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ABSTRACT

Current prediction of snowfall amounts is accomplished either by using empirical techniques or by using a
standard modification of liquid equivalent precipitation such as the 10-to-1 rule. This rule, which supposes that
the depth of the snowfall is 10 times the liquid equivalent (a snow ratio of 10:1, reflecting an assumed snow
density of 100 kg m23), is a particularly popular technique with operational forecasters, although it dates from
a limited nineteenth-century study. Unfortunately, measurements of freshly fallen snow indicate that the snow
ratio can vary from on the order of 3:1 to (occasionally) 100:1. Improving quantitative snowfall forecasts requires,
in addition to solutions to the significant challenge of forecasting liquid precipitation amounts, a more robust
method for forecasting the density of snow. A review of the microphysical literature reveals that many factors
may contribute to snow density, including in-cloud (crystal habit and size, the degree of riming and aggregation
of the snowflake), subcloud (melting and sublimation), and surface processes (compaction and snowpack meta-
morphism). Despite this complexity, the paper explores the sufficiency of surface and radiosonde data for the
classification of snowfall density. A principal component analysis isolates seven factors that influence the snow
ratio: solar radiation (month), low- to midlevel temperature, mid- to upper-level temperature, low- to midlevel
relative humidity, midlevel relative humidity, upper-level relative humidity, and external compaction (surface
wind speed and liquid equivalent). A 10-member ensemble of artificial neural networks is employed to explore
the capability of determining snow ratio in one of three classes: heavy (1:1 , ratio , 9:1), average (9:1 # ratio
# 15:1), and light (ratio . 15:1). The ensemble correctly diagnoses 60.4% of the cases, which is a substantial
improvement over the 41.7% correct using the sample climatology, 45.0% correct using the 10-to-1 ratio, and
51.7% correct using the National Weather Service ‘‘new snowfall to estimated meltwater conversion’’ table. A
key skill measure, the Heidke skill score, attains values of 0.34–0.42 using the ensemble technique, with increases
of 75%–183% over the next most skillful approach. The critical success index shows that the ensemble technique
provides the best information for all three snow-ratio classes. The most critical inputs to the ensemble are related
to the month, temperature, and external compaction. Withholding relative humidity information from the neural
networks leads to a loss of performance of at least 5% in percent correct, suggesting that these inputs are useful,
if nonessential. Examples of pairs of cases highlight the influence that these factors have in determining snow
ratio. Given the improvement over presently used techniques for diagnosing snow ratio, this study indicates that
the neural network approach can lead to advances in forecasting snowfall depth.

1. Introduction

Forecasting snowfall depth is, at present, a two-
step problem. First, an assessment must be made of
the amount of liquid water that is to fall, the quan-
titative precipitation forecast (QPF) problem (e.g.,
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Fritsch et al. 1998). Second, this liquid water must
be converted into snow, hereafter the snow-density
problem. Historically, very little research has ad-
dressed the snow-density problem, as discussed by
Super and Holroyd (1997, p. 20) and Judson and
Doesken (2000, section 1). As we argue below, cur-
rent operational practice of forecasting snow density,
and hence snowfall depth, is still largely a nonsci-
entific endeavor. Consequently, even if predictions of
QPF were accurate and precise, large errors in snow-
fall forecasts (by factors of 2–10) could still occur as
a result of inaccurate predictions of snow density. In
this paper, we present a method to assess the complex
problem of snow-density forecasting.
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a. The QPF and snow-density problems

The economic and social value of accurate QPFs are
well recognized (e.g., Fritsch et al. 1998). QPFs, how-
ever, have historically posed a significant operational
forecast challenge (e.g., Charba and Klein 1980) and,
in recent years, have exhibited only very modest in-
creases in skill (e.g., Olson et al. 1995; Roebber and
Bosart 1998; Fritsch et al. 1998). QPF skill undergoes
substantial seasonal fluctuations, with the lowest skills
in the warm season in association with the increased
potential for convective precipitation (e.g., Olson et al.
1995). Even in the cold season, however, skill remains
modest, with mean threat scores for heavy precipitation
($25 mm) and heavy snow ($100 mm 12 h21) of 0.27
and 0.20, respectively (Olson et al. 1995).

