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Abstract
We study screen conformal Einstein half lightlike submanifoldsM of a Lorentzian
space form M̃(c) of constant curvature c admitting a semi-symmetric non-metric
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is a characterization theorem for such a half lightlike submanifold.
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1 Introduction
The theory of lightlike submanifolds is used inmathematical physics, in particular, in gen-
eral relativity as lightlike submanifolds produce models of different types of horizons [,
]. Lightlike submanifolds are also studied in the theory of electromagnetism []. Thus,
large number of applications but limited information available, motivated us to do the
research on this subject matter. As for any semi-Riemannian manifold, there is a natural
existence of lightlike subspaces, Duggal and Bejancu published their work [] on the gen-
eral theory of lightlike submanifolds to fill a gap in the study of submanifolds. Since then,
there has been very active study on lightlike geometry of submanifolds (see up-to date
results in two books [, ]). The class of lightlike submanifolds of codimension  is com-
posed of two classes by virtue of the rank of its radical distribution, named by half lightlike
and coisotropic submanifolds [, ]. Half lightlike submanifold is a special case of general
r-lightlike submanifold such that r = , and its geometry is more general form than that
of coisotropic submanifold or lightlike hypersurface. Much of the works on half lightlike
submanifolds will be immediately generalized in a formal way to general r-lightlike sub-
manifolds of arbitrary codimension n and arbitrary rank r. For this reason, we study half
lightlike submanifoldM of a semi-Riemannian manifold M̃.
Ageshe and Chafle [] introduced the notion of a semi-symmetric non-metric connec-

tion on a Riemannian manifold. Although now, we have lightlike version of a large variety
of Riemannian submanifolds, the theory of lightlike submanifolds of semi-Riemannian
manifolds, equipped with semi-symmetric metric connections, has not been introduced
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until quite recently. Yasar et al. [] studied lightlike hypersurfaces in a semi-Riemannian
manifold admitting a semi-symmetric non-metric connection. Recently, Jin and Lee []
and Jin [–] studied half lightlike and r-lightlike submanifolds of a semi-Riemannian
manifold with a semi-symmetric non-metric connection.
In this paper, we study the geometry of screen conformal Einstein half lightlike sub-

manifolds M of a Lorentzian space form M̃(c) of constant curvature c admitting a semi-
symmetric non-metric connection subject to the conditions; () the structure vector field
of M̃ is tangent toM, and () the canonical normal vector field ofM is conformal Killing.
The reason for this geometric restriction on M is due to the fact that such a class admits
an integrable screen distribution and a symmetric Ricci tensor of M. We prove a charac-
terization theorem for such a half lightlike submanifold.

2 Semi-symmetric non-metric connection
Let (M̃, g̃) be a semi-Riemannian manifold. A connection ∇̃ on M̃ is called a semi-
symmetric non-metric connection [] if ∇̃ and its torsion tensor T̃ satisfy

(∇̃Xg̃)(Y ,Z) = –π (Y )̃g(X,Z) – π (Z)̃g(X,Y ), (.)

T̃(X,Y ) = π (Y )X – π (X)Y , (.)

for any vector fieldsX, Y and Z on M̃, where π is a -form associated with a non-vanishing
vector field ζ , which is called the structure vector field of M̃, by

π (X) = g̃(X, ζ ). (.)

In the entire discussion of this article, we shall assume the structure vector field ζ to be
unit spacelike, unless otherwise specified.
A submanifold (M, g) of codimension  is called half lightlike submanifold if the radi-

cal distribution Rad(TM) = TM ∩ TM⊥ is a subbundle of the tangent bundle TM and the
normal bundle TM⊥ of rank . Therefore, there exist complementary non-degenerate dis-
tributions S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, which are called
the screen and co-screen distributions ofM, respectively, such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S
(
TM⊥)

, (.)

where ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike sub-
manifold by M = (M, g,S(TM)). Denote by F(M) the algebra of smooth functions on M
and by �(E) the F(M) module of smooth sections of a vector bundle E over M. Choose
L ∈ �(S(TM⊥)) as a unit vector field with g̃(L,L) = ±. We may assume that L to be unit
spacelike vector field without loss of generality, i.e., g̃(L,L) = . We call L the canonical
normal vector field of M. Consider the orthogonal complementary distribution S(TM)⊥

to S(TM) in TM̃. Certainly, Rad(TM) and S(TM⊥) are subbundles of S(TM)⊥. As S(TM⊥)
is non-degenerate, we have

S(TM)⊥ = S
(
TM⊥) ⊕orth S

(
TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. For any null sec-
tion ξ of Rad(TM) on a coordinate neighborhood U ⊂ M, there exists a uniquely defined
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lightlike vector bundle ltr(TM) and a null vector field N of ltr(TM)|U satisfying

g̃(ξ ,N) = , g̃(N ,N) = g̃(N ,X) = g̃(N ,L) = , ∀X ∈ �
(
S(TM)

)
.

We callN , ltr(TM) and tr(TM) = S(TM⊥)⊕orth ltr(TM) the lightlike transversal vector field,
lightlike transversal vector bundle and transversal vector bundle of M with respect to the
screen distribution, respectively []. Then TM̃ is decomposed as follows:

TM̃ = TM ⊕ tr(TM) =
{
Rad(TM)⊕ tr(TM)

} ⊕orth S(TM)

=
{
Rad(TM)⊕ ltr(TM)

} ⊕orth S(TM)⊕orth S
(
TM⊥)

. (.)

Given a screen distribution S(TM), there exists a unique complementary vector bundle
tr(TM) to TM in TM̃|M . Using (.) and (.), there exists a local quasi-orthonormal frame
field of M̃ alongM given by

F = {ξ ,N ,L,Wa}, a ∈ {, . . . ,m}, (.)

where {Wa} is an orthonormal frame field of S(TM)|U .
In the entire discussion of this article, we shall assume that ζ is tangent to M, and we

take X,Y ,Z,W ∈ �(TM), unless otherwise specified. Let P be the projection morphism of
TM on S(TM) with respect to the first decomposition of (.). Then the local Gauss and
Weingartan formulas ofM and S(TM) are given respectively by

∇̃XY = ∇XY + B(X,Y )N +D(X,Y )L, (.)

∇̃XN = –ANX + τ (X)N + ρ(X)L, (.)

∇̃XL = –ALX + φ(X)N , (.)

∇XPY = ∇∗
XPY +C(X,PY )ξ , (.)

∇Xξ = –A∗
ξX – τ (X)ξ , (.)

where ∇ and ∇∗ are induced linear connections on TM and S(TM), respectively, B and D
are called the local lightlike, and screen second fundamental forms ofM, respectively, C is
called the local second fundamental form on S(TM), AN , A∗

ξ and AL are called the shape
operators, and τ , ρ and φ are -forms on TM. We say that

h(X,Y ) = B(X,Y )N +D(X,Y )L

is the second fundamental form tensor ofM. Using (.), (.) and (.), we have

(∇Xg)(Y ,Z) = B(X,Y )η(Z) + B(X,Z)η(Y ) – π (Y )g(X,Z) – π (Z)g(X,Y ), (.)

T(X,Y ) = π (Y )X – π (X)Y , (.)

and B and D are symmetric on TM, where T is the torsion tensor with respect to the
induced connection ∇ , and η is a -form on TM such that

η(X) = g̃(X,N).

http://www.journalofinequalitiesandapplications.com/content/2013/1/403
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From the facts B(X,Y ) = g̃(∇̃XY , ξ ) and D(X,Y ) = g̃(∇̃XY ,L), we know that B and D are
independent of the choice of the screen distribution S(TM) and satisfy

B(X, ξ ) = , D(X, ξ ) = –φ(X). (.)

