RESEARCH

On almost sure limiting behavior of a dependent random sequence

Ai-hua Fan^{*} and Zhong-zhi Wang

*Correspondence: fah@ahut.edu.cn School of Mathematics & Physics, AnHui University of Technology, Ma'anshan, 243002, People's Republic of China

Abstract

We study some sufficient conditions for the almost certain convergence of averages of arbitrarily dependent random variables by certain summability methods. As corollaries, we generalized some known results. **MSC:** 60F15

Keywords: dependent random variable; summability; dominated random sequence

1 Introduction

In reference [1], Chow and Teicher gave a limit theorem of almost certain summability of i.i.d. random variables as follows.

Theorem (Chow *et al.*, 1971) Let a(x), x > 0 be a positive non-increasing function and $a_n = a(n)$, $A_n = \sum_{k=1}^n a_k$, $b_n = A_n/a_n$, where

- (1) $A_n \to \infty$;
- (2) $0 < \liminf_{n \to \infty} a(\log b_n) \le \limsup_{n \to \infty} a(\log b_n) < \infty;$
- (3) $xa(\log^+ x)$ is non-decreasing for x > 0, then i.i.d. $\{X, X_n\}$ are a_n summable, i.e.,

$$T_n = A_n^{-1} \sum_{k=1}^n a_k X_k - C_n \to 0 \quad a.c.$$

for some choice of centering constants C_n , if and only if

$$E|X|a(\log^+|X|) < \infty$$

Motivated by Chow and Teicher's idea, in this paper we consider the problem of arbitrarily dependent random variables and their limiting behavior from a new perspective.

Throughout this paper, let \mathbb{N} denote the set of positive integers, $\{X, X_n, \mathcal{F}_n, n \in \mathbb{N}\}$ be a stochastic sequence defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, *i.e.*, the sequence of σ fields $\{\mathcal{F}_n, n \in \mathbb{N}\}$ in \mathcal{F} is increasing in n, and $\{\mathcal{F}_n\}$ are adapted to random variables $\{X_n\}$, \mathcal{F}_0 denotes the trivial σ field $\{\Phi, \Omega\}$ and $\mathbf{1}_{[\cdot]}$ the indicator function.

We begin by introducing some terminology and lemmas.

Definition 1 (Adler *et al.*, 1987 [2]) Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of random variables, and it is said to be stochastically dominated by a random variable *X* (we write $\{X_n, n \in \mathbb{N}\} \prec X$)

© 2013 Fan and Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$$\sup_{n\in\mathbb{N}} \mathbb{P}\left\{|X_n|>t\right\} \le C\mathbb{P}\left\{|X|>t\right\} \quad \text{for all } t>0.$$

Lemma 1 (Chow *et al.*, 1978 [3]) Let $\{X_n, \mathcal{F}_n, n \in \mathbb{N}\}$ be an L_p $(1 \le p \le 2)$ martingale difference sequence, if $\sum_{n=1}^{\infty} E(|X_n|^p | \mathcal{F}_{n-1}) < \infty$, then $\sum_{n=1}^{\infty} X_n$ a.c. converges.

Lemma 2 Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of random variables. If $\{X_n\} \prec X$, then for all t > 0,

$$\mathbb{E}|X_n|^2 \mathbf{1}_{[|X_n| \le t]} \le C \Big[t^2 \mathbb{P} \big(|X| > t \big) + \mathbb{E} X^2 \mathbf{1}_{[|X| \le t]} \Big].$$

Proof By the integral equality

$$2\int_0^t s\mathbb{P}(|X_n| > s) \, ds = t^2 \mathbb{P}(|X_n| > t) + \mathbb{E}|X_n|^2 \mathbf{1}_{[|X_n| \le t]},$$

it follows that

$$\mathbb{E}|X_n|^2 \mathbf{1}_{[|X_n| \le t]} \le 2 \int_0^t s \mathbb{P}(|X_n| > s) \, ds$$

$$\le 2C \int_0^t s \mathbb{P}(|X| > s) \, ds = C [t^2 \mathbb{P}(|X| > t) + \mathbb{E}X^2 \mathbf{1}_{[|X| \le t]}].$$

2 Strong law of large numbers

In this section, we always assume that a(x), x > 0 is a positive non-increasing function and $a_n = a(n)$, $A_n = \sum_{k=1}^n a_k$, $b_n = A_n/a_n$, where

(1) $A_n \to \infty;$

- (2) $0 < \liminf_{n} \frac{b_n}{n} a(\log b_n) \le \limsup_{n} \frac{b_n}{n} a(\log b_n) < \infty;$
- (3) $xa(\log^+ x)$ is non-decreasing for x > 0.