In the cold season, forecasts of precipitation type are
required as well, since large sectors of the economy
(e.g., transportation, construction, agriculture, com-
merce) are affected by snow and freezing rain. The cold-
season QPF problem requires (in addition to information
concerning the myriad factors that govern precipitation
generation, type, and amount) insight into the physical
processes controlling the depth of the snowfall via the
snow density. Snow-density forecasting is important not
only for operational weather forecasts for snowfall, but
also for avalanche forecasting (Perla 1970; LaChapelle
1980; Ferguson et al. 1990), snowmelt runoff forecast-
ing, snowdrift forecasting, and as an input parameter in
the snow accumulation algorithm for the Weather Sur-
veillance Radar-1988 Doppler (WSR-88D) (Super and
Holroyd 1997). Accurate forecasts of the depth of the
snowfall are critical to many snow removal operations,
since these activities are triggered by exceedances of
specific snow-depth thresholds (Gray and Male 1981,
671–706; Minsk 1998, 123–132).

b. Forecasting snow density: The 10-to-1 rule and
current operational practice

Snow density is often assumed to conform to the 10-
to-1 rule: the snow ratio, defined by the density of water
(1000 kg m23) to the density of snow (assumed to be
100 kg m23), is 10:1. For example, if a forecaster be-
lieves that 1 in. of liquid water will fall at a given point
over a specified time, then the 10-to-1 rule implies a
total snowfall of 10 in. As noted by Judson and Doesken
(2000), the 10-to-1 rule appears to originate from the
results of a nineteenth-century Canadian study. Potter
(1965, p. 1) quotes from this study: ‘‘A long series of
experiments conducted by General Sir H. Lefroy, for-
merly Director of the Toronto Observatory, led to the
conclusion that this relation [10 to 1] is true on the
average. It is not affirmed that it holds true in every
case, as snow varies in density. . . .’’ The 10-to-1 rule
has persisted, however, despite the almost immediate
warnings concerning its accuracy (Abbe 1888, p. 386).

More comprehensive measurements of snow density

(e.g., Currie 1947; LaChapelle 1962, reproduced in
Doesken and Judson 1997, p. 15; Power et al. 1964;
Super and Holroyd 1997; Judson and Doesken 2000)
have established that this rule is an inadequate char-
acterization of the true range of snow densities. Snow
densities can vary from 10 kg m23 (a snow ratio of 100:
1) to approximately 350 kg m23 (2.9:1). In interviews
with current National Weather Service (NWS) fore-
casters from around the country, we find that the 10-to-
1 rule may be modified slightly to 12 to 1 or 20 to 1,
depending on the mean or median climatological value
of snow density at a particular station (e.g., Currie 1947;
Holroyd and Super 1997, p. 27). The concept of uni-
formly applying a fixed snow ratio, though, is typically
employed. Thus, the persistence of the 10-to-1 rule has
served merely to exacerbate the snow-forecast problem
by oversimplifying the determination of snow density.

Attempts to specify snow density, usually through
reference to in-cloud or surface air temperatures, have
shown only marginal diagnostic capability, even when
using carefully collected measurements (e.g., Grant and
Rhea 1974; Super and Holroyd 1997; Kyle and Wesley
1997; Judson and Doesken 2000). Super and Holroyd
(1997, p. 27) found that the single best prediction meth-
od for snow density is persistence, but this still only
explains about 30% of the variance. In the absence of
explicit snow-density forecasts, some empirical tech-
niques have evolved (e.g., Chaston 1989; Garcia 1994).
[See the review in Wetzel and Martin (2001) for a com-
plete list of such techniques.] As argued in Schultz et
al. (2002), however, these techniques are inadequate and
remain unverified for a large variety of events. To gain
further understanding of the snowfall forecasting prob-
lem, we next review the physical processes that affect
snow density.

c. Factors affecting snow density

The density of snowfall is related to the ice-crystal
structure by virtue of the relative proportion of the oc-
cupied volume of crystal composed of air. Snow density
is regulated by (a) in-cloud processes that affect the
shape and size of growing ice crystals, (b) subcloud
processes that modify the ice crystal as it falls, and (c)
ground-level compaction due to prevailing weather con-
ditions and snowpack metamorphism. Understanding
how these processes affect snow density is difficult be-
cause direct observations of cloud microphysical pro-
cesses, thermodynamic profiles, and surface measure-
ments are often unavailable.

