitions, (iv) num-
ber of protein-RNA complexes and redundancy levels in
the datasets, and (v) cross-validation technique. Interface
residue definitions commonly vary between 3.5Å to 6Å.
The datasets constructed range from those which contain
protein chains that share no more than 70% sequence
identity tomore stringent collections which share nomore
than 25% sequence identity. Cross-validation is either
window-based or sequence-based.
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Structure-based Methods
Several structure-based methods for predicting RNA-
binding sites in proteins have been proposed in literature.
KYG [20] is a structure-based method that uses a set of
scores based on the RNA-binding propensity of individual
and pairs of surface residues of the protein, used alone or
in combination with position-specific multiple sequence
profiles. Several of the scores calculated are averages
over residues located within a certain distance (struc-
tural neighbors). Amino acid residues were predicted to
be interacting if the calculated scores were higher than
a certain threshold. An interface residue was defined
as an amino acid residue with at least one RNA atom
within a distance of 7Å. Studies [49,50] have shown that
structural properties such as surface geometry (patches
and clefts) and the corresponding electrostatic properties,
patch size, roughness, and surface accessibility can help
to distinguish between RNA-binding proteins (RBPs) and
non-RBPs as well as between RNA-binding surfaces and
DNA-binding surfaces. Chen and Lim [17] used informa-
tion from protein structures to determine the geometry of
the surface residues, and classified these as either surface
patches or clefts. This was done using gas-phase electro-
static energy changes and relative conservation of each
residue on the protein surface. After the identification of
patches and clefts on the protein surface, residues within
these RNA-binding regions were predicted as interface
residues if they had relative solvent accessibilities ≥ 5%.
OPRA [51] is a method that calculates patch energy scores
for each residue in a protein by considering energy scores
of neighboring surface residues. The energy scores are cal-
culated using interface propensity scores weighted by the
accessible surface area (ASA) of the residue. Residues with
better patch scores are predicted to be RNA-binding. In
this study, interface residues were defined as those that
had at least one amino acid atom within a distance of
10Å from any RNA atom. Zhao et al. [52] introduced
DRNA, a method that simultaneously predicts RBPs and
RNA-binding sites. A query protein is structurally aligned
with known protein-RNA complexes, and if the simi-
larity score is higher than a certain threshold, then the
query is predicted as an RBP. Binding energy is calcu-
lated using a DFIRE-based statistical energy function, to
improve the discriminative ability to identity RBPs ver-
sus non-RBPs. The binding sites are then inferred from
the predicted protein-RNA complex structure. Residues
are defined as interface residues if a heavy atom in the
amino acid is < 4.5Å away from any heavy atom of an
RNA base.
A number of methods have incorporated structural

information along with evolutionary information to pre-
dict RNA-binding sites. Maetschke and Yuan presented
a method [24] that uses an SVM classifier with a com-
bination of PSSM profiles, solvent accessible surface area

(ASA), betweenness centrality, and retention coefficient as
input features. Performance was evaluated on the RB106
and RB144 datasets, which are slightly modified versions
of the benchmark datasets created by Terribilini et al.
[26,47]. In the Maetschke and Yuan study, an interface
residue is defined using a distance cutoff of 5Å. PRINTR
[31] is another method that uses SVMs and PSSMs to
identify RNA-binding residues. The method was trained
on the RB109 dataset using window-based seven-fold
cross-validation. A combination of sequence and struc-
ture derived features was used, and the best performance
was obtained by usingmultiple sequence alignments com-
bined with observed secondary structure and solvent
accessibility information. Li et al. [33] built a classifier
using multiple linear regression with a combination of
features derived from sequence alone, such as the physico-
chemical properties of amino acids and PSSMs, and struc-
ture derived features, such as actual secondary structure,
solvent accessibility, and the amino acid composition of
structural neighbors. Their method was evaluated using
window-based six-fold cross-validation. A recent method
proposed by Ma et al. [23] used an enriched RF classifier
with a hybrid set of features that includes secondary struc-
ture information, a combination of PSSMs with physico-
chemical properties, a polarity-charge correlation, and a
hydrophobicity correlation. A dataset of 180 RNA-binding
protein sequences was constructed by excluding all pro-
tein chains that shared more than 25% sequence identity
and proteins with fewer than 10 residues. Residues were
defined as interacting based on a distance cutoff of 3.5Å.
They tested the performance of their classifier using a
window-based nested cross-validation procedure, where
an outer cross-validation loop was used for model assess-
ment and an inner loop for model selection. A method
that encodes PSSM profiles using information from spa-
tially adjacent residues and uses an SVM classifier as well
as an SVM-KNN classifier was proposed by Chen et al.
[32]. Interface residues were defined using a distance cut-
off of 5Å. The performance of themethodwas tested using
window-based five-fold cross-validation.
Towfic et al. [28] exploited several structural features

(e.g., roughness, CX values) and showed that an ensemble
of five NB classifiers that combine sequence and struc-
tural features performed better than a NB classifier that
only used sequence features. They trained their method,
Struct-NB, on the RB147 dataset, and used sequence-
based five-fold cross-validation. Struct-NB was trained
using residues known to be on the surface of the protein.
Liu et al. [22] used a Random Forest (RF) [53] classifier to
predict RNA-binding residues in proteins by combining
interaction propensities with other sequence features and
relative accessible surface area derived from the protein
structure. They defined a mutual interaction propen-
sity between a residue triplet and a nucleotide, where
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the target residue is the central residue in the triplet. A
dataset of 205 non-homologous RBPs was constructed to
evaluate their method. Protein chains with greater than
25% and RNA chains with greater than 60% sequence
identity were removed from their initial pool of 1,182
protein-RNA chains.
In summary, the structure-based methods described

above differ in terms of the features, classifiers, inter-
face residue definitions, datasets, and cross-validation
techniques used. Interface residues are typically defined
within a range of 3.5Å all the way up to 10Å. Features used
include RNA-binding propensities of surface residues,
geometry of surface residues, solvent accessible surface
area, and secondary structure, among others.

Assessment of existing methods on standard datasets
In this study, we follow a direct approach for compar-
ing different machine learning methods for predicting
protein-RNA interface residues using a unified experi-
mental setting (i.e., all methods are trained and evalu-
ated on the same training and test sets). Therefore, our
approach can address questions such as (i) Which fea-
ture representation is most useful for this prediction
problem? (ii) How does feature encoding using sequence-
based or structure-based windows compare in terms of
performance? and (iii) Which machine learning algo-
rithm provides the best predictive performance? In our
experiments, we used three non-redundant benchmark
datasets (RB106, RB144, and RB198; see Table 1) to com-
pare several classifiers trained to predict RNA-binding
sites in proteins using information derived from a pro-
tein’s sequence, or its structure. Two versions of the
datasets were constructed: (i) Sequence datasets, which
contain all the residues in a protein chain, and (ii)
Structure datasets, which contain only those residues
that have been solved in the protein structure (see
Methods section for details). The input to the classi-
fier consists of an encoding of the target residue plus
its sequence or spatial (based on the structure) neigh-
bors. Each residue is encoded using either its amino
acid identity or its PSSM profile obtained using mul-
tiple sequence alignment. In addition to the questions
posted above, we also address to what extent (if any)
the recent increase in the number of protein-RNA
complexes available in Protein Data Bank (PDB) over
the past 6 years contributes to improved prediction of
RNA-binding residues.

Assessment of methods on an independent test set
Several studies [17,20,51,52] have incorporated struc-
tural information, such as interaction propensities of
surface residues, geometry of the protein surface, and
electrostatic properties, to predict RNA-binding residues.
Because it is more difficult to implement some of these
methods from scratch, we utilized an independent test set
of 44 RNA-binding proteins [10] to compare our best per-
forming sequence-based method with results obtained by
Puton et al. [10] using the following structure-basedmeth-
ods: KYG [20], OPRA [51], and DRNA [52]. We also used
information about surface residues to filter the results
obtained by our best performing sequence-based method
to directly compare this simple structure information with
more complex structure-based methods.