In case ζ is tangent to M, the above three local second fundamental forms on M and
S(TM) are related to their shape operators by

g
(
A∗

ξX,Y
)
= B(X,Y ), g̃

(
A∗

ξX,N
)
= , (.)

g(ALX,Y ) =D(X,Y ) + φ(X)η(Y ), g̃(ALX,N) = ρ(X), (.)

g(ANX,PY ) = C(X,PY ) – fg(X,PY ) – η(X)π (PY ), g̃(ANX,N) = –f η(X), (.)

where f is the smooth function given by f = π (N). From (.) and (.), we show that A∗
ξ

and AN are S(TM)-valued, and Aξ is self-adjoint operator and satisfies

A∗
ξ ξ = , (.)

that is, ξ is an eigenvector field of A∗
ξ corresponding to the eigenvalue .

In general, the screen distribution S(TM) is not necessarily integrable. The following
result gives equivalent conditions for the integrability of S(TM).

Theorem . [] Let M be a half lightlike submanifold of a semi-Riemannian manifold
M̃ admitting a semi-symmetric non-metric connection. Then the following assertions are
equivalent:
() The screen distribution S(TM) is an integrable distribution.
() C is symmetric, i.e., C(X,Y ) = C(Y ,X) for all X,Y ∈ �(S(TM)).
() The shape operator AN is a self-adjoint with respect to g , i.e.,

g(ANX,Y ) = g(X,ANY ), ∀X,Y ∈ �
(
S(TM)

)
.

Just as in the well-known case of locally product Riemannian or semi-Riemannian man-
ifolds [–, ], if S(TM) is an integrable distribution, thenM is locally a product manifold
M = C×M∗, where C is a null curve tangent toRad(TM), andM∗ is a leaf of the integrable
screen distribution S(TM).

3 Structure equations
Denote by R̃, R and R∗ the curvature tensors of the semi-symmetric non-metric con-
nection ∇̃ on M̃, the induced connection ∇ on M and the induced connection ∇∗ on
S(TM), respectively. Using the Gauss-Weingarten formulas for M and S(TM), we obtain
the Gauss-Codazzi equations forM and S(TM):

R̃(X,Y )Z = R(X,Y )Z + B(X,Z)ANY – B(Y ,Z)ANX

+D(X,Z)ALY –D(Y ,Z)ALX

+
{
(∇XB)(Y ,Z) – (∇YB)(X,Z)

http://www.journalofinequalitiesandapplications.com/content/2013/1/403
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+ B(Y ,Z)
[
τ (X) – π (X)

]
– B(X,Z)

[
τ (Y ) – π (Y )

]
+D(Y ,Z)φ(X) –D(X,Z)φ(Y )

}
N

+
{
(∇XD)(Y ,Z) – (∇YD)(X,Z) + B(Y ,Z)ρ(X)

– B(X,Z)ρ(Y ) –D(Y ,Z)π (X) +D(X,Z)π (Y )
}
L, (.)

R̃(X,Y )N = –∇X(ANY ) +∇Y (ANX) +AN [X,Y ]

+ τ (X)ANY – τ (Y )ANX + ρ(X)ALY – ρ(Y )ALX

+
{
B(Y ,ANX) – B(X,ANY ) + dτ (X,Y )

+ φ(X)ρ(Y ) – φ(Y )ρ(X)
}
N

+
{
D(Y ,ANX) –D(X,ANY ) + dρ(X,Y )

+ ρ(X)τ (Y ) – ρ(Y )τ (X)
}
L, (.)

R̃(X,Y )L = –∇X(ALY ) +∇Y (ALX) +AL [X,Y ]

+ φ(X)ANY – φ(Y )ANX

+
{
B(Y ,ALX) – B(X,ALY ) + dφ(X,Y )

+ τ (X)φ(Y ) – τ (Y )φ(X)
}
N

+
{
D(Y ,ALX) –D(X,ALY ) + ρ(X)φ(Y ) – ρ(Y )φ(X)

}
L, (.)

R(X,Y )PZ = R∗(X,Y )PZ +C(X,PZ)A∗
ξY –C(Y ,PZ)AξX

+
{
(∇XC)(Y ,PZ) – (∇YC)(X,PZ)

+C(X,PZ)
[
τ (Y ) + π (Y )

]
–C(Y ,PZ)

[
τ (X) + π (X)

]}
ξ , (.)

