CORE
provided by Crossref

Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection

Dae Ho Jin*
Dedicated to Professor Hari M Srivastava

"Correspondence:
jindh@dongguk.ac.kr
Department of Mathematics, Dongguk University, Gyeongju, 780-714, Republic of Korea

Abstract

We study screen conformal Einstein half lightlike submanifolds M of a Lorentzian space form $\widetilde{M}(c)$ of constant curvature c admitting a semi-symmetric non-metric connection subject to the conditions; (1) the structure vector field of \widetilde{M} is tangent to M, and (2) the canonical normal vector field of M is conformal Killing. The main result is a characterization theorem for such a half lightlike submanifold.

MSC: 53C25; 53C40; 53C50
Keywords: semi-symmetric non-metric connection; screen conformal; conformal Killing distribution; half lightlike submanifold

1 Introduction

The theory of lightlike submanifolds is used in mathematical physics, in particular, in general relativity as lightlike submanifolds produce models of different types of horizons [1, 2]. Lightlike submanifolds are also studied in the theory of electromagnetism [3]. Thus, large number of applications but limited information available, motivated us to do the research on this subject matter. As for any semi-Riemannian manifold, there is a natural existence of lightlike subspaces, Duggal and Bejancu published their work [3] on the general theory of lightlike submanifolds to fill a gap in the study of submanifolds. Since then, there has been very active study on lightlike geometry of submanifolds (see up-to date results in two books $[4,5]$). The class of lightlike submanifolds of codimension 2 is composed of two classes by virtue of the rank of its radical distribution, named by half lightlike and coisotropic submanifolds $[6,7]$. Half lightlike submanifold is a special case of general r-lightlike submanifold such that $r=1$, and its geometry is more general form than that of coisotropic submanifold or lightlike hypersurface. Much of the works on half lightlike submanifolds will be immediately generalized in a formal way to general r-lightlike submanifolds of arbitrary codimension n and arbitrary rank r. For this reason, we study half lightlike submanifold M of a semi-Riemannian manifold \widetilde{M}.

Ageshe and Chafle [8] introduced the notion of a semi-symmetric non-metric connection on a Riemannian manifold. Although now, we have lightlike version of a large variety of Riemannian submanifolds, the theory of lightlike submanifolds of semi-Riemannian manifolds, equipped with semi-symmetric metric connections, has not been introduced

[^0]until quite recently. Yasar et al. [9] studied lightlike hypersurfaces in a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. Recently, Jin and Lee [10] and Jin [11-13] studied half lightlike and r-lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection.
In this paper, we study the geometry of screen conformal Einstein half lightlike submanifolds M of a Lorentzian space form $\widetilde{M}(c)$ of constant curvature c admitting a semisymmetric non-metric connection subject to the conditions; (1) the structure vector field of \widetilde{M} is tangent to M, and (2) the canonical normal vector field of M is conformal Killing. The reason for this geometric restriction on M is due to the fact that such a class admits an integrable screen distribution and a symmetric Ricci tensor of M. We prove a characterization theorem for such a half lightlike submanifold.

2 Semi-symmetric non-metric connection

Let $(\tilde{M}, \widetilde{g})$ be a semi-Riemannian manifold. A connection $\widetilde{\nabla}$ on \widetilde{M} is called a semisymmetric non-metric connection [8] if $\widetilde{\nabla}$ and its torsion tensor \widetilde{T} satisfy

$$
\begin{align*}
& \left(\widetilde{\nabla}_{X} \widetilde{g}\right)(Y, Z)=-\pi(Y) \widetilde{g}(X, Z)-\pi(Z) \widetilde{g}(X, Y), \tag{2.1}\\
& \widetilde{T}(X, Y)=\pi(Y) X-\pi(X) Y, \tag{2.2}
\end{align*}
$$

for any vector fields X, Y and Z on \widetilde{M}, where π is a 1-form associated with a non-vanishing vector field ζ, which is called the structure vector field of \widetilde{M}, by

$$
\begin{equation*}
\pi(X)=\widetilde{g}(X, \zeta) \tag{2.3}
\end{equation*}
$$

In the entire discussion of this article, we shall assume the structure vector field ζ to be unit spacelike, unless otherwise specified.
A submanifold (M, g) of codimension 2 is called half lightlike submanifold if the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ is a subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$ of rank 1. Therefore, there exist complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, which are called the screen and co-screen distributions of M, respectively, such that

$$
\begin{equation*}
T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M), \quad T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) \tag{2.4}
\end{equation*}
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Choose $L \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ as a unit vector field with $\widetilde{g}(L, L)= \pm 1$. We may assume that L to be unit spacelike vector field without loss of generality, i.e., $\widetilde{g}(L, L)=1$. We call L the canonical normal vector field of M. Consider the orthogonal complementary distribution $S(T M)^{\perp}$ to $S(T M)$ in $T \widetilde{M}$. Certainly, $\operatorname{Rad}(T M)$ and $S\left(T M^{\perp}\right)$ are subbundles of $S(T M)^{\perp}$. As $S\left(T M^{\perp}\right)$ is non-degenerate, we have

$$
S(T M)^{\perp}=S\left(T M^{\perp}\right) \oplus_{\text {orth }} S\left(T M^{\perp}\right)^{\perp}
$$

where $S\left(T M^{\perp}\right)^{\perp}$ is the orthogonal complementary to $S\left(T M^{\perp}\right)$ in $S(T M)^{\perp}$. For any null section ξ of $\operatorname{Rad}(T M)$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a uniquely defined
lightlike vector bundle $\operatorname{ltr}(T M)$ and a null vector field N of $\operatorname{ltr}(T M)_{\mid \mathcal{U}}$ satisfying

$$
\tilde{g}(\xi, N)=1, \quad \widetilde{g}(N, N)=\widetilde{g}(N, X)=\widetilde{g}(N, L)=0, \quad \forall X \in \Gamma(S(T M)) .
$$