Cloud microphysical research indicates that many
factors contribute to the final structure of an ice crystal.
One factor that has been shown to affect snow density
is the habit (shape) of the ice crystal. In an environment
supersaturated with respect to ice, incipient ice particles
will grow to form one of many types of crystal habits
(e.g., Magono and Lee 1966; Ryan et al. 1976; Fukuta
and Takahashi 1999). The habit is determined by the
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environment in which the ice crystal grows: specifically,
the surrounding air temperature and degree of super-
saturation with respect to ice and liquid water. For ex-
ample, at temperatures of 08 to 248C, plates dominate;
at 248 to 2108C, prisms, scrolls, sheaths, and needles
dominate, with the specific habit at these temperatures
controlled by the degree of supersaturation; at 2108 to
2208C, thick plates, sectors, and dendrites are found,
depending on supersaturation; and at temperatures less
than 2208C, hollow columns and sheaths dominate.
Power et al. (1964) showed that pure dendrites have the
lowest density, although the variation in the density of
dendritic aggregates is large [from approximately 5 to
100 kg m23; Magono and Nakamura (1965); Passarelli
and Srivastava (1979)]. Although needles would be ex-
pected to be dense, they are the next lighter crystal habit
since they tend to aggregate at the relatively high tem-
peratures at which they form (Power et al. 1964). Fi-
nally, columns and plates were the next densest form.
Snow, however, is not a homogeneous collection of ice
crystals. As an ice crystal falls, it passes through varying
thermodynamic and moisture conditions, with each new
crystal habit being superimposed upon the previous
structure, such that the final habit is a combination of
various growth modes (e.g., Pruppacher and Klett 1997,
p. 44).

Another factor affecting density is crystal size. Large
dendritic crystals will occupy much empty air space,
whereas smaller crystals will pack together into a denser
assemblage. The ultimate size of crystals depends on
factors that affect the growth rate, such as the residence
time in the cloud and the degree of supersaturation with
respect to ice. For a given degree of supersaturation with
respect to ice, ice-crystal growth by vapor diffusion is
dependent primarily on temperature, as well as second-
ary pressure effects (e.g., Byers 1965; Ryan et al. 1976;
Takahashi et al. 1991; Fukuta and Takahashi 1999). At
1000 hPa, the growth rate maximizes near 2148C,
whereas at 500 hPa, the rate maximizes near 2178C
(e.g., Byers 1965, p. 123). The maximum growth rate
is expected to occur near the level of maximum upward
air motion within the cloud, where the greatest water
vapor delivery occurs (Auer and White 1982). Through
natural variations in ice-crystal size, some crystals will
grow relative to their neighbors within the cloud and
begin to fall, thus promoting the sweepout of smaller
particles. If this sweepout occurs in a cloud of ice crys-
tals, then aggregation leads to the formation of snow-
flakes and relatively low snow density. An ice crystal
falling through a cloud of supercooled water droplets,
on the other hand, will lead to rimed crystals (graupel)
through accretional growth, and very high snow den-
sities (e.g., Power et al. 1964; Judson and Doesken
2000).

After leaving the cloud, the snow density can also be
affected by sublimation and melting. Sublimation occurs
when the air surrounding the crystal is subsaturated with
respect to ice, whereas melting occurs when the tem-

perature of the air surrounding the crystal is greater than
08C. Substantial sublimation or melting of a snowflake
can occur over relatively short vertical distances [;500
m; Houze (1993, p. 199)]. Consequently, the liquid wa-
ter content and the density of a snowflake when it reach-
es the ground can be strongly dependent upon the low-
level air temperature and relative humidity. Hence, the
subcloud thermodynamic stratification through which an
ice crystal falls also will be a critical factor in deter-
mining snowfall density.

Finally, once the snow lands on the ground, com-
paction of the ice crystals due to prevailing weather
conditions and snowpack metamorphism may occur.
Wind greater than approximately 9 m s21 can move ice
crystals at the surface, fracturing the crystal during sal-
tation and causing surficial compaction, increasing snow
density (e.g., Gray and Male 1981, 345–350). The
weight of the snowfall can further compress the snow-
pack. Within hours of falling, snow metamorphism can
occur, in which water sublimates from the sharper edges
of the ice crystals and deposits on the more rounded
edges, making the snow crystals more rounded and
dense (e.g., Gray and Male 1981, 277–285; Doesken
and Judson 1997, 18–19). Such rounding is accelerated
at temperatures approaching freezing.