R(X,Y )ξ = –∇∗
X
(
A∗

ξY
)
+∇∗

Y
(
A∗

ξX
)
+A∗

ξ [X,Y ] + τ (Y )A∗
ξX

– τ (X)A∗
ξY +

{
C

(
Y ,A∗

ξX
)
–C

(
X,A∗

ξY
)
– dτ (X,Y )

}
ξ . (.)

A semi-Riemannian manifold M̃ of constant curvature c is called a semi-Riemannian
space form and denote it by M̃(c). The curvature tensor R̃ of M̃(c) is given by

R̃(X,Y )Z = c
{̃
g(Y ,Z)X – g̃(X,Z)Y

}
, ∀X,Y ,Z ∈ �(TM̃). (.)

Taking the scalar product with ξ and L to (.), we obtain g̃ (̃R(X,Y )Z, ξ ) =  and
g̃ (̃R(X,Y )Z,L) =  for any X,Y ,Z ∈ �(TM). From these equations and (.), we get

R̃(X,Y )Z = R(X,Y )Z + B(X,Z)ANY – B(Y ,Z)ANX

+D(X,Z)ALY –D(Y ,Z)ALX, ∀X,Y ,Z ∈ �(TM). (.)

4 Screen conformal half lightlike submanifolds
Definition  A half lightlike submanifoldM of a semi-Riemannian manifold M̃ is said to
be irrotational [] if ∇̃Xξ ∈ �(TM) for any X ∈ �(TM).
From (.) and (.), we show that the above definition is equivalent to

D(X, ξ ) =  = φ(X), ∀X ∈ �(TM).

http://www.journalofinequalitiesandapplications.com/content/2013/1/403
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Theorem . Let M be an irrotational half lightlike submanifold of a semi-Riemannian
manifold M̃ admitting a semi-symmetric non-metric connection such that ζ is tangent toM.
Then ζ is conjugate to any vector field X on M, i.e., ζ satisfies h(X, ζ ) = .

Proof Taking the scalar product with ξ to (.) andN to (.) such that Z = ξ by turns and
using (.), (.) and the fact that φ = , we obtain

g̃
(̃
R(X,Y )ξ ,N

)
= B(X,ANY ) – B(Y ,ANX) – dτ (X,Y )

= C
(
Y ,A∗

ξX
)
–C

(
X,A∗

ξY
)
– dτ (X,Y ).

From these two representations, we obtain

B(X,ANY ) – B(Y ,ANX) = C
(
Y ,A∗

ξX
)
–C

(
X,A∗

ξY
)
.

Using (.), (.) and the fact that A∗
ξ is self-adjoint, we have

π
(
A∗

ξX
)
η(Y ) = π

(
A∗

ξY
)
η(X).

Replacing Y by ξ to this equation and using (.), we have

B(X, ζ ) = π
(
A∗

ξX
)
= . (.)

As D is symmetric and φ = , we show that AL is self-adjoint. Taking the scalar product
with L to (.) and N to (.) with φ =  by turns, we obtain

g̃
(̃
R(X,Y )N ,L

)
= g̃

(∇X(ALY ) –∇Y (ALX) –AL [X,Y ],N
)

= D(Y ,ANX) –D(X,ANY ) + dρ(X,Y ) + ρ(X)τ (Y ) – ρ(Y )τ (X).

Using these two representations and (.), we show that

D(Y ,ANX) –D(X,ANY ) + dρ(X,Y ) + ρ(X)τ (Y ) – ρ(Y )τ (X)

= g̃
(∇X(ALY ),N

)
– g̃

(∇Y (ALX),N
)
– ρ

(
[X,Y ]

)
.

Applying ∇̃X to g̃(ALY ,N) = ρ(Y ) and using (.), (.) and (.), we have

g̃
(∇X(ALY ),N

)
= X

(
ρ(Y )

)
+ π (ALY )η(X) + fg(X,ALY )

+ g(ALY ,ANX) – τ (X)ρ(Y ).

Substituting this equation into the last equation and using (.), we have

π (ALX)η(Y ) = π (ALY )η(X).