Results and discussion
For a rigorous comparison of classifiers trained to pre-
dict RNA-protein interfacial residues, we first used a
sequence-based five-fold cross-validation procedure (see
Methods). The input for each classifier consists of an
encoding of the target residue plus its sequence or spa-
tial neighbors. Each residue is encoded using its amino
acid identity, its PSSM profile obtained using multiple
sequence alignment, or its smoothed PSSM profile. We
refer to the classifiers that rely exclusively on sequence as
“sequence-based” and those that use structural informa-
tion only to identify spatial neighbors as “simple structure-
based” to distinguish them from structure-based methods
(discussed below) that exploit more complex structure-
derived information, such as surface concavity or other
geometric features. Here, we considered 6 different
encodings (see Table 2). IDSeq and IDStr encode each
amino acid and its sequence or structural neighbors,
respectively, using the 20-letter amino acid alphabet;
PSSMSeq and PSSMStr encode each amino acid and its
sequence or structural neighbors respectively using their
PSSM profiles; SmoPSSMSeq and SmoPSSMStr encode
each amino acid and its sequence or structural neighbors
by using a summation of the values of the PSSM profiles
of neighboring residues and itself (see Methods section
for details).
Tables 3, 4 and 5 compare performance based on the

AUC (Area Under the receiver operating characteristic
Curve) of the different feature encodings using three
different machine learning classifiers: (i) Naı̈ve Bayes
(NB), (ii) Support Vector Machine (SVM) using a linear

Table 1 The number of interface and non-interface residues in the datasets used in this study

RB106Seq RB106Str RB144Seq RB144Str RB199Seq RB199Str

Non-interface residues 20,172 19,284 27,509 26,128 45,710 43,045

Interface residues 4,534 4,534 6,109 6,109 7,950 7,950
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Table 2 Six different encodings used in this work

Sequence Smoothed Structure Smoothed

Classifier Sequence PSSM Sequence PSSM Structure PSSM Structure PSSM

NB IDSeq NB PSSMSeq NB SmoPSSMSeq NB IDStr NB PSSMStr NB SmoPSSMStr NB

SVMwith Linear

Kernel IDSeq LK PSSMSeq LK SmoPSSMSeq LK IDStr LK PSSMStr LK SmoPSSMStr LK

SVMwith Radial

Basis Function Kernel IDSeq RBFK PSSMSeq RBFK SmoPSSMSeq RBFK IDStr RBFK PSSMStr RBFK SmoPSSMStr RBFK

Abbreviations used in this manuscript for the six different encodings implemented in this study. (NB - Naı̈ve Bayes, SVM - Support Vector Machine).

Table 3 Residue-based evaluation of SequenceMethods on Sequence Data

IDSeq IDSeq IDSeq PSSM Seq PSSM Seq PSSM Seq Smo PSSM Smo PSSM Smo PSSM

NB LK RBFK NB LK RBFK Seq NB Seq LK Seq RBFK

RB106Seq 0.74 (7) 0.72 (9) 0.73 (8) 0.76 (4.5) 0.78 (2.5) 0.80 (1) 0.75 (6) 0.76 (4.5) 0.78 (2.5)

RB144Seq 0.73 (7.5) 0.72 (9) 0.73 (7.5) 0.74 (6) 0.79 (2.5) 0.80 (1) 0.75 (5) 0.77 (4) 0.79 (2.5)

RB198Seq 0.72 (8) 0.72 (8) 0.72 (8) 0.73 (6) 0.78 (2.5) 0.80 (1) 0.74 (5) 0.77 (4) 0.78 (2.5)

Average 0.73 (7.5) 0.72 (8.7) 0.73 (7.8) 0.74 (5.5) 0.78 (2.5) 0.80 (1) 0.75 (5.3) 0.77 (4.2) 0.78 (2.5)

AUC (averaged over five folds) of sequence methods on sequence data using residue-based evaluation. For each dataset, the rank of each classifier is shown in
parentheses. Based on average rank, the best sequence method is the SVM classifier that uses the RBF kernel and PSSMSeq as input. (NB - Naı̈ve Bayes, SVM - Support
Vector Machine, LK - Linear Kernel, RBFK - Radial Basis Function Kernel).

Table 4 Residue-based evaluation of SequenceMethods on Structure Data

IDSeq IDSeq IDSeq PSSM Seq PSSM Seq PSSM Seq Smo PSSM Smo PSSM Smo PSSM

NB LK RBFK NB LK RBFK Seq NB Seq LK Seq RBFK

RB106Str 0.74 (7.5) 0.73 (9) 0.74 (7.5) 0.76 (5.5) 0.78 (3) 0.81 (1) 0.76 (5.5) 0.77 (4) 0.79 (2)

RB144Str 0.74 (7) 0.73 (9) 0.74 (7) 0.74 (7) 0.79 (2.5) 0.81 (1) 0.75 (5) 0.77 (4) 0.79 (2.5)

RB198Str 0.73 (7) 0.73 (7) 0.73 (7) 0.72 (9) 0.78 (3) 0.80 (1) 0.74 (5) 0.77 (4) 0.79 (2)

Average 0.74 (7.2) 0.73 (8.3) 0.74 (7.2) 0.74 (7.2) 0.78 (2.8) 0.81 (1) 0.75 (5.2) 0.77 (4) 0.79 (2.2)

AUC (averaged over five folds) of sequence methods on structure data using residue-based evaluation. For each dataset, the rank of each classifier is shown in
parentheses. Based on average rank, the best sequence method is the SVM classifier that uses the RBF kernel and PSSMSeq as input. (NB - Naı̈ve Bayes, SVM - Support
Vector Machine, LK - Linear Kernel, RBFK - Radial Basis Function Kernel).

kernel (polynomial kernel with degree of the polyno-
mial p = 1), and (iii) SVM using a radial basis func-
tion (RBF) kernel, using residue-based evaluation (see
Methods section for details). For each dataset, the rank
of each classifier is shown in parentheses. The last row
in each table summarizes the average AUC and rank for

each classifier. Table 3 shows a comparison of the AUC
of the different sequence-based methods across the three
different sequence datasets (RB106Seq, RB144Seq, and
RB198Seq). Following the suggestion of Demšar [54], we
present average ranks of the classifiers to obtain an over-
all assessment of how they compare relative to each other.

Table 5 Residue-based evaluation of Structure Methods on Structure Data

IDStr IDStr IDStr PSSM PSSM PSSM Smo PSSM Smo PSSM Smo PSSM

NB LK RBFK Str NB Str LK Str RBFK Str NB Str LK Str RBFK

RB106Str 0.76 (3.5) 0.75 (5.5) 0.76 (3.5) 0.71 (8.5) 0.75 (5.5) 0.74 (7) 0.71 (8.5) 0.78 (2) 0.80 (1)

RB144Str 0.77 (3.5) 0.76 (5) 0.77 (3.5) 0.71 (8) 0.75 (6) 0.74 (7) 0.70 (9) 0.79 (2) 0.80 (1)

RB198Str 0.76 (4) 0.76 (4) 0.76 (4) 0.70 (6.5) 0.74 (6.5) 0.74 (6.5) 0.67 (9) 0.78 (2) 0.79 (1)

Average 0.76 (3.7) 0.76 (4.8) 0.76 (3.7) 0.71 (8.2) 0.75 (6) 0.74 (6.8) 0.69 (8.8) 0.78 (2) 0.80 (1)

AUC (averaged over five folds) of structure methods on structure data using residue-based evaluation. Based on average rank, the best structure method across the
three datasets is the SVM classifier that uses the RBF kernel and SmoothedPSSMStr (with a window size of 3) as input (NB - Naı̈ve Bayes, SVM - Support Vector Machine,
LK - Linear Kernel, RBFK - Radial Basis Function Kernel) The rank of each classifier is shown in parentheses.
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Based on average rank alone, an SVM classifier that uses
the RBF kernel and PSSMSeq encoding, which has an
average AUC of 0.80, outperforms the other methods.
Table 4 shows a comparison of the AUC of the differ-
ent sequence-based methods on the structure datasets
(RB106Str, RB144Str, and RB198Str). The best perfor-
mance across all three structure datasets by a sequence-
based method is achieved by an SVM classifier using
the RBF kernel, which obtains an average AUC of 0.81,
using the PSSMSeq encoding. A comparison of the sim-
ple structure-based methods on the structure datasets is
shown in Table 5. The best performing method uses the
SmoPSSMStr encoding (with a window size of 3) as input
to an SVM classifier constructed with the RBF kernel,
achieving an average AUC of 0.80. Tables 6, 7 and 8 com-
pare the AUC of the different feature encodings using the
three different machine learning classifiers, using protein-
based evaluation (See Methods for details). All AUC
values obtained using the protein-based evaluation are
lower than those obtained using residue-based evaluation.
However, the average ranks of the top-performing meth-
ods, as calculated using the two evaluation methods, were
equivalent. Protein-based evaluation returns lower AUC
values than residue-based evaluations because the former
is a more stringent measure of the performance of a classi-
fier. These measures are reported as average values over a
subset of protein families in the dataset. Poor performance
on the more challenging members of the dataset is more
apparent in this type of evaluation.
Table 9 shows the performance of the 6 top-ranking

sequence-based and simple structure-based methods on
structure datasets. The feature encoding that gives best
performance across all three structure datasets is PSSM-
Seq, when used as input to an SVM classifier that uses the
RBF kernel. Figure 1 shows Receiver Operating Charac-
teristic (ROC) curves and Precision vs Recall (PR) curves
for the top performing methods on structure datasets.
Notably, classifiers that utilize evolutionary information,
i.e., PSSM profiles, have significantly better prediction
performance than classifiers that are trained using only
the amino acid identities of the target residue and its
sequence neighbors.