Theorem 1 Let $\{X, X_n\}$ be a sequence of random variables with $\{X_n\} \prec X$. If $E|X|a(\log^+|X|) < \infty$, then

$$\lim_{n} \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \Big[X_{k} - E(X_{k} \mathbf{1}_{[|X_{k}| \le b_{k}]} | \mathcal{F}_{k-1}) \Big] = 0, \quad a.c.$$
(2.1)

Proof To prove (2.1) by applying the Kronecker lemma, it suffices to show that

the series
$$\sum_{n=1}^{\infty} \frac{X_n - E(X_n \mathbf{1}_{[|X_n| \le b_n]} | \mathcal{F}_{n-1})}{b_n}$$
 converges a.c.

Since $0 < a(x) \downarrow$, (1) guarantees that $b_n \uparrow \infty$. Choose m_0 such that $n \ge m_0$ implies

$$\alpha n \le b_n a(\log b_n) \le \beta n \tag{2.2}$$

whence $b_n \ge \alpha n [a(\log b_m)]^{-1}$ for $n \ge m \ge m_0$ entailing

$$\sum_{k=m}^{\infty} b_k^{-2} \le \frac{a^2(\log b_m)}{\alpha^2 m}.$$
(2.3)

Put $Y_n = X_n \mathbf{1}_{[|X_n| \le b_n]}, Z_n = X_n \mathbf{1}_{[|X_n| > b_n]}$, obviously, $X_n = Y_n + Z_n, n \in \mathbb{N}$. Note that $\{X_n\} \prec X$ and the condition $E|X|a(\log^+|X|) < \infty$, we have

$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > b_n)$$

$$= \sum_{n=1}^{m_0-1} \mathbb{P}(|X_n| > b_n) + \sum_{n=m_0}^{\infty} \mathbb{P}(|X_n| > b_n)$$

$$\leq m_0 - 1 + C \sum_{n=m_0}^{\infty} \mathbb{P}(|X| > b_n)$$

$$\leq m_0 - 1 + C \sum_{n=m_0}^{\infty} \mathbb{P}(|X|a(\log |X|)) \ge b_n a(\log b_n))$$

$$\leq m_0 - 1 + C \sum_{n=m_0}^{\infty} \mathbb{P}(|X|a(\log |X|)) \ge \alpha n) < \infty, \qquad (2.4)$$

which shows

$$\mathbb{P}(X_n \neq Z_n, \text{i.o.}) = 0.$$
(2.5)

Let $W_n = \frac{Y_n}{b_n} - E(\frac{Y_n}{b_n} | \mathcal{F}_{n-1})$, then $(W_n, \mathcal{F}_n, n \in \mathbb{N})$ is a martingale difference sequence. Since

$$\begin{split} &\sum_{k=1}^{\infty} E \frac{Y_k^2}{b_k^2} = \sum_{k=1}^{\infty} \frac{EX_k^2 \mathbf{1}_{[|X_k| \le b_k]}}{b_k^2} \\ &\leq C \sum_{k=1}^{\infty} \left[E \mathbf{1}_{[|X| > b_k]} + \frac{EX^2 \mathbf{1}_{[|X| \le b_k]}}{b_k^2} \right] \quad (by \text{ Lemma 2}) \\ &= C \sum_{k=1}^{\infty} E \mathbf{1}_{[|X| > b_k]} + C \left(\sum_{k=1}^{m_0-1} + \sum_{k=m_0}^{\infty} \right) \frac{EX^2 \mathbf{1}_{[|X| \le b_k]}}{b_k^2} \\ &\leq C \sum_{k=1}^{\infty} \mathbb{P} (|X| > b_k) + C(m_0 - 1) + C \sum_{k=m_0}^{\infty} b_k^{-2} \left(\int_{[|X_k| \le b_{m_0-1}]} X^2 + \sum_{i=m_0}^k \int_{[b_{i-1} < |X| \le b_i]} X^2 \right) \\ &\leq \mathcal{O}(1) + C \sum_{i=m_0}^{\infty} \sum_{k=i}^{\infty} b_k^{-2} \int_{[b_{i-1} < |X| \le b_i]} X^2 \quad (by (2.4)) \\ &\leq \mathcal{O}(1) + \alpha^{-2} C \sum_{i=m_0}^{\infty} a(\log b_i) \int_{[b_{i-1} < |X| \le b_i]} X^2 \quad (by (2.2)) \\ &\leq \mathcal{O}(1) + \alpha^{-2} \beta C \sum_{i=m_0}^{\infty} a(\log b_i) \int_{[b_{i-1} < |X| \le b_i]} |X| \quad (by (2.2)) \\ &\leq \mathcal{O}(1) + \alpha^{-2} \beta C \sum_{i=m_0}^{\infty} \int_{[b_{i-1} < |X| \le b_i]} |X| a(\log |X|) < \infty. \end{split}$$