d. A new approach

Although the complexity of the snow-density problem
is considerable, there is some expectation that the bulk
effects of these processes can be assessed through ref-
erence to the temperature and moisture profiles within
and below the cloud. The existing observational net-
work does not provide such profiles in great temporal
or spatial detail (e.g., radiosonde measurements are tak-
en only twice daily with approximate station separations
of 300–400 km in the United States); however, the re-
gional character of both air masses and measured snow
densities (e.g., Potter 1965; Judson and Doesken 2000)
suggests the possibility of isolating a useful signal from
the existing, albeit deficient, observational record. Such
a procedure would clearly have great operational utility.
Hence, in this paper, the feasibility of the diagnosis of
snow density using only routinely available measure-
ments is addressed.

The difficulty of measuring snowfall and its impli-
cations for this study are discussed in section 2. The
approach used to diagnose snow density, employing ar-
tificial neural networks (ANNs), is discussed in section
3. An interpretation and discussion of these results is
offered in section 4. A summary of the findings of this
paper is given in section 5.

2. Data

The purpose of this study is to develop a methodology
to diagnose snow density using operational data col-
lected by the NWS over areas of the continental United
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FIG. 1. Locations of the 28 radiosonde sites with collocated surface reports used in the study.

States receiving frequent, measurable snowfall. The re-
view of factors affecting snow density in section 1 sug-
gests that upper-air observations of temperature and hu-
midity, and surface observations of temperature, wind
speed, and precipitation, are needed. Thus, snowfall
events for this study must be collocated with an upper-
air observing site. Sounding data from these sites were
extracted from the National Climatic Data Center/Fore-
cast Systems Laboratory (NCDC/FSL) North American
radiosonde dataset (Schwartz and Govett 1992; also see
http://raob.fsl.noaa.gov/RaobpSoftware.html on line).

The new-snow amounts (6-h values) come from the
United States Air Force DATSAV2 Surface Climatic
database, whereas the NCDC hourly precipitation da-
taset TD-3240 provided the liquid equivalent precipi-
tation. Two different datasets were employed since the
DATSAV2 reports generally included only 24-h precip-
itation measurements. NCDC summary of the day snow
reports were examined to ensure consistency between
datasets.

Based on potential snowfall events culled from these
two datasets, quality control was accomplished in the
following manner. First, since temporal variations in
density can occur within an event over just a few hours
(e.g., Super and Holroyd 1997, 25–27), the reported
snow must have occurred within 6 h of the nominal time
of a radiosonde launch (0000 or 1200 UTC). A snowfall
that persists over a 12-h period, for example, will then
be split into 6-h totals and associated with two succes-
sive soundings. Second, measuring the depth of new

snow is problematic due to metamorphism, compaction,
drifting, the frequency of snow-depth measurement
(e.g., Doesken and Judson 1997; Nouhan 1999; Doesken
and Leffler 2000), and the type of gauge used (e.g.,
Goodison 1978; Groisman et al. 1991; Groisman and
Legates 1994). To mitigate against errors and impre-
cision in measurement, the depth of new snow must
have measured at least 50.8 mm (2 in.) and the liquid
equivalent precipitation at least 2.8 mm (0.11 in.), this
latter threshold being defined by a simple error analysis
for snow ratio (e.g., Judson and Doesken 2000, p. 1584).
Third, to reduce measurement errors associated with
substantial snow drift, only events for which surface
winds were less than or equal to 9 m s21 at the time of
the radiosonde report were considered (Gray and Male
1981, 345–350). This threshold is within the ranges for
wet and dry snows reported by Li and Pomeroy (1997).
The quality control measures produced 1650 snowfall
events over the 22-yr period 1973–94 for the 28 stations
shown in Fig. 1.

The values of the snow ratios for the 1650 events
range from 1.9:1 to 46.8:1 (Fig. 2a) and the values for
snow densities range from 21.4 to 526.3 kg m23 (Fig.
2b). Both snow ratio and snow density are provided for
comparison with past studies. In so doing, an apparent
paradox arises since snow ratio and snow density have
a reciprocal relationship; that is, 10 units of ratio do not
equate to a fixed number of density units (e.g., a snow-
ratio bin of 6–8:1, equaling a density of 125–167 kg
m23, compared to a snow-ratio bin of 22–24:1, equaling
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FIG. 2. Histograms for the dataset used in this paper (1650 snowfall
events over 28 stations during 1973–94). The y axis is indicated with
the number of events on the left side of the graph and the percentage
of total events on the right side of the graph. Light, average, and
heavy are defined in the text. (a) Snow ratio (in two-unit bins). (b)
Snow density (in 10 kg m23 bins).