Additional file 1: Table S1 (see Additional File 1) high-
lights the similarities and differences between methods
implemented in this study and existing methods in
the field.

Representations based on sequence versus structural
neighbors
The sequence-based classifiers, IDSeq and PSSMSeq, uti-
lize a sliding-window representation to generate subse-
quences around residues that are contiguous in the pro-
tein sequence. In an attempt to capture the structural
context for predicting RNA-binding sites, we constructed
the IDStr and PSSMStr encodings which use the spatial
neighbors (derived from the 3D structure) of an amino
acid as input.
Comparison of the ROC curves of the IDSeq NB and

IDStr NB classifiers (Figure 2a) on the structure dataset
(RB144Str) shows that the performance of the IDStr NB
classifier is superior to that of the IDSeq NB classi-
fier. Similarly, the PR curve (Figure 2b) shows that the
IDStr NB classifier achieves a higher precision at any
given level of recall than the IDSeq NB classifier. The
AUC, a good overall measure of classifier performance,
is 0.77 for the IDStr NB classifier compared to 0.74 for
the IDSeq NB classifier on the RB144Str dataset using
a Naı̈ve Bayes classifier. The use of spatial neighbors to
encode amino acid identity effectively captures informa-
tion about residues that are close together in the pro-
tein structure. It is possible that this encoding indirectly
incorporates surface patch information, which leads to
improved performance using the IDStr feature, for any
choice of classifier.
It is interesting and somewhat surprising that the AUC

for the PSSMStr NB classifier is 0.71, which is lower than
0.74 of the PSSMSeq NB classifier. This is possibly due to
the fact that evolutionary information is encoded linearly
in sequence. The use of sequence windows preserves such
information while the use of spatial windows does not.
Figure 3 shows ROC curves and PR curves for the PSSM-
Seq RBF and PSSMStr RBF SVM classifiers with a radial
basis function (RBF) kernel on the RB144Str dataset. The
ROC curve for the PSSMSeq RBF classifier dominates

Table 6 Protein-based evaluation of SequenceMethods on Sequence Data

IDSeq IDSeq IDSeq PSSM Seq PSSM Seq PSSM Seq Smo PSSM Smo PSSM Smo PSSM

NB LK RBFK NB LK RBFK Seq NB Seq LK Seq RBFK

RB106Seq 0.69 (6.5) 0.68 (9) 0.69 (6.5) 0.72 (2) 0.71 (3.5) 0.74 (1) 0.69 (6.5) 0.69 (6.5) 0.71 (3.5)

RB144Seq 0.68 (7) 0.67 (9) 0.68 (7) 0.71 (4) 0.73 (2) 0.74 (1) 0.68 (7) 0.70 (5) 0.72 (3)

RB198Seq 0.68 (6.5) 0.67 (8.5) 0.68 (6.5) 0.69 (5) 0.72 (2.5) 0.74 (1) 0.67 (8.5) 0.70 (4) 0.72 (2.5)

Average 0.68 (6.7) 0.67 (8.8) 0.68 (6.7) 0.71 (3.7) 0.72 (2.7) 0.74 (1) 0.68 (7.3) 0.70 (5.2) 0.72 (3)

AUC (averaged over five folds) of sequence methods on sequence data using protein-based evaluation. Based on average rank, the best sequence method is the SVM
classifier that uses the RBF kernel and PSSMSeq as input. (NB - Naı̈ve Bayes, SVM - Support Vector Machine, LK - Linear Kernel, RBFK - Radial Basis Function Kernel) The
rank of each classifier is shown in parentheses.
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Table 7 Protein-based evaluation of SequenceMethods on Structure Data

IDSeq IDSeq IDSeq PSSM Seq PSSM Seq PSSM Seq Smo PSSM Smo PSSM Smo PSSM

NB LK RBFK NB LK RBFK Seq NB Seq LK Seq RBFK

RB106Str 0.69 (7.5) 0.69 (7.5) 0.70 (5.5) 0.72 (3) 0.72 (3) 0.74 (1) 0.68 (9) 0.70 (5.5) 0.72 (3)

RB144Str 0.68 (7) 0.67 (9) 0.68 (7) 0.71 (4) 0.73 (2) 0.74 (1) 0.68 (7) 0.70 (5) 0.72 (3)

RB198Str 0.69 (6) 0.68 (8) 0.69 (6) 0.69 (6) 0.72 (2.5) 0.73 (1) 0.67 (9) 0.70 (4) 0.72 (2.5)

Average 0.69 (6.8) 0.68 (8.2) 0.69 (6.2) 0.71 (4.3) 0.72 (2.5) 0.74 (1) 0.68 (8.3) 0.70 (4.8) 0.72 (2.8)

AUC (averaged over five folds) of sequence methods on structure data using protein-based evaluation. For each dataset, the rank of each classifier is shown in
parentheses. Based on average rank, the best sequence method is the SVM classifier that uses the RBF kernel and PSSMSeq as input. (NB - Naı̈ve Bayes, SVM - Support
Vector Machine, LK - Linear Kernel, RBFK - Radial Basis Function Kernel).

Table 8 Protein-based evaluation of Structure Methods on Structure Data

IDStr IDStr IDStr PSSM Str PSSM Str PSSM Str Smo PSSM Smo PSSM Smo PSSM

NB LK RBFK NB LK RBFK Str NB Str LK Str RBFK

RB106Str 0.72 (3) 0.71 (7) 0.72 (3) 0.71 (7) 0.72 (3) 0.72 (3) 0.69 (9) 0.71 (7) 0.72 (3)

RB144Str 0.71 (6.5) 0.71 (6.5) 0.71 (6.5) 0.71 (6.5) 0.72 (3.5) 0.73 (2) 0.68 (9) 0.72 (3.5) 0.74 (1)

RB198Str 0.72 (3.5) 0.72 (3.5) 0.72 (3.5) 0.68 (8) 0.72 (3.5) 0.72 (3.5) 0.66 (9) 0.71 (7) 0.72 (3.5)

Average 0.72 (4.3) 0.68 (5.7) 0.69 (4.3) 0.70 (7.2) 0.72 (3.3) 0.72 (2.8) 0.68 (9) 0.71 (5.8) 0.73 (2.5)

AUC (averaged over five folds) of structure methods on structure data using residue-based evaluation. Based on average rank, the best structure method across the
three datasets is the SVM classifier that uses the RBF kernel and SmoothedPSSMStr (with a window size of 3) as input (NB - Naı̈ve Bayes, SVM - Support Vector Machine,
LK - Linear Kernel, RBFK - Radial Basis Function Kernel) The rank of each classifier is shown in parentheses.

that of the PSSMStr RBF classifier at all possible classifica-
tion thresholds. The PR curve also shows that the PSSM-
Seq RBF classifier achieves a higher precision for any
given level of recall than the PSSMStr RBF classifier. Sim-
ilar results were seen for all classifiers on the IDSeq, IDStr,
PSSMSeq, and PSSMStr features (see Tables 4 and 5).

PSSM profile-based encoding of a target residue and its
sequence neighbors improves the prediction of
RNA-binding residues
Sequence conservation is correlated with functionally
and/or structurally important residues [55-57]. We incor-
porated information regarding sequence conservation of
amino acids in our classifiers by using position-specific
scoring matrix (PSSM) profiles. PSSMs have been shown
to improve prediction performance in a number of tasks
including protein-protein interaction site prediction [58],
protein-DNA interaction site prediction [44,59], and

protein secondary structure prediction [38,39]. PSSMs
have been previously shown to improve prediction of
RNA-binding sites as well [13,20,21,24,27,31].
In this work, we constructed Naı̈ve Bayes (NB) and Sup-

port Vector Machine (SVM) classifiers that utilize PSSM-
based encoding of the target residue and its sequence
or structural neighbors. The input to the classifiers is
a window of PSSM profiles for the target residue and
its neighbors in the sequence, in the case of the PSSM-
Seq classifier, or its spatial neighbors, in the case of the
PSSMStr classifier. PSSM-based encoding dramatically
improves prediction performance of sequence-based clas-
sifiers. Figure 4a shows the ROC curves of the IDSeq
and PSSMSeq encodings with three different classifiers on
the RB144Seq data. IDSeq NB has an AUC of 0.73 and
PSSMSeq NB has an AUC of 0.74. The SVM classifier
(built using a linear kernel) that used IDSeq has an
AUC of 0.72 while the one that used PSSMSeq has an

Table 9 Top Six Methods on Structure Data using Residue-Based Evaluation

PSSMSeq Smo PSSMSeq PSSMSeq Smo PSSMSeq Smo PSSMStr Smo PSSMStr

RBFK RBFK LK LK RBFK LK

RB106Str 0.81 (1) 0.79 (3) 0.78 (4.5) 0.77 (6) 0.80 (2) 0.78 (4.5)

RB144Str 0.81 (1) 0.79 (4) 0.79 (4) 0.77 (6) 0.80 (2) 0.79 (4)

RB198Str 0.80 (1) 0.79 (2.5) 0.78 (4.5) 0.77 (6) 0.79 (2.5) 0.78 (4.5)

Average 0.80 (1) 0.79 (3.2) 0.78 (4.3) 0.77 (6) 0.80 (2.2) 0.78 (4.3)

Comparison of AUC (averaged over five folds) of the top six methods on structure data using residue-based evaluation. Based on average rank, the
best method across all three datasets is the SVM classifier that uses the RBF kernel and PSSMSeq as input. (NB - Naı̈ve Bayes, SVM - Support Vector
Machine, LK - Linear Kernel, RBFK - Radial Basis Function Kernel) The rank of each classifier is shown in parentheses.
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Figure 1 Top 6methods on structure datasets. (a) ROC curves and (b) PR curves for the top six methods on structure datasets.