We call $N, \operatorname{ltr}(T M)$ and $\operatorname{tr}(T M)=S\left(T M^{\perp}\right) \oplus_{\text {orth }} \operatorname{ltr}(T M)$ the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution, respectively [6]. Then $T \tilde{M}$ is decomposed as follows:

$$
\begin{align*}
T \widetilde{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) . \tag{2.5}
\end{align*}
$$

Given a screen distribution $S(T M)$, there exists a unique complementary vector bundle $\operatorname{tr}(T M)$ to $T M$ in $T \widetilde{M}_{\mid M}$. Using (2.4) and (2.5), there exists a local quasi-orthonormal frame field of \widetilde{M} along M given by

$$
\begin{equation*}
F=\left\{\xi, N, L, W_{a}\right\}, \quad a \in\{1, \ldots, m\}, \tag{2.6}
\end{equation*}
$$

where $\left\{W_{a}\right\}$ is an orthonormal frame field of $S(T M)_{\mid \mathcal{U}}$.
In the entire discussion of this article, we shall assume that ζ is tangent to M, and we take $X, Y, Z, W \in \Gamma(T M)$, unless otherwise specified. Let P be the projection morphism of $T M$ on $S(T M)$ with respect to the first decomposition of (2.4). Then the local Gauss and Weingartan formulas of M and $S(T M)$ are given respectively by

$$
\begin{align*}
& \widetilde{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N+D(X, Y) L, \tag{2.7}\\
& \widetilde{\nabla}_{X} N=-A_{N} X+\tau(X) N+\rho(X) L, \tag{2.8}\\
& \widetilde{\nabla}_{X} L=-A_{L} X+\phi(X) N, \tag{2.9}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi, \tag{2.10}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi, \tag{2.11}
\end{align*}
$$

where ∇ and ∇^{*} are induced linear connections on $T M$ and $S(T M)$, respectively, B and D are called the local lightlike, and screen second fundamental forms of M, respectively, C is called the local second fundamental form on $S(T M), A_{N}, A_{\xi}^{*}$ and A_{L} are called the shape operators, and τ, ρ and ϕ are 1-forms on TM. We say that

$$
h(X, Y)=B(X, Y) N+D(X, Y) L
$$

is the second fundamental form tensor of M. Using (2.1), (2.2) and (2.7), we have

$$
\begin{align*}
& \left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y)-\pi(Y) g(X, Z)-\pi(Z) g(X, Y), \tag{2.12}\\
& T(X, Y)=\pi(Y) X-\pi(X) Y \tag{2.13}
\end{align*}
$$

and B and D are symmetric on $T M$, where T is the torsion tensor with respect to the induced connection ∇, and η is a 1 -form on $T M$ such that

$$
\eta(X)=\widetilde{g}(X, N) .
$$

From the facts $B(X, Y)=\widetilde{g}\left(\widetilde{\nabla}_{X} Y, \xi\right)$ and $D(X, Y)=\widetilde{g}^{(}\left(\widetilde{\nabla}_{X} Y, L\right)$, we know that B and D are independent of the choice of the screen distribution $S(T M)$ and satisfy

$$
\begin{equation*}
B(X, \xi)=0, \quad D(X, \xi)=-\phi(X) . \tag{2.14}
\end{equation*}
$$

In case ζ is tangent to M, the above three local second fundamental forms on M and $S(T M)$ are related to their shape operators by

$$
\begin{align*}
& g\left(A_{\xi}^{*} X, Y\right)=B(X, Y), \quad \tilde{g}\left(A_{\xi}^{*} X, N\right)=0, \tag{2.15}\\
& g\left(A_{L} X, Y\right)=D(X, Y)+\phi(X) \eta(Y), \quad \tilde{g}\left(A_{L} X, N\right)=\rho(X), \tag{2.16}\\
& g\left(A_{N} X, P Y\right)=C(X, P Y)-f g(X, P Y)-\eta(X) \pi(P Y), \quad \tilde{g}\left(A_{N} X, N\right)=-f \eta(X), \tag{2.17}
\end{align*}
$$

where f is the smooth function given by $f=\pi(N)$. From (2.15) and (2.17), we show that A_{ξ}^{*} and A_{N} are $S(T M)$-valued, and A_{ξ} is self-adjoint operator and satisfies

$$
\begin{equation*}
A_{\xi}^{*} \xi=0, \tag{2.18}
\end{equation*}
$$

that is, ξ is an eigenvector field of A_{ξ}^{*} corresponding to the eigenvalue 0 .
In general, the screen distribution $S(T M)$ is not necessarily integrable. The following result gives equivalent conditions for the integrability of $S(T M)$.

Theorem 2.1 [10] Let M be a half lightlike submanifold of a semi-Riemannian manifold \tilde{M} admitting a semi-symmetric non-metric connection. Then the following assertions are equivalent:
(1) The screen distribution $S(T M)$ is an integrable distribution.
(2) C is symmetric, i.e., $C(X, Y)=C(Y, X)$ for all $X, Y \in \Gamma(S(T M))$.
(3) The shape operator A_{N} is a self-adjoint with respect to g, i.e.,

$$
g\left(A_{N} X, Y\right)=g\left(X, A_{N} Y\right), \quad \forall X, Y \in \Gamma(S(T M))
$$

Just as in the well-known case of locally product Riemannian or semi-Riemannian manifolds [2-4, 7], if $S(T M)$ is an integrable distribution, then M is locally a product manifold $M=\mathcal{C}_{1} \times M^{*}$, where \mathcal{C}_{1} is a null curve tangent to $\operatorname{Rad}(T M)$, and M^{*} is a leaf of the integrable screen distribution $S(T M)$.