Replacing Y by ξ to this equation, we have

π (ALX) = π (ALξ )η(X).

http://www.journalofinequalitiesandapplications.com/content/2013/1/403
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Taking X = ξ and Y = ζ to (.), we get π (ALξ ) = . Therefore, we have

D(X, ζ ) = π (ALX) = . (.)

From (.) and (.), we show that h(X, ζ ) =  for all X ∈ �(TM). �

Definition  A half lightlike submanifoldM of a semi-Riemannian manifold M̃ is screen
conformal [, , ] if the second fundamental forms B and C satisfy

C(X,PY ) = ϕB(X,Y ), ∀X,Y ∈ �(TM), (.)

where ϕ is a non-vanishing function on a coordinate neighborhood U inM.

Theorem . Let M be an irrotational half lightlike submanifold of a semi-Riemannian
space form M̃(c) admitting a semi-symmetric non-metric connection such that ζ is tangent
to M. If M is screen conformal, then c = .

Proof Substituting (.) into (.) and using the fact that φ = , we have

(∇XB)(Y ,Z) – (∇YB)(X,Z)

= B(Y ,Z)
{
π (X) – τ (X)

}
– B(X,Z)

{
π (Y ) – τ (Y )

}
. (.)

Taking the scalar product with N to (.) and (.) by turns and using (.), (.) and
(.), we have the following two forms of g̃(R(X,Y )PZ,N):

{
cg(Y ,PZ) – fB(Y ,PZ)

}
η(X) –

{
cg(X,PZ) – fB(X,PZ)

}
η(Y )

+ ρ(X)D(Y ,PZ) – ρ(Y )D(X,PZ)

= (∇XC)(Y ,PZ) – (∇YC)(X,PZ) +C(X,PZ)
{
π (Y ) + τ (Y )

}
–C(Y ,PZ)

{
π (X) + τ (X)

}
. (.)

Applying ∇X to C(Y ,PZ) = ϕB(Y ,PZ), we have

(∇XC)(Y ,PZ) = X[ϕ]B(Y ,PZ) + ϕ(∇XB)(Y ,PZ).

Substituting this into (.) and using (.), we obtain

c
{
g(Y ,PZ)η(X) – g(X,PZ)η(Y )

}
=

{
X[ϕ] – ϕτ (X) + f η(X)

}
B(Y ,PZ) – ρ(X)D(Y ,PZ)

–
{
Y [ϕ] – ϕτ (Y ) + f η(Y )

}
B(X,PZ) + ρ(Y )D(X,PZ). (.)

Replacing Z by ζ to (.) and using (.) and (.), we have c = . �

Remark . If M is screen conformal, then, from (.), we show that C is symmetric on
S(TM). By Theorem ., S(TM) is integrable andM is locally a product manifold C ×M∗,
where C is a null curve tangent to Rad(TM) andM∗ is a leaf of S(TM).

http://www.journalofinequalitiesandapplications.com/content/2013/1/403
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5 Main theorem
Let R̃ic be the Ricci curvature tensor of M̃ and R(,) the induced Ricci type tensor on M
given respectively by

R̃ic(X,Y ) = trace
{
Z → R̃(Z,X)Y

}
, ∀X,Y ∈ �(TM̃),

R(,)(X,Y ) = trace
{
Z → R(Z,X)Y

}
, ∀X,Y ∈ �(TM).

Using the quasi-orthonormal frame field (.) on M̃, we show [] that

R(,)(X,Y ) = R̃ic(X,Y ) + B(X,Y ) trAN +D(X,Y ) trAL

– g
(
ANX,A

∗
ξY

)
– g(ALX,ALY ) + ρ(X)φ(Y )

– g̃
(̃
R(ξ ,Y )X,N

)
– g̃

(̃
R(L,X)Y ,L

)
,

where trAN is the trace of AN . From this, we show that R(,) is not symmetric. The tensor
field R(,) is called the induced Ricci curvature tensor [, ] of M, denoted by Ric, if it is
symmetric.M is called Ricci flat if its induced Ricci tensor vanishes onM. It is known []
that R(,) is symmetric if and only if the -form τ is closed, i.e., dτ = .