AUC of 0.79. The classifiers that used the PSSMSeq
encoding also had a higher specificity for almost all levels
of sensitivity (Figure 4b). Evolutionary information, as
encoded by PSSMs, does not improve performance in the
structure-based classifiers, as shown by the ROC curves
in Figure 5a. On the RB144Str data, the SVM classifier
built using an RBF kernel has an AUC of 0.74 with PSSM-
Str, and an AUC of 0.77 with IDStr. Additionally, the

precision of the IDStr RBF encoding is higher for all lev-
els of recall than the PSSMStr RBF encoding, as shown in
Figure 5b.
The main reason that information from multiple

sequence alignments improves prediction accuracy is
that it captures evolutionary information about proteins.
Multiple sequence alignments reveal more information
about a sequence in terms of the observed patterns of

Figure 2 Naı̈ve Bayes (NB) classifier on the IDSeq and IDStr features using the RB144Str dataset. (a) ROC curves and (b) PR curves of the NB
classifier on the IDSeq and IDStr features. Both curves are generated using the RB144Str dataset.
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Figure 3 Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel on the PSSMSeq and PSSMStr features using the
RB144Str dataset. (a) ROC curves and (b) PR curves of the SVM classifier with an RBF kernel on the PSSMSeq and PSSMStr features. Both curves are
generated using the RB144Str dataset.

sequence variability and the locations of insertions and
deletions [60]. It is believed that more conserved regions
of a protein sequence are either those that are functionally
important [61] and/or are buried in the protein core
directly influencing the three dimensional structure of

the protein and variable sequence regions are considered
to be on the surface of the protein [38]. In protein-RNA
interactions, RNA-binding residues (RBRs) in proteins
play certain functional roles and are thus likely to be more
conserved than non-RBRs. A study by Spriggs and Jones

Figure 4 A comparison of the IDSeq and PSSMSeq features on the RB144Seq dataset. The PSSMSeq encoding leads to a better prediction
performance compared to the IDSeq encoding. (a) ROC curves and (b) PR curves showing the difference between the IDSeq and PSSMSeq features
across 3 different classifiers, Naı̈ve Bayes (NB), Support Vector Machine (SVM) with linear kernel (LK), and SVM with radial basis function (RBF) kernel.
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Figure 5 A comparison of the IDStr and PSSMStr features on the RB144Str dataset. The IDStr encoding leads to a better prediction
performance compared to the PSSMStr encoding. (a) ROC curves and (b) PR curves showing the difference between the IDStr and PSSMStr features
across 3 different classifiers, Naı̈ve Bayes (NB), Support Vector Machine (SVM) with linear kernel (LK), and SVM with radial basis function (RBF) kernel.

[62] revealed that RBRs are indeed more conserved than
other surface residues.

The predicted solvent accessibility feature does not
improve performance of the classifiers
Spriggs et al. [25] combined evolutionary information
via PSSMs with the predicted solvent accessibility feature
calculated using SABLE [63]. They used an SVM classifier
with an RBF kernel and optimized C and γ parame-
ters to achieve the best AUC values. We performed an
experiment to test whether the addition of the predicted
solvent accessibility feature (calculated using SABLE with
default parameters as in [25]) would improve the per-
formance of our NB classifier and SVM classifier trained
using sequence information. This comparative experi-
ment was performed on our smallest dataset, RB106Seq.
We combined predicted solvent accessibility with amino
acid identity (IDSeq), sequence PSSMs (PSSMSeq), and
smoothed PSSMs (SmoPSSMSeq) using a window size
of 25. Table 10 shows the average AUC values calculated
from a sequence-based five-fold cross-validation experi-
ment. We did not observe any difference in performance
by adding the predicted solvent accessibility feature,
which is consistent with the study conducted by Spriggs
et al. [25] in which they observed a slight improvement
after adding predicted solvent accessibility. In the case
of the SVM classifier (using an RBF kernel), adding
the predicted accessibility feature to the SmoPSSMSeq
feature actually led to a decrease in the AUC value.
A possible reason for why addition of the predicted

solvent accessibility feature did not lead to an improve-
ment in performance for our datasets is that this
information is already captured by the other features, such
as PSSMs.

Classification performance has remained constant as the
non-redundant datasets have doubled in size
We have attempted to exploit more information about
protein-RNA interactions to improve prediction perfor-
mance by generating a new larger dataset, RB198 (see
Methods section), which includes recently solved protein-
RNA complexes. The size of the non-redundant dataset
has grown from 106 to 198 proteins (as of May 2010),
as more complexes have been deposited in the PDB. In

Table 10 AUC values for different sequence-based
features alone and in combination with predicted solvent
accessibility

Features NB SVM RBFK

IDSeq 0.74 0.73

IDSeq + PA 0.73 0.73

PSSMSeq 0.76 0.80

PSSMSeq + PA 0.76 0.80

SmoPSSMSeq 0.75 0.78

SmoPSSMSeq + PA 0.75 0.75

Comparison of AUC (averaged over five-folds) for different sequence features
alone and in combination with predicted solvent accessibility (PA) on the
RB106Seq dataset (NB - Naı̈ve Bayes, SVM - Support Vector Machine, RBFK -
Radial Basis Function Kernel).
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this study, we compared three non-redundant datasets,
RB106, RB144, and RB198, derived from data extracted
from the Protein Data Bank on June 2004, January 2006,
and May 2010, using the same exclusion criteria of no
more than 30% sequence identity between any two pro-
tein chains, and experimental structure resolution of
≤ 3.5Å. To investigate the effect of increasing the size
of the non-redundant training set on prediction perfor-
mance, we trained all of our classifiers on each of the three
datasets and compared performance on each. Figure 6
shows the ROC curves for the Naı̈ve Bayes classifier on
sequence data for the IDSeq feature. The ROC curves
for the RB106Seq, RB144Seq, and RB199Seq datasets, are
nearly identical, with AUCs of 0.74, 0.74 and 0.73, respec-
tively. Figure 7 shows the ROC and PR curves for the
SVM classifier using an RBF kernel on structure datasets
for the PSSMStr feature. These ROC curves are nearly
identical, also, with AUCs of 0.74 for all three datasets.
The PR curve shows that on the RB198Str dataset, the
precision values are actually lower than those obtained
using the two smaller datasets, RB106Str and RB144Str,
for all values of recall.
Taken together, these results show that the prediction

performance as estimated by cross-validation has not
improved as the non-redundant dataset has doubled in
size. There are several possible explanations for these
observations: (i) we have reached the limits of pre-
dictability of protein-RNA interface residues using local
sequence and simple structural features of interfaces; (ii)
the data representations used may not be discriminative

enough to yield further improvements in predictions;
(iii) the statistical machine learning algorithms used may
not be sophisticated enough to extract the information
needed to improve the specificity and sensitivity of dis-
crimination of protein-RNA interface residues from
non-interface residues; (iv) the coverage of the structure
space of protein-RNA interfaces in the available datasets
needs to be improved before we can obtain further gains
in the performance of the classifiers.