3 Structure equations

Denote by \widetilde{R}, R and R^{*} the curvature tensors of the semi-symmetric non-metric connection $\widetilde{\nabla}$ on \widetilde{M}, the induced connection ∇ on M and the induced connection ∇^{*} on $S(T M)$, respectively. Using the Gauss-Weingarten formulas for M and $S(T M)$, we obtain the Gauss-Codazzi equations for M and $S(T M)$:

$$
\begin{aligned}
\widetilde{R}(X, Y) Z= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \\
& +D(X, Z) A_{L} Y-D(Y, Z) A_{L} X \\
& +\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)\right.
\end{aligned}
$$

$$
\begin{align*}
& +B(Y, Z)[\tau(X)-\pi(X)]-B(X, Z)[\tau(Y)-\pi(Y)] \\
& +D(Y, Z) \phi(X)-D(X, Z) \phi(Y)\} N \\
& +\left\{\left(\nabla_{X} D\right)(Y, Z)-\left(\nabla_{Y} D\right)(X, Z)+B(Y, Z) \rho(X)\right. \\
& -B(X, Z) \rho(Y)-D(Y, Z) \pi(X)+D(X, Z) \pi(Y)\} L, \tag{3.1}\\
\widetilde{R}(X, Y) N= & -\nabla_{X}\left(A_{N} Y\right)+\nabla_{Y}\left(A_{N} X\right)+A_{N}[X, Y] \\
& +\tau(X) A_{N} Y-\tau(Y) A_{N} X+\rho(X) A_{L} Y-\rho(Y) A_{L} X \\
& +\left\{B\left(Y, A_{N} X\right)-B\left(X, A_{N} Y\right)+2 d \tau(X, Y)\right. \\
& +\phi(X) \rho(Y)-\phi(Y) \rho(X)\} N \\
& +\left\{D\left(Y, A_{N} X\right)-D\left(X, A_{N} Y\right)+2 d \rho(X, Y)\right. \\
& +\rho(X) \tau(Y)-\rho(Y) \tau(X)\} L, \tag{3.2}\\
\widetilde{R}(X, Y) L= & -\nabla_{X}\left(A_{L} Y\right)+\nabla_{Y}\left(A_{L} X\right)+A_{L}[X, Y] \\
& +\phi(X) A_{N} Y-\phi(Y) A_{N} X \\
& +\left\{B\left(Y, A_{L} X\right)-B\left(X, A_{L} Y\right)+2 d \phi(X, Y)\right. \\
& +\tau(X) \phi(Y)-\tau(Y) \phi(X)\} N \\
& +\left\{D\left(Y, A_{L} X\right)-D\left(X, A_{L} Y\right)+\rho(X) \phi(Y)-\rho(Y) \phi(X)\right\} L, \tag{3.3}\\
R(X, Y) P Z= & R^{*}(X, Y) P Z+C(X, P Z) A_{\xi}^{*} Y-C(Y, P Z) A_{\xi} X \\
& +\left\{\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)\right. \\
& +C(X, P Z)[\tau(Y)+\pi(Y)]-C(Y, P Z)[\tau(X)+\pi(X)]\} \xi, \tag{3.4}\\
R(X, Y) \xi= & -\nabla_{X}^{*}\left(A_{\xi}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi}^{*} X\right)+A_{\xi}^{*}[X, Y]+\tau(Y) A_{\xi}^{*} X \\
& -\tau(X) A_{\xi}^{*} Y+\left\{C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right)-2 d \tau(X, Y)\right\} \xi . \tag{3.5}
\end{align*}
$$

A semi-Riemannian manifold \tilde{M} of constant curvature c is called a semi-Riemannian space form and denote it by $\widetilde{M}(c)$. The curvature tensor \widetilde{R} of $\widetilde{M}(c)$ is given by

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=c\{\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y\}, \quad \forall X, Y, Z \in \Gamma(T \widetilde{M}) . \tag{3.6}
\end{equation*}
$$

Taking the scalar product with ξ and L to (3.6), we obtain $\widetilde{g}(\widetilde{R}(X, Y) Z, \xi)=0$ and $\widetilde{g}(\widetilde{R}(X, Y) Z, L)=0$ for any $X, Y, Z \in \Gamma(T M)$. From these equations and (3.1), we get

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \\
& +D(X, Z) A_{L} Y-D(Y, Z) A_{L} X, \quad \forall X, Y, Z \in \Gamma(T M) . \tag{3.7}
\end{align*}
$$

4 Screen conformal half lightlike submanifolds

Definition 1 A half lightlike submanifold M of a semi-Riemannian manifold \widetilde{M} is said to be irrotational [14] if $\widetilde{\nabla}_{X} \xi \in \Gamma(T M)$ for any $X \in \Gamma(T M)$.

From (2.7) and (2.14), we show that the above definition is equivalent to

$$
D(X, \xi)=0=\phi(X), \quad \forall X \in \Gamma(T M) .
$$

Theorem 4.1 Let M be an irrotational half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric non-metric connection such that ζ is tangent to M. Then ζ is conjugate to any vector field X on M, i.e., ζ satisfies $h(X, \zeta)=0$.

