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Abstract
We study some sufficient conditions for the almost certain convergence of averages
of arbitrarily dependent random variables by certain summability methods. As
corollaries, we generalized some known results.
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1 Introduction
In reference [], Chow and Teicher gave a limit theorem of almost certain summability of
i.i.d. random variables as follows.

Theorem (Chow et al., ) Let a(x), x >  be a positive non-increasing function and
an = a(n), An =

∑n
k= ak , bn = An/an, where

() An → ∞;
()  < lim infn

bn
n a(logbn)≤ lim supn

bn
n a(logbn) < ∞;

() xa(log+ x) is non-decreasing for x > , then i.i.d. {X,Xn} are an summable, i.e.,

Tn = A–
n

n∑
k=

akXk –Cn →  a.c.

for some choice of centering constants Cn, if and only if

E|X|a(log+ |X|) < ∞.

Motivated by Chow and Teicher’s idea, in this paper we consider the problem of arbi-
trarily dependent random variables and their limiting behavior from a new perspective.
Throughout this paper, let N denote the set of positive integers, {X,Xn,Fn,n ∈ N} be

a stochastic sequence defined on the probability space (�,F ,P), i.e., the sequence of σ -
fields {Fn,n ∈ N} in F is increasing in n, and {Fn} are adapted to random variables {Xn},
F denotes the trivial σ field {�,�} and [·] the indicator function.
We begin by introducing some terminology and lemmas.

Definition  (Adler et al.,  []) Let {Xn,n ∈N} be a sequence of randomvariables, and
it is said to be stochastically dominated by a random variable X (we write {Xn,n ∈N} ≺ X)
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if there exists a constant C > , for almost every ω ∈ �, such that

sup
n∈N

P
{|Xn| > t

} ≤ CP
{|X| > t

}
for all t > .

Lemma  (Chow et al.,  []) Let {Xn,Fn,n ∈ N} be an Lp ( ≤ p ≤ ) martingale dif-
ference sequence, if

∑∞
n= E(|Xn|p|Fn–) < ∞, then

∑∞
n=Xn a.c. converges.

Lemma  Let {X,Xn,n ∈ N} be a sequence of random variables. If {Xn} ≺ X, then for all
t > ,

E|Xn|[|Xn|≤t] ≤ C
[
tP

(|X| > t
)
+EX[|X|≤t]

]
.

Proof By the integral equality


∫ t


sP

(|Xn| > s
)
ds = tP

(|Xn| > t
)
+E|Xn|[|Xn|≤t],

it follows that

E|Xn|[|Xn|≤t] ≤ 
∫ t


sP

(|Xn| > s
)
ds

≤ C
∫ t


sP

(|X| > s
)
ds = C

[
tP

(|X| > t
)
+EX[|X|≤t]

]
. �

2 Strong law of large numbers
In this section, we always assume that a(x), x >  is a positive non-increasing function and
an = a(n), An =

∑n
k= ak , bn = An/an, where

() An → ∞;
()  < lim infn

bn
n a(logbn) ≤ lim supn

bn
n a(logbn) < ∞;

() xa(log+ x) is non-decreasing for x > .

Theorem  Let {X,Xn} be a sequence of random variables with {Xn} ≺ X. If
E|X|a(log+ |X|) <∞, then

lim
n


An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–)

]
= , a.c. (.)

Proof To prove (.) by applying the Kronecker lemma, it suffices to show that

the series
∞∑
n=

Xn – E(Xn[|Xn|≤bn]|Fn–)
bn

converges a.c.

Since  < a(x) ↓, () guarantees that bn ↑ ∞. Choosem such that n≥ m implies

αn≤ bna(logbn) ≤ βn (.)

whence bn ≥ αn[a(logbm)]– for n ≥ m≥ m entailing

∞∑
k=m

b–k ≤ a(logbm)
αm

. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/25
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Put Yn = Xn[|Xn|≤bn],Zn = Xn[|Xn|>bn], obviously, Xn = Yn + Zn,n ∈ N. Note that {Xn} ≺ X
and the condition E|X|a(log+ |X|) < ∞, we have

∞∑
n=

P
(|Xn| > bn

)

=
m–∑
n=

P
(|Xn| > bn

)
+

∞∑
n=m

P
(|Xn| > bn

)

≤ m –  +C
∞∑

n=m

P
(|X| > bn

)

≤ m –  +C
∞∑

n=m

P
(|X|a(log |X|) ≥ bna(logbn)

)

≤ m –  +C
∞∑

n=m

P
(|X|a(log |X|) ≥ αn

)
< ∞, (.)

which shows

P(Xn 
= Zn, i.o.) = . (.)

LetWn = Yn
bn – E(Ynbn |Fn–), then (Wn,Fn,n ∈ N) is a martingale difference sequence.

Since

∞∑
k=

E
Y 
k
bk

=
∞∑
k=

EX
k[|Xk |≤bk ]

bk

≤ C
∞∑
k=

[
E[|X|>bk ] +

EX[|X|≤bk ]

bk

]
(by Lemma )

= C
∞∑
k=

E[|X|>bk ] +C

(m–∑
k=

+
∞∑

k=m

)
EX[|X|≤bk ]

bk

≤ C
∞∑
k=

P
(|X| > bk

)
+C(m – ) +C

∞∑
k=m

b–k

(∫
[|Xk |≤bm–]

X +
k∑

i=m

∫
[bi–<|X|≤bi]

X

)

≤O() +C
∞∑

i=m

∞∑
k=i

b–k
∫
[bi–<|X|≤bi]

X (
by (.)