Comparisons with methods that use more complex
structural information
In a recent review, Puton et al. [10] evaluated existing
web-based servers for RNA-binding site prediction,
including three servers that exploit structure-based
information, KYG [20], DRNA [52], and OPRA [51].
To facilitate direct comparison of our results with that
study, we evaluated our best sequence-based method,
PSSMSeq RBFK, on the same dataset used in that study.
Because our experiments employ a different distance-
based interface residue definition (5Å instead of 3.5Å, see
Methods), we calculated performance metrics using both
definitions. We also calculated both residue-based and
protein-based performance measures.
Table 11 shows the performance of different methods

on the RB44 dataset using residue-based evaluation. As
shown in the table, when evaluated in terms of Matthews
Correlation Coefficient (MCC), PSSMSeq RBFK achieves
performance comparable to or slightly lower than
that of the structure-based methods: using the 3.5Å

Figure 6 A comparison of the performance of the Naı̈ve Bayes (NB) classifier on the 3 different sequence datasets using the IDSeq
feature. (a) ROC curves and (b) PR curves showing the comparison of the performance of the NB classifier using the IDSeq feature on RB106Seq,
RB144Seq, and RB198Seq datasets. Prediction performance has not improved as the non-redundant datasets have grown larger.
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Figure 7 A comparison of the performance of the Support Vector Machine (SVM) classifier with a radial basis function (RBF) kernel on 3
different structure datasets using the PSSMStr feature. (a) ROC curves and (b) PR curves showing the comparison of the performance of the
SVM classifier with an RBF kernel using the PSSMStr feature on RB106Str, RB144Str, and RB198Str datasets.

interface residue definition (3.5Å IRs), the MCC for
PSSMSeq RBFK is 0.33, whereas the MCC for the
structure-based methods ranges from 0.30 - 0.38; using
5.0Å IRs, the MCC for PSSMSeq RBFK is 0.38 compared
with 0.36 - 0.42 for the structure-based methods.
Although the MCC is valuable as a single measure for

comparing the performance of different machine learning
classifiers, additional performance metrics such as Speci-
ficity and Sensitivity can be of greater practical impor-
tance for biologists studying protein-RNA interfaces. For
example, a high value of Specificity indicates that a

Table 11 Residue-based evaluation of Methods on the
RB44 Dataset

Method IR Specificity Sensitivity F measure MCC

PSSMSeq RBFK 3.5 0.33 0.84 0.47 0.33

5.0 0.47 0.80 0.59 0.38

PSSMSeq RBFK
Surface

3.5 0.36 0.83 0.51 0.37

5.0 0.51 0.78 0.62 0.42

KYG 3.5 0.40 0.73 0.52 0.38

5.0 0.55 0.67 0.60 0.41

DRNA 3.5 0.75 0.27 0.40 0.38

5.0 0.94 0.23 0.37 0.39

OPRA 3.5 0.40 0.54 0.45 0.30

5.0 0.57 0.51 0.54 0.36

Performance measures computed on the RB44 dataset (IR - Interface Residue
definition in Å).

prediction method returns fewer false positives, thus
allowing biologists to focus on a smaller number of likely
interface residues for experimental interrogation. Among
all of the methods compared in Table 11, DRNA [52]
achieved the highest Specificity values of 0.75 (using 3.5Å
IRs) and 0.94 (using 5.0Å IRs). Similarly, when protein-
based evaluation is used (Table 12), DRNA achieved the
highest Specificity values of 0.94 (using 3.5Å IRs) and 0.98
(using 5.0Å IRs).
Among classifiers compared using 5.0Å IRs and residue-

based evaluation, PSSMSeq RBFK Surface returned the

Table 12 Protein-based evaluation of Methods on the
RB44 Dataset

Method IR Specificity Sensitivity F measure MCC

PSSMSeq RBFK 3.5 0.32 0.80 0.44 0.27

5.0 0.45 0.76 0.55 0.30

PSSMSeq RBFK
Surface

3.5 0.35 0.79 0.47 0.32

5.0 0.48 0.74 0.57 0.35

KYG 3.5 0.39 0.68 0.49 0.33

5.0 0.54 0.63 0.56 0.36

DRNA 3.5 0.94 0.23 0.21 0.19

5.0 0.98 0.19 0.21 0.19

OPRA 3.5 0.51 0.46 0.36 0.21

5.0 0.64 0.45 0.43 0.25

The values reported are averages over the 44 proteins in the dataset
(IR - Interface Residue definition in Å).
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best MCC of 0.42. PSSMSeq RBFK Surface takes pre-
dictions from PSSMSeq RBFK and considers whether a
predicted interface residue is a surface residue or not. If a
residue is predicted as an interface residue but is not a sur-
face residue, then it is marked as a non-interface residue
(label = ‘0’). On the other hand, if it is a predicted inter-
face residue and is also a surface residue, then the residue
remains an interface residue. Surface residues were cal-
culated using NACCESS [64]. In our study, residues that
have > 5% relative accessible surface area (RSA) are
defined as surface residues [14]. PSSMSeq RBFK Surface
achieved Specificity = 0.51 and Sensitivity = 0.78. KYG
had similar performance, achieving Specificity = 0.55,
Sensitivity = 0.67, and MCC = 0.41. In contrast, when
classifiers are compared using 3.5Å IRs and residue-based
evaluation, KYG and DRNA have the highest MCC of
0.38, consistent with the results published in Puton et al.
[10]. However, PSSMSeq RBFK has the highest Sensitiv-
ity of 0.84 followed by 0.83 for PSSMSeq RBFK Surface.
Predictors that achieve high values of Sensitivity return
fewer false negative values.
When we utilized protein-based evaluation and 5.0Å

IRs, KYG returned the best MCC of 0.36. It achieved
Specificity = 0.54, Sensitivity = 0.63, and Fmeasure =
0.56. PSSMSeq RBFK Surface had similar performance,
achieving MCC = 0.35, Specificity = 0.48, Sensitivity =
0.74, and Fmeasure = 0.57. On the other hand, when
classifiers are compared using 3.5Å IRs, unlike the case
of residue-based evaluation, DRNA does not emerge as a
top method. It has low values of MCC = 0.19, Sensitivity
= 0.23, and Fmeasure = 0.21. However, it has a Specificity
of 0.94. This is because we assign Specificity = 1 in cases
where there are zero true positive and false positive pre-
dictions (see Performance Measures for more details).
The poor performance of DRNA can be explained by
the fact that, in 32 out of the 44 proteins in the dataset,
DRNA returns zero true positive and zero false positive
predictions. In these cases, it returns a few false negative
predictions and a much larger number of true negative
predictions which result in an Fmeasure of 0 and MCC
of 0 for 32 out of 44 proteins which pulls down the aver-
age performance over the 44 proteins to values that are
considerably lower than their residue-based counterparts.
Taken together, these results indicate that the perfor-

mance of different methods is affected by the type of
evaluation procedure used, i.e., residue-based or protein-
based evaluation. Generally, the performance of the
sequence-based classifier, PSSMSeq RBFK, and the sim-
ple structure-based classifier, PSSMSeq RBFK Surface, is
comparable to that of several structure-based methods
that exploit more complex structure features, when eval-
uated based on MCC. They also outperform structure-
based methods in terms of Sensitivity, at the cost
of Specificity.

An unexpected result of these studies is the finding
that the interface residue definition can have a substan-
tial impact on the performance of methods for predicting
RNA-binding sites in proteins. For all of the methods
compared in Table 11 and Table 12, using a 5Å instead
of 3.5Å definition resulted in an increase in MCC, and
Specificity, with a decrease in Sensitivity. Moreover, the
differences in performance between methods compared
using the same interface residue definition, are substan-
tially smaller than the differences in performance obtained
for a single method, using different interface residue defi-
nitions. Thus, the interface residue definition is an impor-
tant factor that must be taken into consideration when
comparing different methods for predicting RNA-binding
residues.

Conclusions
Studying the interfacial residues of protein-RNA com-
plexes allows biologists to investigate the underlying
mechanisms of protein-RNA recognition. Because exper-
imental methods for identifying RNA-binding residues in
proteins are, at present, time and labor intensive, reli-
able computational methods for predicting protein-RNA
interface residues are valuable.
In this study, we evaluated different machine learn-

ing classifiers and different feature encodings for pre-
dicting RNA-binding sites in proteins. We implemented
Naı̈ve Bayes and Support Vector Machine classifiers using
several sequence and simple structure-based features
and evaluated performance using sequence-based k-fold
cross-validation. Our results from this set of experiments
indicate that using PSSM profiles outperforms all other
sequence-based methods. This is in agreement with pre-
viously published studies [21,25,27,31,45], which demon-
strated increased accuracy of prediction of RNA-binding
residues by using PSSM profiles. Taken together, these
results indicate that determinants of protein-RNA recog-
nition include features that can be effectively captured by
amino acid sequence (and sequence conservation) infor-
mation alone. However, exploiting additional features of
structures (e.g., geometry, surface roughness, CX protru-
sion index, secondary structure, side chain environment)
can result in improved performance as suggested in the
studies of Liu et al. [22], Ma et al. [23], Towfic et al. [28]
and Wang et al. [31]. We observed that the performance
of methods utilizing the PSSMSeq feature is comparable
to that of three state-of-the-art structure-based methods
[20,51,52] in terms of MCC. Nonetheless, structure-based
methods achieve higher values of Specificity than meth-
ods that rely exclusively on sequence information.
In conclusion, we suggest that for rigorous benchmark

comparisons of methods for predicting RNA-binding
residues, it is important to consider: (i) the rules used to
define interface residues, (ii) the redundancy of datasets
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used for training, and (iii) the details of evaluation pro-
cedures, i.e., cross-validation, performance metrics used,
and residue-based versus protein-based evaluation.
Our benchmark datasets and an implementation of the

best performing sequence-based method for predicting
protein-RNA interface residues are freely accessible at
http://einstein.cs.iastate.edu/RNABindR/.