Proof Taking the scalar product with ξ to (3.2) and N to (3.1) such that $Z=\xi$ by turns and using (2.14), (3.5) and the fact that $\phi=0$, we obtain

$$
\begin{aligned}
\widetilde{g}(\widetilde{R}(X, Y) \xi, N) & =B\left(X, A_{N} Y\right)-B\left(Y, A_{N} X\right)-2 d \tau(X, Y) \\
& =C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right)-2 d \tau(X, Y) .
\end{aligned}
$$

From these two representations, we obtain

$$
B\left(X, A_{N} Y\right)-B\left(Y, A_{N} X\right)=C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right) .
$$

Using $(2.15)_{1},(2.17)_{2}$ and the fact that A_{ξ}^{*} is self-adjoint, we have

$$
\pi\left(A_{\xi}^{*} X\right) \eta(Y)=\pi\left(A_{\xi}^{*} Y\right) \eta(X) .
$$

Replacing Y by ξ to this equation and using (2.18), we have

$$
\begin{equation*}
B(X, \zeta)=\pi\left(A_{\xi}^{*} X\right)=0 \tag{4.1}
\end{equation*}
$$

As D is symmetric and $\phi=0$, we show that A_{L} is self-adjoint. Taking the scalar product with L to (3.2) and N to (3.3) with $\phi=0$ by turns, we obtain

$$
\begin{aligned}
\tilde{g}(\widetilde{R}(X, Y) N, L) & =\widetilde{g}\left(\nabla_{X}\left(A_{L} Y\right)-\nabla_{Y}\left(A_{L} X\right)-A_{L}[X, Y], N\right) \\
& =D\left(Y, A_{N} X\right)-D\left(X, A_{N} Y\right)+2 d \rho(X, Y)+\rho(X) \tau(Y)-\rho(Y) \tau(X) .
\end{aligned}
$$

Using these two representations and (2.16) $)_{2}$, we show that

$$
\begin{aligned}
& D\left(Y, A_{N} X\right)-D\left(X, A_{N} Y\right)+2 d \rho(X, Y)+\rho(X) \tau(Y)-\rho(Y) \tau(X) \\
& \quad=\widetilde{g}\left(\nabla_{X}\left(A_{L} Y\right), N\right)-\widetilde{g}\left(\nabla_{Y}\left(A_{L} X\right), N\right)-\rho([X, Y]) .
\end{aligned}
$$

Applying $\widetilde{\nabla}_{X}$ to $\widetilde{g}\left(A_{L} Y, N\right)=\rho(Y)$ and using (2.1), (2.7) and (2.8), we have

$$
\begin{aligned}
\tilde{g}\left(\nabla_{X}\left(A_{L} Y\right), N\right)= & X(\rho(Y))+\pi\left(A_{L} Y\right) \eta(X)+f g\left(X, A_{L} Y\right) \\
& +g\left(A_{L} Y, A_{N} X\right)-\tau(X) \rho(Y) .
\end{aligned}
$$

Substituting this equation into the last equation and using (2.16) ${ }_{1}$, we have

$$
\pi\left(A_{L} X\right) \eta(Y)=\pi\left(A_{L} Y\right) \eta(X) .
$$

Replacing Y by ξ to this equation, we have

$$
\pi\left(A_{L} X\right)=\pi\left(A_{L} \xi\right) \eta(X) .
$$

Taking $X=\xi$ and $Y=\zeta$ to $(2.16)_{1}$, we get $\pi\left(A_{L} \xi\right)=0$. Therefore, we have

$$
\begin{equation*}
D(X, \zeta)=\pi\left(A_{L} X\right)=0 \tag{4.2}
\end{equation*}
$$

From (4.1) and (4.2), we show that $h(X, \zeta)=0$ for all $X \in \Gamma(T M)$.
Definition 2 A half lightlike submanifold M of a semi-Riemannian manifold \widetilde{M} is screen conformal $[4,5,7]$ if the second fundamental forms B and C satisfy

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y), \quad \forall X, Y \in \Gamma(T M), \tag{4.3}
\end{equation*}
$$

where φ is a non-vanishing function on a coordinate neighborhood \mathcal{U} in M.
Theorem 4.2 Let M be an irrotational half lightlike submanifold of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection such that ζ is tangent to M. If M is screen conformal, then $c=0$.

Proof Substituting (3.6) into (3.2) and using the fact that $\phi=0$, we have

$$
\begin{align*}
& \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z) \\
& \quad=B(Y, Z)\{\pi(X)-\tau(X)\}-B(X, Z)\{\pi(Y)-\tau(Y)\} . \tag{4.4}
\end{align*}
$$

Taking the scalar product with N to (3.1) and (3.4) by turns and using $(2.16)_{2},(2.17)_{2}$ and (3.6), we have the following two forms of $\widetilde{g}(R(X, Y) P Z, N)$:

$$
\begin{align*}
&\{c g(Y, P Z)-f B(Y, P Z)\} \eta(X)-\{c g(X, P Z)-f B(X, P Z)\} \eta(Y) \\
&+\rho(X) D(Y, P Z)-\rho(Y) D(X, P Z) \\
&=\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)+C(X, P Z)\{\pi(Y)+\tau(Y)\} \\
&-C(Y, P Z)\{\pi(X)+\tau(X)\} . \tag{4.5}
\end{align*}
$$

Applying ∇_{X} to $C(Y, P Z)=\varphi B(Y, P Z)$, we have

$$
\left(\nabla_{X} C\right)(Y, P Z)=X[\varphi] B(Y, P Z)+\varphi\left(\nabla_{X} B\right)(Y, P Z)
$$

Substituting this into (4.5) and using (4.4), we obtain

$$
\begin{align*}
c\{ & g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
= & \{X[\varphi]-2 \varphi \tau(X)+f \eta(X)\} B(Y, P Z)-\rho(X) D(Y, P Z) \\
& -\{Y[\varphi]-2 \varphi \tau(Y)+f \eta(Y)\} B(X, P Z)+\rho(Y) D(X, P Z) . \tag{4.6}
\end{align*}
$$

Replacing Z by ζ to (4.5) and using (4.1) and (4.2), we have $c=0$.