Remark . If the induced Ricci type tensor R(,) is symmetric, then there exists a null
pair {ξ ,N} such that the corresponding -form τ satisfies τ =  [, ], which is called a
canonical null pair of M. Although S(TM) is not unique, it is canonically isomorphic to
the factor vector bundle S(TM)� = TM/Rad(TM) []. This implies that all screen distri-
bution are mutually isomorphic. For this reason, in case dτ = , we consider only lightlike
hypersurfacesM endow with the canonical null pair such that τ = .

We say thatM is an Einstein manifold if the Ricci tensor ofM satisfies

Ric = κg.

It is well known that if dimM > , then κ is a constant.
Let dimM̃ =m + . In case M̃ is a semi-Riemannian space form M̃(c), we have

R(,)(X,Y ) =mcg(X,Y ) + B(X,Y ) trAN +D(X,Y ) trAL

– g
(
ANX,A

∗
ξY

)
– g(ALX,ALY ) + ρ(X)φ(Y ). (.)

Due to (.) and (.), we show that M is screen conformal if and only if the shape
operators AN and A∗

ξ are related by

ANX = ϕA∗
ξX – fX – η(X)ζ . (.)

Assume that φ = . As D is symmetric, AL is self-adjoint. Using this, (.) and (.), we
show that R(,) is symmetric. Thus, we can take τ = . As τ = , (.) reduce to

(∇XB)(Y ,Z) – (∇YB)(X,Z) = π (X)B(Y ,Z) – π (Y )B(X,Z). (.)
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Definition  A vector field X on M̃ is said to be conformal Killing [, , ] if L̃Xg̃ = –δ̃g
for a scalar function δ, where L̃ denotes the Lie derivative on M̃, that is,

(L̃X g̃)(Y ,Z) = X
(̃
g(Y ,Z)

)
– g̃

(
[X,Y ],Z

)
– g̃

(
Y , [X,Z]

)
, ∀Y ,Z ∈ �(TM̃).

In particular, if δ = , then X is called a Killing vector field on M̃.

Theorem . Let M be a half lightlike submanifold of a semi-Riemannian manifold M̃
admitting a semi-symmetric non-metric connection. If the canonical normal vector field L
is a conformal Killing one, then L is a Killing vector field.

Proof Using (.) and (.), for any X,Y ,Z ∈ �(TM̃), we have

(L̃X g̃)(Y ,Z) = g̃(∇̃YX,Z) + g̃(Y , ∇̃ZX) – π (X )̃g(Y ,Z).

As L is a conformal Killing vector field, we have g̃(∇̃XL,Y ) = –D(X,Y ) by (.) and (.).
This implies (L̃L g̃)(X,Y ) = –D(X,Y ) for any X,Y ∈ �(TM). Thus, we have

D(X,Y ) = δg(X,Y ), ∀X,Y ∈ �(TM). (.)

Taking X = Y = ζ and using (.), we get δ = . Thus, L is a Killing vector field. �

Remark . Cǎlin [] proved the following result. For any lightlike submanifolds M of
indefinite almost contactmetricmanifolds M̃, if ζ is tangent toM, then it belongs to S(TM).
Duggal and Sahin also proved this result (see pp.- of []). After Cǎlin’s work, many
earlier works [–], which were written on lightlike submanifolds of indefinite almost
contactmetricmanifolds or lightlike submanifolds of semi-Riemannianmanifolds, admit-
ting semi-symmetric non-metric connections, obtained their results by using the Cǎlin’s
result described in above. However, Jin [, ] proved that Cǎlin’s result is not true for
any lightlike submanifolds M of a semi-Riemannian space form M̃(c), admitting a semi-
symmetric non-metric connection.

For the rest of this section, wemay assume that the structure vector field ζ of M̃ belongs
to the screen distribution S(TM). In this case, we show that f = .