a density of 41.7–45.5 kg m23). The mean and median
snow ratios are 15.6:1 and 14.1:1, respectively, whereas
the mean and median snow densities are 80.9 and 70.9
kg m23, respectively. Figure 2a shows that the mode
snow ratio is about 10:1 (14% of the events have snow
ratios between 9:1 and 11:1), suggesting some weak
indication for the validity of the 10-to-1 rule. [The mode
snow density is between 50 and 60 kg m23 (Fig. 2b).]
These 14% are a subset of 41% classified as average
(snow ratios between 9:1 and 15:1; snow densities be-
tween 67 and 111 kg m23; see section 3). Another 14%
of the events have snow ratios less than 9:1 and are
classified as heavy. The remainder of the events, how-
ever, have snow ratios greater than average (45%) and
are classified as light. The shape of the curve in Fig.
2b and its skewness toward high snow densities are
consistent with previously published studies (e.g.,
LaChapelle 1962, reproduced in Doesken and Judson
1997, p. 15; Super and Holroyd 1997, p. 23; Judson and
Doesken 2000).

The shape of the histograms of snow ratio or snow
density from individual observing sites can differ sub-
stantially, even for locations in close proximity, as

shown by Super and Holroyd (1997) and Judson and
Doesken (2000). The variability of the snow ratios from
the individual sites in this paper is a subject of con-
tinuing research and will not be presented here.

3. Snow-density diagnosis

Despite the quality-control procedures described in
section 2, it is expected that the computed snow ratios
are subject to imprecision, given the difficulties in mea-
suring both the depth and liquid equivalent of snowfalls.
Consequently, for the purposes of diagnosis, all snow
ratios are categorized according to three specified clas-
ses that reflect the distinct density characteristics of
snowfalls (Fig. 2): heavy (1:1 , ratio , 9:1), average
(9:1 # ratio # 15:1), and light (ratio . 15:1). The
average class is defined to include the mode of the snow-
ratio distribution (Fig. 2a), but extending to higher ratios
as suggested by Super and Holroyd (1997), while the
heavy and light classes extend outward from either side
of that class. Diagnosis of snow ratio then becomes a
classification problem and the requirement is to define
the boundaries in the input space (composed of the set
of snow-ratio predictors) that define the separation be-
tween snow-ratio classes. In particular, a discriminant
function is sought that evaluates every position in input
space and produces a high value for the correct class
and low values for the two others.

a. Artificial neural networks

ANNs are widely used in classification problems
(e.g., Bishop 1996; Principe et al. 2000). A general re-
view of applications of ANNs to problems in meteo-
rology and oceanography can be found in Hsieh and
Tang (1998). Further information about ANNs can be
found in Marzban and Witt (2001), online (ftp://ftp.
sas.com/pub/neural/FAQ.html), and in the appendix of
this paper. An ANN can be defined as a network of
many simple processors (processing elements), joined
by communication channels (connections) that carry nu-
meric data. The processing elements operate on the in-
puts they receive via the connections. The architecture
of the ANN is defined by the connectivity. ANNs typ-
ically follow a training rule by which the weights of the
connections are adjusted on the basis of examples pro-
vided by training data. In this way, ANNs are said to
‘‘learn’’ and can exhibit some capability for general-
ization beyond the training data (in other words, the
network can produce reliable results for cases not rep-
resented exactly in the training data). It is important to
recognize, however, that there are no methods for train-
ing ANNs that can create relationships not contained
within the training data.

In this work, training of the ANNs is accomplished
using supervised learning. The inputs (i.e., predictors
for snow ratio) and the desired snow-ratio classes are
given to the ANN during training so that the network
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TABLE 1. Sigma (s) coordinate system used for sounding analysis:
p is pressure and psurf is surface pressure.

Sigma level s 5
p

psurf

1
2
3
4
5

1.000
0.975
0.950
0.925
0.900

6
7
8
9

10

0.875
0.850
0.800
0.750
0.700

11
12
13
14

0.650
0.600
0.500
0.400

TABLE 2. Set of variables extracted from sounding data and used as inputs into the artificial neutral networks. The sigma levels of
temperature (T ) and relative humidity (RH) measurements are indicated in parentheses, such that T(1) denotes the temperature at sigma level
1. The six orthogonal principal components are denoted F1–F6.