Remark 4.3 If M is screen conformal, then, from (4.3), we show that C is symmetric on $S(T M)$. By Theorem 2.1, $S(T M)$ is integrable and M is locally a product manifold $\mathcal{C}_{1} \times M^{*}$, where \mathcal{C}_{1} is a null curve tangent to $\operatorname{Rad}(T M)$ and M^{*} is a leaf of $S(T M)$.

5 Main theorem

Let $\widetilde{\text { Ric }}$ be the Ricci curvature tensor of \widetilde{M} and $R^{(0,2)}$ the induced Ricci type tensor on M given respectively by

$$
\begin{aligned}
& \widetilde{\operatorname{Ric}}(X, Y)=\operatorname{trace}\{Z \rightarrow \widetilde{R}(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T \widetilde{M}), \\
& R^{(0,2)}(X, Y)=\operatorname{trace}\{Z \rightarrow R(Z, X) Y\}, \quad \forall X, Y \in \Gamma(T M) .
\end{aligned}
$$

Using the quasi-orthonormal frame field (2.6) on \widetilde{M}, we show [10] that

$$
\begin{aligned}
R^{(0,2)}(X, Y)= & \widetilde{\operatorname{Ric}}(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{L} \\
& -g\left(A_{N} X, A_{\xi}^{*} Y\right)-g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y) \\
& -\widetilde{g}(\widetilde{R}(\xi, Y) X, N)-\widetilde{g}(\widetilde{R}(L, X) Y, L),
\end{aligned}
$$

where $\operatorname{tr} A_{N}$ is the trace of A_{N}. From this, we show that $R^{(0,2)}$ is not symmetric. The tensor field $R^{(0,2)}$ is called the induced Ricci curvature tensor [4,5] of M, denoted by Ric, if it is symmetric. M is called Ricci flat if its induced Ricci tensor vanishes on M. It is known [10] that $R^{(0,2)}$ is symmetric if and only if the 1 -form τ is closed, i.e., $d \tau=0$.

Remark 5.1 If the induced Ricci type tensor $R^{(0,2)}$ is symmetric, then there exists a null pair $\{\xi, N\}$ such that the corresponding 1 -form τ satisfies $\tau=0[3,4]$, which is called a canonical null pair of M. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(T M)^{\sharp}=T M / \operatorname{Rad}(T M)[14]$. This implies that all screen distribution are mutually isomorphic. For this reason, in case $d \tau=0$, we consider only lightlike hypersurfaces M endow with the canonical null pair such that $\tau=0$.

We say that M is an Einstein manifold if the Ricci tensor of M satisfies

$$
\text { Ric }=\kappa g .
$$

It is well known that if $\operatorname{dim} M>2$, then κ is a constant.
Let $\operatorname{dim} \widetilde{M}=m+3$. In case \widetilde{M} is a semi-Riemannian space form $\widetilde{M}(c)$, we have

$$
\begin{align*}
R^{(0,2)}(X, Y)= & m c g(X, Y)+B(X, Y) \operatorname{tr} A_{N}+D(X, Y) \operatorname{tr} A_{L} \\
& -g\left(A_{N} X, A_{\xi}^{*} Y\right)-g\left(A_{L} X, A_{L} Y\right)+\rho(X) \phi(Y) . \tag{5.1}
\end{align*}
$$

Due to (2.15) and (2.17), we show that M is screen conformal if and only if the shape operators A_{N} and A_{ξ}^{*} are related by

$$
\begin{equation*}
A_{N} X=\varphi A_{\xi}^{*} X-f X-\eta(X) \zeta . \tag{5.2}
\end{equation*}
$$

Assume that $\phi=0$. As D is symmetric, A_{L} is self-adjoint. Using this, (5.1) and (5.2), we show that $R^{(0,2)}$ is symmetric. Thus, we can take $\tau=0$. As $\tau=0$, (4.4) reduce to

$$
\begin{equation*}
\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)=\pi(X) B(Y, Z)-\pi(Y) B(X, Z) . \tag{5.3}
\end{equation*}
$$

Definition 3 A vector field X on \widetilde{M} is said to be conformal Killing $[3,5,15]$ if $\widetilde{\mathcal{L}}_{X} \widetilde{g}=-2 \delta \widetilde{g}$ for a scalar function δ, where $\widetilde{\mathcal{L}}$ denotes the Lie derivative on \widetilde{M}, that is,

$$
\left(\widetilde{\mathcal{L}}_{X} \widetilde{g}\right)(Y, Z)=X(\widetilde{g}(Y, Z))-\widetilde{g}([X, Y], Z)-\widetilde{g}(Y,[X, Z]), \quad \forall Y, Z \in \Gamma(T \tilde{M}) .
$$

In particular, if $\delta=0$, then X is called a Killing vector field on \widetilde{M}.
Theorem 5.2 Let M be a half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} admitting a semi-symmetric non-metric connection. If the canonical normal vector field L is a conformal Killing one, then L is a Killing vector field.