Note that

$$E\left[\sum_{n=1}^{\infty} E\left(W_n^2 | \mathcal{F}_{n-1}\right)\right] \le E\left[\sum_{n=1}^{\infty} E\left(\frac{Y_n^2}{b_n^2} | \mathcal{F}_{n-1}\right)\right]$$
$$= \sum_{n=1}^{\infty} E\frac{Y_n^2}{b_n^2} < \infty, \qquad (2.7)$$

which implies that $\sum_{n=1}^{\infty} E(W_n^2 | \mathcal{F}_{n-1}) < \infty$ a.c. Hence, by Lemma 1, we have $\sum_{n=1}^{\infty} W_n$ a.c. convergence.

Theorem 1 follows from (2.5) and (2.7).

Theorem 1 also includes some particular cases of means, we can establish the following.

Corollary 1 Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of random variables with $\{X_n\} \prec X$. If for some $\varepsilon > 0$, $E \frac{|X|}{\log |X| \mathbf{1}_{[X] > \varepsilon]}} < \infty$, then

$$\lim_{n} \frac{1}{\log n} \sum_{k=1}^{n} \left[\frac{X_k - E(X_k \mathbf{1}_{[|X_k| \le k \log k]} | \mathcal{F}_{k-1})}{k} \right] = 0, \quad a.c.$$

Corollary 2 Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of random variables with $\{X_n\} \prec X$ and for some $k \ge 2$,

$$a_n = \left[n(\log n) \cdots (\log_{k-1} n)\right]^{-1},$$

where $\log_1 n = \log n$, $\log_k n = \log(\log_{k-1} n)$, $k \ge 2$, if for all large C > 0,

$$E\frac{|X|\mathbf{1}_{[|X|>C]}}{(\log|X|)\cdots(\log_k|X|)}<\infty,$$

then

$$\lim_{n} \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \Big[X_{k} - E(X_{k} \mathbf{1}_{[|X_{k}| \le b_{k}]} | \mathcal{F}_{k-1}) \Big] = 0, \quad a.c.$$

Corollary 3 Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of random variables with $\{X_n\} \prec X$. Further, let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ and $\mathcal{F}_{-n} = \{\phi, \Omega\}, n \ge 0$. If $E|X|a(\log^+|X|) < \infty$, then for any $m \ge 1$,

$$\lim_{n} \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \Big[X_{k} - E(X_{k} \mathbf{1}_{[|X_{k}| \le b_{k}]} | \mathcal{F}_{k-m}) \Big] = 0, \quad a.c.$$
(2.8)

Proof Since $\{X_{nm+l}, \mathcal{F}_{nm+l}, n \ge 1\}$ is an adapted stochastic sequence and $\{X_{nm+l}\} \prec X$, by Theorem 1, we have for l = 0, 1, ..., m - 1 that

$$\sum_{n=1}^{\infty} \frac{X_{nm+l} - E(X_{nm+l} \mathbf{1}_{[|X_{nm+l}| \le b_{nm+l}]} | \mathcal{F}_{(n-1)m+l})}{b_{nm+l}} \quad \text{converges a.c.}$$

Therefore, we have

$$\sum_{n=m}^{\infty} \frac{X_n - E(X_n \mathbf{1}_{[|X_n| \le b_n]} | \mathcal{F}_{n-m})}{b_n}$$
$$= \sum_{l=0}^{m-1} \sum_{n=1}^{\infty} \frac{X_{nm+l} - E(X_{nm+l} \mathbf{1}_{[|X_{nm+l}| \le b_{nm+l}]} | \mathcal{F}_{(n-1)m+l})}{b_{nm+l}} \quad \text{converges a.c.}$$

Corollary 4 Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of *m*-dependent random variables. Further, let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ and $\mathcal{F}_{-n} = \{\phi, \Omega\}, n \ge 0$. If there exists a random variable X such that $\{X_n\} \prec X$ and $E|X|a(\log^+|X|) < \infty$, then

$$\lim_{n} \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \Big[X_{k} - E(X_{k} \mathbf{1}_{[|X_{k}| \le b_{k}]}) \Big] = 0, \quad a.c.$$

Proof Note that $\{X_n, n \in \mathbb{N}\}$ is a sequence of m-dependent random variables, then $E(X_n | \mathcal{F}_{n-m}) = EX_n$, Corollary 4 follows directly from Corollary 3.