Theorem . Let M be a screen conformal Einstein half lightlike submanifold of a
Lorentzian space form M̃(c), admitting a semi-symmetric non-metric connection such that
ζ belongs to S(TM). If the canonical normal vector field L is conformal Killing, then M is
Ricci flat. Moreover, if the mean curvature of M is constant, then M is locally a product
manifold C × C × Mm–, where C and C are null and non-null curves, and Mm– is an
(m – )-dimensional Euclidean space.

Proof As L is conformal Killing vector field, D = AL =  by (.) and Theorem .. There-
fore, from (.), we show that φ = , i.e.,M is irrotational. By Theorem ., we also have
c = . Using (.), (.) and (.) with f = , from (.), we have

g
(
A∗

ξX,A
∗
ξY

)
– αg

(
A∗

ξX,Y
)
+ ϕ–κg(X,Y ) =  (.)
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due to c = , where α = trA∗
ξ . As g(A∗

ξ ζ ,X) = B(ζ ,X) =  for all X ∈ �(TM) and S(TM) is
non-degenerate, we show that

A∗
ξ ζ = . (.)

Taking X = Y = ζ to (.) and using (.), we have ϕ–κ = . Thus, (.) reduce to

g
(
A∗

ξX,A
∗
ξY

)
– αg

(
A∗

ξX,Y
)
= , κ = . (.)

From the second equation of (.), we show thatM is Ricci flat.
AsM is screen conformal and M̃ is Lorentzian, S(TM) is an integrable Riemannian vec-

tor bundle. Since ξ is an eigenvector field of A∗
ξ , corresponding to the eigenvalue  due

to (.), and A∗
ξ is S(TM)-valued real self-adjoint operator, A∗

ξ has m real orthonormal
eigenvector fields in S(TM) and is diagonalizable. Consider a frame field of eigenvectors
{ξ ,E, . . . ,Em} of A∗

ξ such that {E, . . . ,Em} is an orthonormal frame field of S(TM) and
A∗

ξEi = λiEi. Put X = Y = Ei in (.), each eigenvalue λi is a solution of

x – αx = .

As this equation has at most two distinct solutions  and α, there exists p ∈ {, , . . . ,m}
such that λ = · · · = λp =  and λp+ = · · · = λm = α, by renumbering if necessary. As trA∗

ξ =
p + (m – p)α, we have

α = trA∗
ξ = (m – p)α.

So p =m – , i.e.,

A∗
ξ =

⎛
⎜⎜⎜⎜⎝


. . .


α

⎞
⎟⎟⎟⎟⎠ .

Consider two distributions Do and Dα on S(TM) given by

Do =
{
X ∈ �

(
S(TM)

) | A∗
ξX =  and X �= 

}
,

Dα =
{
U ∈ �

(
S(TM)

) | A∗
ξU = αU and U �= 

}
.

Clearly we show that Do ∩ Dα = {} as α �= . In the sequel, we take X,Y ∈ �(Do),
U ,V ∈ �(Dα) and Z,W ∈ �(S(TM)). Since X and U are eigenvector fields of the real
self-adjoint operator A∗

ξ , corresponding to the different eigenvalues  and α respectively,
we have g(X,U) = . From this and the fact that B(X,U) = g(A∗

ξX,U) = , we show that
Dα ⊥g Do and Dα ⊥B Do, respectively. Since {Ei}≤i≤m– and {Em} are vector fields of Do

and Dα , respectively, and Do and Dα are mutually orthogonal, we show that Do and Dα

are non-degenerate distributions of rank (m–) and rank , respectively. Thus, the screen
distribution S(TM) is decomposed as S(TM) =Dα ⊕orth Do.
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From (.), we getA∗
ξ (A∗

α –αP) = . LetW ∈ ImA∗
ξ . Then there existsZ ∈ �(S(TM)) such

that W = A∗
ξZ. Then (A∗

ξ – αP)W =  and W ∈ �(Dα). Thus, ImA∗
ξ ⊂ �(Dα). By duality,

we have Im(A∗
ξ – αP) ⊂ �(Do).

Applying ∇X to B(Y ,U) =  and using (.) and A∗
ξY = , we obtain

(∇XB)(Y ,U) = –g
(
A∗

ξ∇XY ,U
)
.