Proof Using (2.1) and (2.2), for any $X, Y, Z \in \Gamma(T \tilde{M})$, we have

$$
\left(\widetilde{\mathcal{L}}_{X} \widetilde{g}\right)(Y, Z)=\widetilde{g}\left(\widetilde{\nabla}_{Y} X, Z\right)+\widetilde{g}\left(Y, \widetilde{\nabla}_{Z} X\right)-2 \pi(X) \widetilde{g}(Y, Z) .
$$

As L is a conformal Killing vector field, we have $\widetilde{g}\left(\widetilde{\nabla}_{X} L, Y\right)=-D(X, Y)$ by (2.9) and (2.16). This implies $\left(\widetilde{\mathcal{L}}_{L} \widetilde{g}\right)(X, Y)=-2 D(X, Y)$ for any $X, Y \in \Gamma(T M)$. Thus, we have

$$
\begin{equation*}
D(X, Y)=\delta g(X, Y), \quad \forall X, Y \in \Gamma(T M) . \tag{5.4}
\end{equation*}
$$

Taking $X=Y=\zeta$ and using (4.2), we get $\delta=0$. Thus, L is a Killing vector field.

Remark 5.3 Cǎlin [16] proved the following result. For any lightlike submanifolds M of indefinite almost contact metric manifolds \widetilde{M}, if ζ is tangent to M, then it belongs to $S(T M)$. Duggal and Sahin also proved this result (see pp.318-319 of [5]). After Cǎlin's work, many earlier works [17-19], which were written on lightlike submanifolds of indefinite almost contact metric manifolds or lightlike submanifolds of semi-Riemannian manifolds, admitting semi-symmetric non-metric connections, obtained their results by using the Cǎlin's result described in above. However, Jin [12,13] proved that Cǎlin's result is not true for any lightlike submanifolds M of a semi-Riemannian space form $\widetilde{M}(c)$, admitting a semisymmetric non-metric connection.

For the rest of this section, we may assume that the structure vector field ζ of \tilde{M} belongs to the screen distribution $S(T M)$. In this case, we show that $f=0$.

Theorem 5.4 Let M be a screen conformal Einstein half lightlike submanifold of a Lorentzian space form $\tilde{M}(c)$, admitting a semi-symmetric non-metric connection such that ζ belongs to $S(T M)$. If the canonical normal vector field L is conformal Killing, then M is Ricci flat. Moreover, if the mean curvature of M is constant, then M is locally a product manifold $\mathcal{C}_{1} \times \mathcal{C}_{2} \times M^{m-1}$, where \mathcal{C}_{1} and \mathcal{C}_{2} are null and non-null curves, and M^{m-1} is an ($m-1$)-dimensional Euclidean space.

Proof As L is conformal Killing vector field, $D=A_{L}=0$ by (5.4) and Theorem 5.2. Therefore, from (2.14), we show that $\phi=0$, i.e., M is irrotational. By Theorem 4.2, we also have $c=0$. Using (2.15), (4.1) and (5.2) with $f=0$, from (5.1), we have

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-\alpha g\left(A_{\xi}^{*} X, Y\right)+\varphi^{-1} \kappa g(X, Y)=0 \tag{5.5}
\end{equation*}
$$

due to $c=0$, where $\alpha=\operatorname{tr} A_{\xi}^{*}$. As $g\left(A_{\xi}^{*} \zeta, X\right)=B(\zeta, X)=0$ for all $X \in \Gamma(T M)$ and $S(T M)$ is non-degenerate, we show that

$$
\begin{equation*}
A_{\xi}^{*} \zeta=0 . \tag{5.6}
\end{equation*}
$$

Taking $X=Y=\zeta$ to (5.5) and using (5.6), we have $\varphi^{-1} \kappa=0$. Thus, (5.5) reduce to

$$
\begin{equation*}
g\left(A_{\xi}^{*} X, A_{\xi}^{*} Y\right)-\alpha g\left(A_{\xi}^{*} X, Y\right)=0, \quad \kappa=0 . \tag{5.7}
\end{equation*}
$$

From the second equation of (5.7), we show that M is Ricci flat.
As M is screen conformal and \widetilde{M} is Lorentzian, $S(T M)$ is an integrable Riemannian vector bundle. Since ξ is an eigenvector field of A_{ξ}^{*}, corresponding to the eigenvalue 0 due to (2.15), and A_{ξ}^{*} is $S(T M)$-valued real self-adjoint operator, A_{ξ}^{*} has m real orthonormal eigenvector fields in $S(T M)$ and is diagonalizable. Consider a frame field of eigenvectors $\left\{\xi, E_{1}, \ldots, E_{m}\right\}$ of A_{ξ}^{*} such that $\left\{E_{1}, \ldots, E_{m}\right\}$ is an orthonormal frame field of $S(T M)$ and $A_{\xi}^{*} E_{i}=\lambda_{i} E_{i}$. Put $X=Y=E_{i}$ in (5.7), each eigenvalue λ_{i} is a solution of

$$
x^{2}-\alpha x=0 .
$$

As this equation has at most two distinct solutions 0 and α, there exists $p \in\{0,1, \ldots, m\}$ such that $\lambda_{1}=\cdots=\lambda_{p}=0$ and $\lambda_{p+1}=\cdots=\lambda_{m}=\alpha$, by renumbering if necessary. As $\operatorname{tr} A_{\xi}^{*}=$ $0 p+(m-p) \alpha$, we have

$$
\alpha=\operatorname{tr} A_{\xi}^{*}=(m-p) \alpha .
$$

So $p=m-1$, i.e.,

$$
A_{\xi}^{*}=\left(\begin{array}{llll}
0 & & & \\
& \ddots & & \\
& & 0 & \\
& & & \alpha
\end{array}\right) .
$$

Consider two distributions D_{o} and D_{α} on $S(T M)$ given by

$$
\begin{aligned}
& D_{o}=\left\{X \in \Gamma(S(T M)) \mid A_{\xi}^{*} X=0 \text { and } X \neq 0\right\}, \\
& D_{\alpha}=\left\{U \in \Gamma(S(T M)) \mid A_{\xi}^{*} U=\alpha U \text { and } U \neq 0\right\} .
\end{aligned}
$$