Methods
Datasets
We used homology-reduced benchmark datasets for eval-
uating our classifiers. All three datasets (RB106, RB144
and RB198) used in this study contain protein chains
extracted from structures of protein-RNA complexes in
the PDB, after exclusion of structures whose resolution is
worse than 3.5Å and protein chains that share greater than
30% sequence identity with one or more other protein
chains. RB106 and RB144 were derived from RB109 and
RB147 [26,47], respectively, by eliminating three chains in
each dataset that are shorter than 40 residues [24]. RB199
[65] is a more recently extracted dataset (May 2010) that
contains 199 unique protein chains. To be included in the
dataset, proteins must include ≥ 40 amino acids and ≥ 3
RNA-binding amino acids and the RNA in the complex
must be ≥ 5 nucleotides long. Upon further examination
of RB199, it was discovered that one chain, 2RFK C, had
been included erroneously, and so we consider instead
the dataset RB198 which does not include that chain.
An amino acid residue is considered an interface residue
(RNA-binding residue) if it contains at least one atom
within 5Å of any atom in the bound RNA.
For all three datasets, we constructed two different

versions of the data, referred to as sequence data and
structure data. The rationale for creating two different
versions of the same dataset was to ensure fair compari-
son of the sequence and simple structure-based methods.
To achieve this, the sequence and structure methods must
be evaluated on exactly the same datasets. The sequence
data (RB106Seq, RB144Seq, and RB198Seq) consists of all
residues in the protein chain, regardless of whether those
residues appear in the solved protein structure. On the
other hand, the structure data (RB106Str, RB144Str, and
RB198Str) includes only those residues that appear in the
solved structure of the protein in the PDB. Because of this
difference, the total number of residues in the sequence
data is greater than the total number of residues in the
structure data. Interface residues are labeled with ‘1’ and
non-interface residues are labeled ‘0’. Those residues that
appear in the sequence only ( i.e., have not been solved
in the structure) are labeled as non-interface residues.
Table 1 shows the number of interface and non-interface
residues for the datasets used in this study.
RB44 [10] is a dataset of 44 RNA-binding proteins

released between January 1st andApril 28th 2011 from the

PDB. No two protein chains in the dataset share greater
than 40% sequence identity.

Data Representation
In this study, we use three different encodings for amino
acids. First, amino acid identity (ID) is simply the one
letter abbreviation for each of the twenty amino acids.
The second encoding is a position-specific scoring matrix
(PSSM) vector for each amino acid. For each protein
sequence in the dataset, the PSSM is generated by running
PSI-BLAST [66] against the NCBI nr database for three
iterations with an E-value cutoff of 0.001 for inclusion in
the next iteration. The third encoding is the smoothed
PSSM [18].
We employ two methods for capturing the context of an

amino acid within the protein. First, sequence-based win-
dows are constructed by using a sliding window approach
in which the input to the classifier is the target amino acid
and the surrounding n residues in the protein sequence.
This captures the local context of the amino acid within
the protein sequence. Second, structure-based windows
are designed to capture the structural context of each
amino acid, based on spatial neighboring residues in the
protein three dimensional structure. We define the dis-
tance between two amino acids to be the distance between
the centroids of the residues. The structure-based window
consists of the target residue and the nearest n residues
based on this distance measure.
We use both sequence and simple structural features as

input to the different classifiers that we have used. Fea-
tures derived from protein sequence include the amino
acid sequence itself (IDSeq), PSSMSeq, the position-
specific scoring matrices (PSSMs) and SmoPSSMSeq, the
smoothed PSSMs. IDSeq uses a window of 25 contigu-
ous amino acid residues, with 12 residues on either side
of the target residue, that is labeled ‘0’ or ‘1’ depend-
ing on whether it is a non-interface or interface residue.
PSSMSeq encodes evolutionary information about amino
acids. The PSSM is an n × 20 matrix that represents the
likelihood of different amino acids occurring at a specific
position in the protein sequence, where n is the length of
the protein sequence. The PSSMs are generated by PSI-
BLAST using three iterations and an E-value of 0.001.
PSSMSeq also uses a window size of 25 to encode infor-
mation about the target residue. All individual values in
the PSSM are normalized using the logistic function, y =

1
1+e−x , where y is the normalized value and x is the origi-
nal value. Each target residue is represented by 500 (25 ×
20) features. The smoothed PSSM concept (SmoPSSM-
Seq) was first introduced by Cheng et al. [18] and was
shown to perform significantly well in predicting interface
residues for the protein-RNA problem. In the construc-
tion of a smoothed PSSM, the score for a target residue
i is obtained by summing up the scores of neighboring

http://einstein.cs.iastate.edu/RNABindR/


Walia et al. BMC Bioinformatics 2012, 13:89 Page 17 of 20
http://www.biomedcentral.com/1471-2105/13/89

residues. The number of scores to be summed up is deter-
mined by the size of the smoothing window. For example,
if the smoothing window size is 5, then we sum up scores
for residues at positions i − 2 to i + 2 to get the score for
residue i. We experimented with a smoothing window size
of 3, 5 and 7 and obtained the best performance with a
smoothing window size of 3 (data not shown).
IDStr, PSSMStr, and SmoPSSMStr are structural fea-

tures equivalent to the above sequence features. The
major difference between structural and sequence features
is that contiguous residues for structural features are listed
as those residues that are close to each other (in space)
within the structure of the protein, regardless of whether
they are contiguous in the protein sequence.

Classifiers
The Naı̈ve Bayes (NB) classifier is based on Bayesian
statistics and makes the simplifying assumption that all
attributes are independent given the class label. Even
though the independence assumption is often violated,
NB classifiers have been shown to perform as well as
or better than more sophisticated methods for many
problems. In this work, we used the NB implementation
provided by the Weka machine learning workbench [67].
Let X denote the random variable corresponding to the

input to the classifier and C denote the binary random
variable corresponding to the output of the classifier. The
NB classifier assigns input x the class label ‘1’ (interface) if:

P(C = 1|X = x)
P(C = 0|X = x)

≥ 1

and the class label ‘0’ (non-interface) otherwise. Because
the inputs are assumed to be independent given the class,
using Bayes’ theorem we have:

P(C = 1|X = x)
P(C = 0|X = x)

= P(C = 1)
∏n

i=1 P(Xi = x|C = 1)
P(C = 0)

∏n
i=1 P(Xi = x|C = 0)

The relevant probabilities are estimated from the train-
ing set using the Laplace estimator [35].
The Support Vector Machine (SVM) classifier finds

a hyperplane that maximizes the margin of separation
between classes in the feature space. When the classes
are not linearly separable in the feature space induced by
the instance representation, SVM uses a kernel function
K to map the instances into a typically high dimensional
kernel-induced feature space. It then computes a linear
hyperplane thatmaximizes the separation between classes
in the kernel-induced feature space. In practice, when the
classes are not perfectly separable in the feature space, it is
necessary to allow some of the training samples to be mis-
classified by the resulting hyperplane. More precisely, the
SVM learning algorithm [68,69] finds the parameters w, b,

and slack variables ξi by solving the following optimization
problem:

Minw,b,ξi
(
1
2
wTw

)
+ C

n∑
i=1

ξi subject to

yi(wT�(xi) + b) ≥ 1 − ξi, ξi ≥ 0,
i = 1, 2, . . . , n

where w ∈ R
d is a weight vector, b is a bias and � is a

mapping function. The larger the value ofC, the higher the
penalty assigned to errors. We use both the polynomial
kernel with p = 1 (Equation 1) and radial basis function
(RBF) kernel with γ = 0.01 (Equation 2) in our study.
For our experiments, we used the SVM algorithm imple-
mentation (SMO) available in Weka [67]. We used default
parameters for the kernels (p = 1, γ = 0.01, and C = 1.0)
without any optimization in our experiments.

K(xi, xj) = (xi.xj + 1)p

where the degree of the polynomial
p is a user-specified parameter

(1)

K(xi, xj) =exp(−γ
∥∥xi − xj

∥∥2)
where γ is a training parameter

(2)

We trained all three classifiers on the different
sequence- and structure-based features that we con-
structed. We balanced the training datasets for the SVM
classifiers by employing undersampling of the majority
class (i.e., non-interface residues). We also changed nomi-
nal attributes (IDSeq and IDStr) to binary attributes using
the Weka unsupervised filter NominalToBinary for input
to the SVM classifier.