)

≤O() + α–C
∞∑

i=m

i–a(logbi)
∫
[bi–<|X|≤bi]

X (
by (.)

)

≤O() + α–βC
∞∑

i=m

a(logbi)
∫
[bi–<|X|≤bi]

|X| (
by (.)

)

≤O() + α–βC
∞∑

i=m

∫
[bi–<|X|≤bi]

|X|a(log |X|) < ∞. (.)
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Note that

E

[ ∞∑
n=

E
(
W 

n |Fn–
)] ≤ E

[ ∞∑
n=

E
(
Y 
n

bn

∣∣∣Fn–

)]

=
∞∑
n=

E
Y 
n

bn
< ∞, (.)

which implies that
∑∞

n= E(W 
n |Fn–) < ∞ a.c. Hence, by Lemma , we have

∑∞
n=Wn a.c.

convergence.
Theorem  follows from (.) and (.). �

Theorem  also includes some particular cases of means, we can establish the following.

Corollary  Let {X,Xn,n ∈ N} be a sequence of random variables with {Xn} ≺ X. If for
some ε > , E |X|

log |X|[|X|>ε]
< ∞, then

lim
n


logn

n∑
k=

[
Xk – E(Xk[|Xk |≤k logk]|Fk–)

k

]
= , a.c.

Corollary  Let {X,Xn,n ∈ N} be a sequence of random variables with {Xn} ≺ X and for
some k ≥ ,

an =
[
n(logn) · · · (logk– n)

]–,
where log n = logn, logk n = log(logk– n), k ≥ , if for all large C > ,

E
|X|[|X|>C]

(log |X|) · · · (logk |X|) < ∞,

then

lim
n


An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–)

]
= , a.c.

Corollary  Let {X,Xn,n ∈ N} be a sequence of random variables with {Xn} ≺ X. Further,
let Fn = σ (X, . . . ,Xn) and F–n = {φ,�}, n≥ . If E|X|a(log+ |X|) <∞, then for any m ≥ ,

lim
n


An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–m)

]
= , a.c. (.)

Proof Since {Xnm+l,Fnm+l,n ≥ } is an adapted stochastic sequence and {Xnm+l} ≺ X, by
Theorem , we have for l = , , . . . ,m –  that

∞∑
n=

Xnm+l – E(Xnm+l[|Xnm+l |≤bnm+l]|F(n–)m+l)
bnm+l

converges a.c.
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Therefore, we have

∞∑
n=m

Xn – E(Xn[|Xn|≤bn]|Fn–m)
bn

=
m–∑
l=

∞∑
n=

Xnm+l – E(Xnm+l[|Xnm+l |≤bnm+l]|F(n–)m+l)
bnm+l

converges a.c.

�

Corollary  Let {Xn,n ∈ N} be a sequence of m-dependent random variables. Further, let
Fn = σ (X, . . . ,Xn) and F–n = {φ,�},n ≥ . If there exists a random variable X such that
{Xn} ≺ X and E|X|a(log+ |X|) <∞, then

lim
n


An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ])

]
= , a.c.

Proof Note that {Xn,n ∈ N} is a sequence of m-dependent random variables, then
E(Xn|Fn–m) = EXn, Corollary  follows directly from Corollary . �

Definition (Stout, ) Let {Xn,n ∈N} be a sequence of randomvariables, and letFm
n =

σ (Xn, . . . ,Xm). We say that the sequence {Xn,n ∈ N} is *-mixing if there exists a positive
integerM and a non-decreasing function ϕ(n) defined on integers n≥ M with limn ϕ(n) =
 such that for n >M, A ∈Fm

 and B ∈F∞
m+n, the relation

∣∣P(A∩ B) – P(A)P(B)
∣∣ ≤ ϕ(n)P(A)P(B)

holds for any integer m ≥ .
It has been proved (cf. []) that the *-mixing condition is equivalent to the condition

∣∣P(
B|Fm


)
– P(B)

∣∣ ≤ ϕ(n)P(B), a.c.

for B ∈F∞
m+n andm ≥  implies

∣∣E(
Xn+m|Fm


)
– EXn+m

∣∣ ≤ ϕ(n)E|Xn+m|, a.c. (.)

Theorem  Let {X,Xn,n ∈N} be a sequence of *-mixing random variables with {Xn} ≺ X.
Further, let Fn = σ (X, . . . ,Xn) and F–n = {φ,�}, n ≥ . If max{E|X|,E|X|a(log+ |X|)} < ∞,
then

lim
n


An

n∑
k=

ak[Xk – EXk[|Xk |≤bk ]] = , a.c.

Proof By Corollary , we have, for eachm ≥ ,

lim
n


An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–m)

]
= , a.c.
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Since {Xn,n ∈N} is *-mixing, by (.) and (.), we obtain

∣∣∣∣ 
An

n∑
k=

ak[Xk – EXk[|Xk |≤bk ]]
∣∣∣∣

≤
∣∣∣∣ 
An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–m)

]∣∣∣∣
+


An

n∑
k=

ak
∣∣[E(Xk[|Xk |≤bk ]|Fk–m) – EXk[|Xk |≤bk ]

]∣∣

≤
∣∣∣∣ 
An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–m)

]∣∣∣∣ + ϕ(m)
An

n∑
k=

akE|Xk|[|Xk |≤bk ]

≤
∣∣∣∣ 
An

n∑
k=

ak
[
Xk – E(Xk[|Xk |≤bk ]|Fk–m)

]∣∣∣∣ + ϕ(m)E|X| →  a.c. (as n→ ∞).

Thus, using the Kroneker lemma, Theorem  follows. �
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