Clearly we show that $D_{o} \cap D_{\alpha}=\{0\}$ as $\alpha \neq 0$. In the sequel, we take $X, Y \in \Gamma\left(D_{o}\right)$, $U, V \in \Gamma\left(D_{\alpha}\right)$ and $Z, W \in \Gamma(S(T M))$. Since X and U are eigenvector fields of the real self-adjoint operator A_{ξ}^{*}, corresponding to the different eigenvalues 0 and α respectively, we have $g(X, U)=0$. From this and the fact that $B(X, U)=g\left(A_{\xi}^{*} X, U\right)=0$, we show that $D_{\alpha} \perp_{g} D_{o}$ and $D_{\alpha} \perp_{B} D_{o}$, respectively. Since $\left\{E_{i}\right\}_{1 \leq i \leq m-1}$ and $\left\{E_{m}\right\}$ are vector fields of D_{o} and D_{α}, respectively, and D_{o} and D_{α} are mutually orthogonal, we show that D_{o} and D_{α} are non-degenerate distributions of rank $(m-1)$ and rank 1, respectively. Thus, the screen distribution $S(T M)$ is decomposed as $S(T M)=D_{\alpha} \oplus_{\text {orth }} D_{o}$.

From (5.7), we get $A_{\xi}^{*}\left(A_{\alpha}^{*}-\alpha P\right)=0$. Let $W \in \operatorname{Im} A_{\xi}^{*}$. Then there exists $Z \in \Gamma(S(T M))$ such that $W=A_{\xi}^{*} Z$. Then $\left(A_{\xi}^{*}-\alpha P\right) W=0$ and $W \in \Gamma\left(D_{\alpha}\right)$. Thus, $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(D_{\alpha}\right)$. By duality, we have $\operatorname{Im}\left(A_{\xi}^{*}-\alpha P\right) \subset \Gamma\left(D_{o}\right)$.

Applying ∇_{X} to $B(Y, U)=0$ and using (2.15) and $A_{\xi}^{*} Y=0$, we obtain

$$
\left(\nabla_{X} B\right)(Y, U)=-g\left(A_{\xi}^{*} \nabla_{X} Y, U\right) .
$$

Substituting this into (5.3) and using (2.12) and $A_{\xi}^{*} X=A_{\xi}^{*} Y=0$, we get

$$
g\left(A_{\xi}^{*}[X, Y], U\right)=0
$$

As $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(D_{\alpha}\right)$ and D_{α} is non-degenerate, we get $A_{\xi}^{*}[X, Y]=0$. This implies that $[X, Y] \in \Gamma\left(D_{o}\right)$. Thus, D_{o} is an integrable distribution.

Applying ∇_{U} to $B(X, Y)=0$ and ∇_{X} to $B(U, Y)=0$, we have

$$
\left(\nabla_{U} B\right)(X, Y)=0, \quad\left(\nabla_{X} B\right)(U, Y)=-\alpha g\left(\nabla_{X} Y, U\right) .
$$

Substituting this two equations into (5.3), we have $\alpha g\left(\nabla_{X} Y, U\right)=0$. As

$$
g\left(A_{\xi}^{*} \nabla_{X} Y, U\right)=B\left(\nabla_{X} Y, U\right)=\alpha g\left(\nabla_{X} Y, U\right)=0
$$

and $\operatorname{Im} A_{\xi}^{*} \subset \Gamma\left(D_{\alpha}\right)$ and D_{α} is non-degenerate, we get $A_{\xi}^{*} \nabla_{X} Y=0$. This implies that $\nabla_{X} Y \in$ $\Gamma\left(D_{o}\right)$. Thus, D_{o} is an auto-parallel distribution on $S(T M)$.

As $A_{\xi}^{*} \zeta=0$, ζ belongs to D_{o}. Thus, $\pi(U)=0$ for any $U \in \Gamma\left(D_{\alpha}\right)$. Applying ∇_{X} to $g(U, Y)=0$ and using (2.12) and the fact that D_{o} is auto-parallel, we get $g\left(\nabla_{X} U, Y\right)=0$. This implies that $\nabla_{X} U \in \Gamma\left(D_{\alpha}\right)$.
Applying ∇_{U} to $B(V, X)=0$ and using $A_{\xi}^{*} X=0$, we obtain

$$
\left(\nabla_{U} B\right)(V, X)=-\alpha g\left(V, \nabla_{U} X\right) .
$$

Substituting this into (5.3) and using the fact that $D_{o} \perp_{B} D_{\alpha}$, we get

$$
g\left(V, \nabla_{U} X\right)=g\left(U, \nabla_{V} X\right) .
$$

Applying ∇_{U} to $g(V, X)=0$ and using (2.12), we get

$$
g\left(\nabla_{U} V, X\right)=\pi(X) g(U, V)-g\left(V, \nabla_{V} X\right)
$$

Taking the skew-symmetric part of this and using (2.13), we obtain

$$
g([U, V], X)=0 .
$$

This implies that $[U, V] \in \Gamma\left(D_{\alpha}\right)$ and D_{α} is an integrable distribution.
Now we assume that the mean curvature $H=\frac{1}{m+2} \operatorname{tr} B=\frac{1}{m+2} \operatorname{tr} A_{\xi}^{*}$ of M is a constant. As $\operatorname{tr} A_{\xi}^{*}=\alpha$, we see that α is a constant. Applying ∇_{X} to $B(U, V)=\alpha g(U, V)$ and ∇_{U}
to $B(X, V)=0$ by turns and using the facts that $\nabla_{X} U \in \Gamma(T M), D_{o} \perp_{g} D_{\alpha}, D_{o} \perp_{B} D_{\alpha}$ and $B\left(X, \nabla_{U} V\right)=g\left(A_{\xi}^{*} X, \nabla_{U} V\right)=0$, we have

$$
\left(\nabla_{X} B\right)(U, V)=0, \quad\left(\nabla_{U} B\right)(X, V)=-\alpha g\left(\nabla_{U} X, V\right) .
$$