Performance Measures
All the statistics reported in this work are for the positive
class (i.e., interface residues). To assess the performance of
our classifiers we report the following measures described
in Baldi et al. [70]: Receiver Operating Characteristic
(ROC) curve, Precision-Recall (PR) curve, Area Under the
ROC Curve (AUC), Specificity, Sensitivity, Fmeasure and
Matthews Correlation Coefficient (MCC):

Specificity = TP
TP + FP

(Precision)

Sensitivity = TP
TP + FN

(Recall)

F measure = 2 × Precision × Recall
Precision + Recall

MCC = TP × TN − FP × FN√
(TP+FN)(TP+FP)(TN+FP)(TN+FN)



Walia et al. BMC Bioinformatics 2012, 13:89 Page 18 of 20
http://www.biomedcentral.com/1471-2105/13/89

We denote true positives by TP, true negatives by TN,
false positives by FP and false negatives by FN. The
measures describe different aspects of classifier perfor-
mance. Intuitively, Specificity corresponds to the proba-
bility that a positive class prediction is correct; Sensitivity
corresponds to the probability that the predictor detects
the instances of the positive class. Often it is possible
to trade off Specificity against Sensitivity. In the extreme
case, a predictor that makes 0 positive predictions (TP +
FP = 0, and hence TP = 0 and FP = 0) trivially achieves
a Specificity of 1. However, such a predictor is useless
in practice because it fails to identify any instances of
the positive class, and hence has a Sensitivity as well as
MCC of 0. An ideal predictor has both Specificity and
Sensitivity equal to 1 and Fmeasure as well as MCC equal
to 1.
The ROC curve plots the proportion of correctly clas-

sified positive examples, True Positive Rate (TPR), as a
function of the proportion of incorrectly classified neg-
ative example, False Positive Rate (FPR), for different
classification thresholds. In comparing two different clas-
sifiers using ROC curves, for the same FPR, the classifier
with higher TPR gives better performance measures. Each
point on the ROC curve represents two particular values
of TPR and FPR obtained using a classification threshold
θ . The ROCR package [71] in R was used to generate all
ROC curves and PR curves. PR curves give a more infor-
mative picture of an algorithm’s performance when deal-
ing with unbalanced datasets [72]. In our case, we have
many more negative examples (non-interface residues)
than positive examples (interface residues) in the dataset.
In PR curves, we plot precision (specificity) as a function
of recall (sensitivity or TPR).
To evaluate how effective a classifier is in discriminating

between the positive and negative instances, we report the
AUC on the test set, which represents the probability of a
correct classification [70]. That is, an AUC of 0.5 indicates
a random discrimination between positives and negatives
(a random classifier), while an AUC of 1.0 indicates a
perfect discrimination (an optimal classifier).
The above performance measures are computed based

on a sequence-based k-fold cross-validation procedure.
k-fold cross-validation [35] is an evaluation scheme for
estimating the generalization accuracy of a predictive
algorithm (i.e., the accuracy of the predictive model on
the test set). In a single round of sequence-based cross-
validation, m protein sequences (m = D/k where D is the
number of sequences in the dataset) are randomly chosen
to be in the test set and all the other sequences are used
to train the classifier. Sequence-based cross-validation
has been shown to be more rigorous than window-based
cross-validation [36], because the procedure guarantees
that training and test sets are disjoint at the sequence level.
Window-based cross-validation has the potential to bias

the classifier because portions of the test sequence are
used in the training set. In this work, we report the results
of sequence-based five-fold cross-validation.
We report our results using two performance eval-

uation approaches. The first approach, called protein-
based evaluation, provides an assessment of the reliability
of predicted interfaces in a given protein. The second
approach, which we call residue-based evaluation, pro-
vides an assessment of the reliability of prediction on a
given residue. Let S represent the dataset of sequences.
We randomly partition S into k equal folds S1, . . . , Sk . For
each run of a cross-validation experiment, k − 1 folds
are used for training the classifier and the remaining fold
is used for testing the classifier. Let Si = (s1i , . . . , sri)
represent the test set on the i-th run of the cross-
validation experiment (ri is the number of sequences in
the test set Si). In protein-based evaluation, we calcu-
late for each sequence sji ∈ Si the true positives (TPji),
true negatives (TNji), false positives (FPji), and false neg-
atives (FNji). These values are then used to compute the
true positive rate (TPRji) and false positive rate (FPRji) for
each protein sji in the test set Si. The TPR and FPR val-
ues for the i-th cross-validation run are then obtained as:
TPRi =

∑
j TPRji
ri and FPRi =

∑
j FPRji
ri . We then report

the average TPR and FPR of the classifier over k-folds
as TPRprotein =

∑
i TPRi
k . Other performance measures

for protein-based evaluation are obtained in an analo-
gous fashion. The residue-based measures are estimated
as follows: TPi = ∑ri

j=1 TPji, TNi = ∑ri
j=1 TNji, FPi =∑ri

j=1 FPji and FNi = ∑ri
j=1 FNji. These values are then

used to calculate TPRi (= TPi
TPi+FNi

) and FPRi (= FPi
FPi+TNi

)
for the i-th cross-validation run. We then report the aver-
age TPR of the classifier over the k-folds as TPRresidue =∑

i TPRi
k . Other residue-based performance measures are

obtained in an analogous fashion.

Statistical Analysis
We used the non-parametric statistical test proposed by
Demšar [54] to compare the performance of the different
prediction methods across the three benchmark datasets,
RB106, RB144, and RB198. First we computed the ranks
of the different methods for each dataset separately, with
the best performing algorithm getting the rank of 1, the
second best rank of 2 and so on. Demšar proposes the
Friedman test [73] as a non-parametric test that com-
pares the average ranks of the different classifiers. For
the results of the Friedman test to be statistically sound,
the number of datasets should be greater than 10 and the
number of classifiers should be more than 5 [54]. Because
we have only three datasets, the Friedman test is not
applicable (and thus, was not performed) and we relied
on average rank across the three datasets to compare
the performance of the different methods. As noted by
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Demšar, average rank of the classifier provides a fair
means of comparing alternative classifiers.
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include in the text. Similarities and Differences of Methods Implemented in
this Study with other Methods in the Field.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was funded in part by the National Institutes of Health grant
GM066387 to Vasant Honavar and Drena Dobbs and in part by a research
assistantship funded by the Center for Computational Intelligence, Learning,
and Discovery. The authors sincerely thank Rafael Jordan for helpful comments
and Jeffry Sander for useful discussions. We also thank Lukasz Kozlowski, Janusz
M. Bujnicki, and other members of their group for sharing their data with us,
enabling us to compare our methods with other structure-based methods as
well as to include more performance metrics in our comparisons. The work of
Yasser El-Manzalawy was supported by National Science Foundation funding.
The work of Vasant Honavar while working at the National Science Foundation
was supported by the National Science Foundation. Any opinions, findings,
and conclusions contained in this article are those of the authors and do no
necessarily reflect the views of the National Science Foundation.

Author details
1Bioinformatics and Computational Biology Program, Iowa State University,
Ames, Iowa, USA. 2Department of Computer Science, Iowa State University,
Ames, Iowa, USA. 3Center for Computational Intelligence, Learning and
Discovery, Iowa State University, Ames, Iowa, USA. 4College of Information
Sciences & Technology, The Pennsylvania State University, University Park,
Pennsylvania, USA. 5Department of Genetics, Development and Cell Biology,
Iowa State University, Ames, Iowa, USA. 6The Broad Institute, Cambridge,
Massachusetts, USA. 7Department of Biology, Elon University, Elon, North
Carolina, USA. 8Department of Systems & Computer Engineering, Al-Azhar
University, Cairo, Egypt.

Author’s contributions
VH and DD conceived of the study and contributed to experimental design
and writing. RW carried out the implementation, experiments, and analysis
with assistance from CC, FT and YE-M. MT and BL prepared the datasets used
in the study and performed preliminary experiments. RW prepared the initial
manuscript. All authors read and approved the manuscript.

Received: 14 October 2011 Accepted: 10 May 2012
Published: 10 May 2012

References
1. Fabian MR, Sonenberg N, Filipowicz W: Regulation of mRNA translation

and stability by microRNAs. Ann Rev Biochem 2010, 79:351–379.
2. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO: Diverse RNA-

Binding proteins interact with functionally related sets of RNAs,
suggesting an extensive regulatory system. PLoS Biol 2008, 6(10):e255.

3. Huntzinger E, Izaurralde E: Gene silencing by microRNAs:
contributions of translational repression andmRNA decay. Nat Rev
Genet 2011, 12(2):99–110.

4. Licatalosi DD, Darnell RB: RNA processing and its regulation: global
insights into biological networks. Nat Rev Genet 2010, 11:75–87.

5. Hellman LM, Fried MG: Electrophoretic mobility shift assay (EMSA) for
detecting protein-nucleic acid interactions. Nat Protocols 2007,
2(8):1849–1861.

6. Mills NL, Shelat AA, Guy RK: Assay optimization and screening of
RNA-Protein interactions by AlphaScreen. J Biomol Screen 2007,
12(7):946–955.