Name Definition Physical meaning

Month index
F1
F2
F3
F4
F5
F6

Jan 5 11, Jul 5 21, 0.33 per month
T(1)–T(8)
RH(1)–RH(7)
T(6)–T(14)
RH(10)–RH(13)
RH(7)–RH(10)
Surface wind, precipitation amount

Solar radiation
Low- to midlevel temperature
Low- to midlevel relative humidity
Mid- to upper-level temperature
Upper-level relative humidity
Midlevel relative humidity
External compaction

can adjust its connections to match the predicted and
desired classes. This phase is distinct from testing, in
which the trained network is only given the inputs, not
the desired classes. Here, the term ‘‘population’’ is used
to describe the set of all cases for which the system is
designed, and ‘‘sample’’ (a subset of the population) for
the set of cases that are actually available for training
and testing. In order to accomplish training and testing,
the sample is divided into a training set (here, 60% of
the sample), a cross-validation set (20%), and a test set
(20%). The training set is used to provide examples to
the network to fit the weights and optimize the network
snow-ratio class (accomplished by minimization of a
cost function, in this case, the mean square error). Prior
to training, data are reserved for a cross-validation early-
stopping procedure, which provides a means to prevent
overfitting of the network weights. The test set is used
to assess independently the performance of the trained
network.

The review of ANNs (see above and appendix) sug-
gests the following salient points. First, the inputs
should be selected based upon prior knowledge of the
physical system. Second, the number of inputs should
be minimized to constrain the dimensionality of the
problem. Third, the training set should be comprehen-
sive (i.e., representative of the population), such that
the full range of scenarios to be classified are presented
for training. Fourth, training should be accomplished

using early stopping to limit overfitting. Fifth, a variety
of network architectures should be evaluated and com-
bined into an ensemble to improve results. These criteria
are all met in the study methodology as outlined below.

b. Study procedure

Given the relationship between thermodynamic pro-
files and snow density outlined in section 1, the classifier
inputs were defined from measurements of temperature
and relative humidity obtained from standard radio-
sonde launches. In order to account for on-the-ground
compaction processes (Gray and Male 1981, 275–306),
surface wind speed and liquid equivalent precipitation
were also used as inputs. This procedure ensures that
the inputs are based upon physical knowledge. Since
surface elevation at the sites depicted in Fig. 1 varies
from 1.6 km to near sea level, a sigma coordinate system
was adopted to define a consistent set of 14 vertical
levels for all soundings (Table 1). Further, to constrain
the dimensionality of the problem, principal component
analysis was used to extract a set of six factors (Table
2) from the original set of 29 inputs (temperature at all
14 levels, relative humidity at the first 13 levels, surface
wind speed, liquid equivalent precipitation).1 It is known
that solar radiation is absorbed to some depth within a
snowpack and that the grains become rounded during
the melting process, leading to compaction (Gray and
Male 1981, p. 326). A monthly index (January 5 11,
July 5 21), meant to represent the effects of solar ra-
diation, was added as a seventh input (Table 2).

The six factors produced by the factor analysis are
associated with temperature (F1, F3), relative humidity
(F2, F4, F5), and surface compaction (F6). The tem-
perature and moisture factors are further stratified by

1 The objective of factor analysis is to reduce a set of correlated
variables to a smaller number of factors, which are linear combi-
nations of the correlated variables. In this work, the extracted factors
are constrained to be orthogonal (zero correlation between the fac-
tors). The factor extraction method used principal components anal-
ysis (Hotelling 1933). The initial factoring method, used to determine
the number of factors, was a combination method, employing the
larger of the 75% variance rule (Gorsuch 1983) and root curve anal-
ysis (Cattell 1966; Cattell and Jaspers 1967). A Varimax transfor-
mation method was employed (Kaiser 1958). See Gorsuch (1983) for
more details on factor analysis.
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FIG. 3. Relative frequency distributions of the neural network inputs, stratified by observed snow-ratio class (heavy, solid circle; average,
x-box; light, open circle). Shown are (a) month index, (b) first principal component (F1, a measure of low- to midlevel temperature), (c)
second principal component (F2, a measure of low- to midlevel relative humidity), (d) third principal component (F3, a measure of mid- to
upper-level temperature), (e) fourth principal component (F4, a measure of upper-level relative humidity), (f ) fifth principal component (F5,
a measure of midlevel relative humidity), and (g) sixth principal component (F6, a measure of surface compaction processes). For reference,
approximate layer average quantities (as obtained from a linear regression) are also shown along the abscissa (e.g., for F1, the mean temperature
for sigma levels 1–8). For F6, the wind (m s21) and precipitation amounts (mm) are obtained under the null assumption for the other variable.
All temperatures are degrees Celsius and relative humidities are percent.