Substituting these two equations into (5.3) and using $D_{o} \perp_{B} D_{\alpha}$, we have

$$
g\left(\nabla_{U} X, V\right)=\pi(X) g(U, V) .
$$

Applying ∇_{U} to $g(X, V)=0$ and using (2.12), we obtain

$$
g\left(X, \nabla_{U} V\right)=\pi(X) g(U, V)-g\left(\nabla_{U} X, V\right)=0 .
$$

Thus, D_{α} is also an integrable and auto-parallel distribution.
Since the leaf M^{*} of $S(T M)$ is a Riemannian manifold and $S(T M)=D_{\alpha} \oplus_{\text {orth }} D_{o}$, where D_{α} and D_{o} are auto-parallel distributions of M^{*}, by the decomposition of the theorem of de Rham [20], we have $M^{*}=\mathcal{C}_{2} \times M^{m-1}$, where \mathcal{C}_{2} is a leaf of D_{α}, and M^{m-1} is a totally geodesic leaf of D_{o}. Consider the frame field of eigenvectors $\left\{\xi, E_{1}, \ldots, E_{m}\right\}$ of A_{ξ}^{*} such that $\left\{E_{i}\right\}_{i}$ is an orthonormal frame field of $S(T M)$, then $B\left(E_{i}, E_{j}\right)=C\left(E_{i}, E_{j}\right)=0$ for $1 \leq i<j \leq m$ and $B\left(E_{i}, E_{i}\right)=C\left(E_{i}, E_{i}\right)=0$ for $1 \leq i \leq m-1$. From (3.1) and (3.4), we have $\widetilde{g}\left(\widetilde{R}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right)=$ $g\left(R^{*}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right)=0$. Thus, the sectional curvature K of the leaf M^{m-1} of D_{o} is given by

$$
K\left(E_{i}, E_{j}\right)=\frac{g\left(R^{*}\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right)}{g\left(E_{i}, E_{i}\right) g\left(E_{j}, E_{j}\right)-g^{2}\left(E_{i}, E_{j}\right)}=0 .
$$

Thus, M is a local product $\mathcal{C}_{1} \times \mathcal{C}_{2} \times M^{m-1}$, where \mathcal{C}_{1} is a null curve, \mathcal{C}_{2} is a non-null curve, and M^{m-1} is an $(m-1)$-dimensional Euclidean space.

Competing interests

The author declares that he has no competing interests.
Received: 27 December 2012 Accepted: 1 August 2013 Published: 22 August 2013

References

1. Hawking, SW, Ellis, GFR: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)
2. O'Neill, B: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)
3. Duggal, KL, Bejancu, A: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic, Dordrecht (1996)
4. Duggal, KL, Jin, DH: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific, Hackensack (2007)
5. Duggal, KL, Sahin, B: Differential Geometry of Lightlike Submanifolds. Frontiers in Mathematics. Birkhäuser, Basel (2010)
6. Duggal, KL, Bejancu, A: Lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 15, 59-82 (1992)
7. Duggal, KL, Jin, DH: Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 22, 121-161 (1999)
8. Ageshe, NS, Chafle, MR: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23(6), 399-409 (1992)
9. Yasar, E, Cöken, AC, Yücesan, A: Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection. Math. Scand. 102, 253-264 (2008)
10. Jin, DH, Lee, JW: A classification of half lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Bull. Korean Math. Soc. 50(3), 705-714 (2013)
11. Jin, DH: Lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection J. Korean Soc. Math. Edu., Ser. B. Pure Appl. Math. 19(3), 211-228 (2012)
12. Jin, DH: Two characterization theorems for irrotational lightlike geometry. Commun. Korean Math. Soc. (2012, accepted)
13. Jin, DH: Singularities of lightlike submanifolds in a semi-Riemannian space form. J. Korean Math. Soc. J. Appl. Math. (2013, submitted)
14. Kupeli, DN: Singular Semi-Riemannian Geometry, vol. 366. Kluwer Academic, Dordrecht (1996)
15. Duggal, KL, Sharma, R: Symmetries of Spacetimes and Riemannian Manifolds, vol. 487. Kluwer Academic, Dordrecht (1999)
16. Cǎlin, C: Contributions to geometry of CR-submanifold. Thesis, University of lasi, lasi, Romania (1998)
17. Duggal, KL, Sahin, B: Lightlike submanifolds of indefinite Sasakian manifolds. Int. J. Math. Math. Sci. 2007, Article ID 57585 (2007)
18. Duggal, KL, Sahin, B: Generalized Cauchy-Riemann lightlike submanifolds of indefinite Sasakian manifolds. Acta Math. Hung. 122(1-2), 45-58 (2009)
19. Kang, TH, Jung, SD, Kim, BH, Pak, HK, Pak, JS: Lightlike hypersurfaces of indefinite Sasakian manifolds. Indian J. Pure Appl. Math. 34, 1369-1380 (2003)
20. de Rham, G: Sur la réductibilité d'un espace de Riemannian. Comment. Math. Helv. 26, 328-344 (1952)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at $ springeropen.com
```


[^0]: © 2013 Jin; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1029-242X-2013-403
 Cite this article as: Jin: Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection. Journal of Inequalities and Applications 2013 2013:403.