7. Ule J, Jensen K, Mele A, Darnell RB: CLIP: A method for identifying
protein-RNA interaction sites in living cells.Methods 2005,
37(4):376–386.

8. Berman H, Battistuz T, Bhat T, BluhmW, Bourne P, Burkhardt K, Feng Z,
Gilliland G, Iype L, Jain S: The protein data bank. Acta Crystallogr D Biol
Crystallogr 2002, 58(Pt6No1):899–907.

9. Perez-Cano L, Fernandez-Recio J: Dissection and prediction of
RNA-binding sites on proteins. BioMol Concepts 2010, 1:345–355.

10. Puton T, Kozlowski L, Tuszynska I, Rother K, Bujnicki JM: Computational
methods for the prediction of protein-RNA interactions. J Struct Biol
2012. in press.

11. Ellis J, Broom M, Jones S: Protein-RNA interactions: structural analysis
and functional classes. Proteins 2007, 66(4):903–911.

12. Jeong E, Chung I, Miyano S: A neural network method for
identification of RNA-interacting residues in protein. Genome Inform
2004, 15:105–116.

13. Jeong E, Miyano S: Aweighted profile based method for protein-RNA
interacting residue prediction. Trans on Comput Syst Biol IV 2006,
3939:123–139.

14. Jones S, Daley D, Luscombe N, Berman H, Thornton J: Protein-RNA
interactions: a structural analysis. Nucleic Acids Res 2001, 29(4):943–954.

15. Kim H, Jeong E, Lee S, Han K: Computational analysis of hydrogen
bonds in protein-RNA complexes for interaction patterns. FEBS Lett
2003, 552(2-3):231–239.

16. Treger M, Westhof E: Statistical analysis of atomic contacts at
RNA-protein interfaces. J Mol Recognit 2001, 14(4):199–214.

17. Chen Y, Lim C: Predicting RNA-binding sites from the protein
structure based on electrostatics, evolution and geometry. Nucleic
Acids Res 2008, 36(5):e29.

18. Cheng C, Su E, Hwang J, Sung T, Hsu W: Predicting RNA-binding sites
of proteins using support vector machines and evolutionary
information. BMC Bioinf 2008, 9(Suppl 12):S6.

19. Huang YF, Chiu LY, Huang CC, Huang CK: Predicting RNA-binding
residues from evolutionary information and sequence
conservation. BMC Genomics 2010, 11(Suppl 4):S2.

20. Kim O, Yura K, Go N: Amino acid residue doublet propensity in the
protein-RNA interface and its application to RNA interface
prediction. Nucleic Acids Res 2006, 34:6450–6460.

21. Kumar M, Gromiha M, Raghava G: Prediction of RNA binding sites in a
protein using SVM and PSSM profile. Proteins 2008, 71:
189–194.

22. Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L: Prediction of protein-RNA
binding sites by a random forest method with combined features.
Bioinformatics 2010, 26(13):1616–1622.

23. Ma X, Guo J, Wu J, Liu H, Yu J, Xie J, Sun X: Prediction of RNA-binding
residues in proteins from primary sequence using an enriched
random forest model with a novel hybrid feature. Proteins 2011,
79(4):1230–1239.

24. Maetschke S, Yuan Z: Exploiting structural and topological
information to improve prediction of RNA-protein binding sites.
BMC Bioinf 2009, 10:341.

25. Spriggs R, Murakami Y, Nakamura H, Jones S: Protein function
annotation from sequence: prediction of residues interacting with
RNA. Bioinformatics 2009, 25(12):1492–1497.

26. Terribilini M, Lee J, Yan C, Jernigan R, Honavar V, Dobbs D: Prediction of
RNA-binding sites in proteins from amino acid sequence. RNA 2006,
16(12):1450–1462.

27. Tong J, Jiang P, Lu Z: RISP: a web-based server for prediction of
RNA-binding sites in proteins. Comput Methods Programs Biomed 2008,
90(2):148–153.

28. Towfic F, Caragea C, Gemperline D, Dobbs D, Honavar V: Struct-NB:
predicting protein-RNA binding sites using structural features. Int J
Data Min Bioin 2008, 4:21–43.

29. Wang CC, Fang Y, Xiao J, Li M: Identification of RNA-binding sites in
proteins by integrating various sequence information. Amino Acids
2011, 40:239–248.

30. Wang L, Brown S: Prediction of RNA-binding residues in protein
sequences using support vector machines. In Proc of the 26th IEEE
EMBS Ann Int Conf; 2006:5830–5832.

31. Wang Y, Xue Z, Shen G, Xu J: PRINTR: prediction of RNA binding sites
in proteins using SVM and profiles. Amino Acids 2008, 35(2):295–302.

32. Chen W, Zhang SW, Cheng YM, Pan Q: Identification of protein-RNA
interaction sites using the information of spatial adjacent residues.
Proteome Sci 2011, 9(Suppl 1):S16.

http://www.biomedcentral.com/content/supplementary/1471-2105-13-89-S1.XLS


Walia et al. BMC Bioinformatics 2012, 13:89 Page 20 of 20
http://www.biomedcentral.com/1471-2105/13/89

33. Li Q, Cao Z, Liu H: Improve the prediction of RNA-Binding residues
using structural Neighbours. Protein Peptide Lett 2010, 17(3):287–296.

34. Zhang T, Zhang H, Chen K, Ruan J, Shen S, Kurgan L: Analysis and
prediction of RNA-Binding residues using sequence, evolutionary
conservation, and predicted secondary structure and solvent
accessibility. Curr Protein Pept Sc 2010, 11(7):609–628.

35. Mitchell TM:Machine Learning. New York: McGraw-Hill; 1997.
36. Caragea C, Sinapov J, Honavar V, Dobbs D: Assessing the performance

of macromolecular sequence classifiers. In Proc of the 7th IEEE Conf on
Bioinf Bioeng; 2007:320–326.

37. Allers J, Shamoo Y: Structure-based analysis of protein-RNA
interactions using the program ENTANGLE. J Mol Biol 2001, 311:75–86.

38. Jones DT: Protein secondary structure prediction based on
position-specific scoring matrices. J Mol Biol 1999, 292(2):195–202.

39. Pollastri G, Przybylski D, Rost B, Baldi P: Improving the prediction of
protein secondary structure in three and eight classes using
recurrent neural networks and profiles. Proteins 2002, 47(2):228–235.

40. Garg A, Kaur H, Raghava GPS: Real value prediction of solvent
accessibility in proteins using multiple sequence alignment and
secondary structure. Proteins 2005, 61(2):318–324.

41. Nguyen MN, Rajapakse JC: Two-stage support vector regression
approach for predicting accessible surface areas of amino acids.
Proteins 2006, 63(3):542–550.

42. Jeong JC, Lin X, Chen X: On Position-Specific scoring matrix for
protein function prediction. IEEE-ACM T Comput Bi 2011, 8(2):308–315.

43. Jones DT, Ward JJ: Prediction of disordered regions in proteins from
position specific score matrices. Proteins 2003, 53(S6):573–578.

44. Ahmad S, Sarai A: PSSM-based prediction of DNA binding sites in
proteins. BMC Bioinf 2005, 6:33.

45. Wang L, Brown S: BindN: a web-based tool for efficient prediction of
DNA and RNA binding sites in amino acid sequences. Nucleic Acids
Res 2006, 34Web Server:W243–W248.

46. Wang L, Huang C, Yang M, Yang J: BindN+ for accurate prediction of
DNA and RNA-binding residues from protein sequence features.
BMC Syst Biol 2010, 4(Suppl 1):S3.

47. Terribilini M, Sander J, Lee J, Zaback P, Jernigan R, Honavar V, Dobbs D:
RNABindR: a server for analyzing and predicting RNA-binding sites
in proteins. Nucleic Acids Res 2007, 35(WebServerissue):W578–W584.

48. Carson MB, Langlois R, Lu H:NAPS: a residue-level nucleic acid-binding
prediction server. Nucleic Acids Res 2010, 38(Suppl 2):W431–W435.

49. Shazman S, Mandel-Gutfreund Y: Classifying RNA-binding proteins
based on electrostatic properties. PLoS Comput Biol 2008,
4(5):e1000146.

50. Shazman S, Elber G, Mandel-Gutfreund Y: From face to interface
recognition: a differential geometric approach to distinguish DNA
from RNA binding surfaces. Nucleic Acids Res 2011, 39(17):7390–7399.

51. Perez-Cano L, Fernandez-Recio J: Optimal protein-RNA area, OPRA: A
propensity-based method to identify RNA-binding sites on
proteins. Proteins 2010, 78:25–35.

52. Zhao H, Yang Y, Zhou Y: Structure-based prediction of RNA-binding
domains and RNA-binding sites and application to structural
genomics targets. Nucleic Acids Res 2011, 39(8):3017–3025.

53. Breiman L: Random Forests.Mach Learn 2001, 45:5–32.
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