Substituting this into (.) and using (.) and A∗
ξX = A∗

ξY = , we get

g
(
A∗

ξ [X,Y ],U
)
= .

As ImA∗
ξ ⊂ �(Dα) and Dα is non-degenerate, we get A∗

ξ [X,Y ] = . This implies that
[X,Y ] ∈ �(Do). Thus, Do is an integrable distribution.
Applying ∇U to B(X,Y ) =  and ∇X to B(U ,Y ) = , we have

(∇UB)(X,Y ) = , (∇XB)(U ,Y ) = –αg(∇XY ,U).

Substituting this two equations into (.), we have αg(∇XY ,U) = . As

g
(
A∗

ξ∇XY ,U
)
= B(∇XY ,U) = αg(∇XY ,U) = 

and ImA∗
ξ ⊂ �(Dα) andDα is non-degenerate, we getA∗

ξ∇XY = . This implies that∇XY ∈
�(Do). Thus, Do is an auto-parallel distribution on S(TM).
As A∗

ξ ζ = , ζ belongs to Do. Thus, π (U) =  for any U ∈ �(Dα). Applying ∇X to
g(U ,Y ) =  and using (.) and the fact that Do is auto-parallel, we get g(∇XU ,Y ) = .
This implies that ∇XU ∈ �(Dα).
Applying ∇U to B(V ,X) =  and using A∗

ξX = , we obtain

(∇UB)(V ,X) = –αg(V ,∇UX).

Substituting this into (.) and using the fact that Do ⊥B Dα , we get

g(V ,∇UX) = g(U ,∇VX).

Applying ∇U to g(V ,X) =  and using (.), we get

g(∇UV ,X) = π (X)g(U ,V ) – g(V ,∇VX).

Taking the skew-symmetric part of this and using (.), we obtain

g
(
[U ,V ],X

)
= .

This implies that [U ,V ] ∈ �(Dα) and Dα is an integrable distribution.
Now we assume that the mean curvature H = 

m+ trB = 
m+ trA

∗
ξ of M is a constant.

As trA∗
ξ = α, we see that α is a constant. Applying ∇X to B(U ,V ) = αg(U ,V ) and ∇U
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to B(X,V ) =  by turns and using the facts that ∇XU ∈ �(TM), Do ⊥g Dα , Do ⊥B Dα and
B(X,∇UV ) = g(A∗

ξX,∇UV ) = , we have

(∇XB)(U ,V ) = , (∇UB)(X,V ) = –αg(∇UX,V ).

Substituting these two equations into (.) and using Do ⊥B Dα , we have

g(∇UX,V ) = π (X)g(U ,V ).

Applying ∇U to g(X,V ) =  and using (.), we obtain

g(X,∇UV ) = π (X)g(U ,V ) – g(∇UX,V ) = .

Thus, Dα is also an integrable and auto-parallel distribution.
Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) = Dα ⊕orth Do, where

Dα andDo are auto-parallel distributions ofM∗, by the decomposition of the theoremof de
Rham [], we haveM∗ = C×Mm–, where C is a leaf ofDα , andMm– is a totally geodesic
leaf of Do. Consider the frame field of eigenvectors {ξ ,E, . . . ,Em} of A∗

ξ such that {Ei}i is
an orthonormal frame field of S(TM), then B(Ei,Ej) = C(Ei,Ej) =  for  ≤ i < j ≤ m and
B(Ei,Ei) = C(Ei,Ei) =  for  ≤ i ≤ m – . From (.) and (.), we have g̃ (̃R(Ei,Ej)Ej,Ei) =
g(R∗(Ei,Ej)Ej,Ei) = . Thus, the sectional curvature K of the leafMm– of Do is given by

K(Ei,Ej) =
g(R∗(Ei,Ej)Ej,Ei)

g(Ei,Ei)g(Ej,Ej) – g(Ei,Ej)
= .

Thus,M is a local product C ×C ×Mm–, where C is a null curve, C is a non-null curve,
andMm– is an (m – )-dimensional Euclidean space. �
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