Definition 2 (Stout, 1974) Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of random variables, and let $\mathcal{F}_n^m = \sigma(X_n, \dots, X_m)$. We say that the sequence $\{X_n, n \in \mathbb{N}\}$ is *-mixing if there exists a positive integer *M* and a non-decreasing function $\varphi(n)$ defined on integers $n \ge M$ with $\lim_n \varphi(n) = 0$ such that for n > M, $A \in \mathcal{F}_0^m$ and $B \in \mathcal{F}_{m+n}^\infty$, the relation

$$\left|\mathbb{P}(A \cap B) - \mathbb{P}(A)P(B)\right| \le \varphi(n)\mathbb{P}(A)\mathbb{P}(B)$$

holds for any integer $m \ge 1$.

It has been proved (cf. [4]) that the *-mixing condition is equivalent to the condition

$$\left|\mathbb{P}(B|\mathcal{F}_0^m)-\mathbb{P}(B)\right|\leq \varphi(n)\mathbb{P}(B),\quad \text{a.c.}$$

for $B \in \mathcal{F}_{m+n}^{\infty}$ and $m \ge 1$ implies

$$\left|E\left(X_{n+m}|\mathcal{F}_{0}^{m}\right)-EX_{n+m}\right|\leq\varphi(n)E|X_{n+m}|,\quad\text{a.c.}$$
(2.9)

Theorem 2 Let $\{X, X_n, n \in \mathbb{N}\}$ be a sequence of *-mixing random variables with $\{X_n\} \prec X$. Further, let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ and $\mathcal{F}_{-n} = \{\phi, \Omega\}, n \ge 0$. If $\max\{E|X|, E|X|a(\log^+|X|)\} < \infty$, then

$$\lim_{n} \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} [X_{k} - EX_{k} \mathbf{1}_{[|X_{k}| \le b_{k}]}] = 0, \quad a.c.$$

Proof By Corollary 3, we have, for each $m \ge 1$,

$$\lim_{n} \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \Big[X_{k} - E(X_{k} \mathbf{1}_{[|X_{k}| \le b_{k}]} | \mathcal{F}_{k-m}) \Big] = 0, \quad \text{a.c.}$$

Since $\{X_n, n \in \mathbb{N}\}$ is *-mixing, by (2.8) and (2.9), we obtain

$$\begin{aligned} \left| \frac{1}{A_n} \sum_{k=1}^n a_k [X_k - EX_k \mathbf{1}_{[|X_k| \le b_k]}] \right| \\ &\leq \left| \frac{1}{A_n} \sum_{k=1}^n a_k [X_k - E(X_k \mathbf{1}_{[|X_k| \le b_k]} | \mathcal{F}_{k-m})] \right| \\ &+ \frac{1}{A_n} \sum_{k=1}^n a_k | \left[E(X_k \mathbf{1}_{[|X_k| \le b_k]} | \mathcal{F}_{k-m}) - EX_k \mathbf{1}_{[|X_k| \le b_k]} \right] \right| \\ &\leq \left| \frac{1}{A_n} \sum_{k=1}^n a_k [X_k - E(X_k \mathbf{1}_{[|X_k| \le b_k]} | \mathcal{F}_{k-m})] \right| + \frac{\varphi(m)}{A_n} \sum_{k=1}^n a_k E|X_k| \mathbf{1}_{[|X_k| \le b_k]} \\ &\leq \left| \frac{1}{A_n} \sum_{k=1}^n a_k [X_k - E(X_k \mathbf{1}_{[|X_k| \le b_k]} | \mathcal{F}_{k-m})] \right| + \varphi(m) E|X| \to 0 \quad \text{a.c. (as } n \to \infty). \end{aligned}$$

Thus, using the Kroneker lemma, Theorem 2 follows.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

WZ and FA carried out the design of the study and performed the analysis, WZ drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Foundation item: The National Nature Science Foundation of China (No. 11071104), Foundation of Anhui Educational Committee (KJ2012B117) and Graduate Innovation Fund of AnHui University of Technology (D2011025).

Received: 28 August 2012 Accepted: 3 January 2013 Published: 18 January 2013

References

- 1. Chow, YS, Teicher, H: Almost certain summability of independent, identically distributed random variables. Ann. Math. Stat. **42**(1), 401-404 (1971)
- 2. Adler, Y, Rosasky, A: Some general strong laws for weighted sums of stochastically dominated random variables. Stoch. Anal. Appl. 5(1), 1-16 (1987)
- 3. Chow, YS, Teicher, H: Probability Theory. Springer, New York (1978)
- 4. Stout, WF: Almost Sure Convergence. Academic Press, San Diego (1974)

doi:10.1186/1029-242X-2013-25

Cite this article as: Fan and Wang: On almost sure limiting behavior of a dependent random sequence. Journal of Inequalities and Applications 2013 2013:25.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com