level, representing the upper level (about 700–500 hPa),
mid- to upper level (875–400 hPa), midlevel (850–700
hPa), and low to midlevel (below 850 hPa) (note that
the exact pressure levels will vary for a given site, de-
pending upon surface elevation; see Table 1).

The seventh input, the monthly index, should not be
confused with climatological properties. For example,
when the 1650 events are stratified by season (autumn,
September–November; winter, December–February;
spring, March–May) for sites within the high plains
[Great Falls, Montana (GTF); Bismark, North Dakota
(BIS); Rapid City, South Dakota (RAP); North Platte,
Nebraska (LBF); Denver, Colorado (DEN); Dodge City,
Kansas (DDC); and Amarillo, Texas (AMA)], an in-
creased frequency of dense springtime snowfalls is ap-
parent (autumn, 10.0%; winter, 6.4%; spring, 24.3%).
This occurrence is associated with increased tempera-

tures and availability of moisture (mean surface tem-
perature and relative humidity for autumn, 24.08C and
86.9%; winter: 26.98C and 87.4%, spring: 21.58C and
87.7%), properties that are directly accounted for by the
sounding data. These variables are not associated with
the month index, as determined by a low correlation
coefficient of 0.30 and 0.04 between the month index
and the low-level temperature (F1) and moisture (F2)
factors, respectively.

An important physical aspect that is not accounted
for by the sounding data, however, is solar radiation.
For snowfall, this would most likely be in the form of
diffuse solar radiation, which is associated with the time
of year. Although explicit information on solar radiation
is not available for the sounding sites, the relationship
between the month index and solar radiation can be
inferred using a data comparison between similar sound-
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FIG. 3. (Continued)

ings. Three sets of matched sounding and surface data
were constructed. Set A consists of 20 pairs of sound-
ings–surface data that are closely matched (defined by
the Euclidean distance between the sounding and sur-
face data pairs), with one sounding taken in the autumn
and the second in the spring. Set B consists of 64 pairs
of closely matched soundings–surface data, in which
one sounding was taken in either the autumn or spring
and the second sounding was taken in the winter. Set
C consists of 1000 randomly selected sounding–surface
data pairs, which are used as a background measure of
similarity.

Given sufficiently good matching in the sounding
pairs and provided that solar radiation is an important
factor in determining snow density, then set A should
produce snow ratios between the matched pairs that are
more similar than those in set B. The rms difference in
sounding temperature and relative humidity (sigma-lev-
el data) for set A is 42% of that difference for the ran-
dom pairs, compared to 22% for set B. For surface wind
and liquid equivalent precipitation, the rms differences
for sets A and B were 39% and 40%, respectively, of
that of the random pairs. Hence, the sounding match is

somewhat better for set B. Despite this, the snow-ratio
class agreement between sounding pairs is 60% for set
A compared to only 42% for set B, reinforcing the im-
portance of solar radiation.

Analysis of the frequency distributions of the inputs,
stratified according to snow-ratio class, is a useful meth-
od for assessing their first-order diagnostic capability
(Fig. 3). Based upon visual inspection, the greatest sep-
arations between the classes are revealed by the month
index, F1 (low- to midlevel temperature), F3 (mid- to
upper-level temperature), and F6 (compaction). How-
ever, these results do not necessarily imply a lack of
utility of the remaining three factors, since nonlinear
interactions between inputs may enhance diagnostic ca-
pability. This effect will be discussed in section 4a.

Since these seven inputs all have potential discrimi-
natory capability, they were all used in the neural net-
works. Two types of network architectures were selected
to define the ensemble, which was constructed from 10
individual networks (e.g., Opitz and Maclin 1999; see
appendix). The training datasets for each individual
member of the ensemble were distinct, having been ob-
tained from the original training set using the bootstrap-
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FIG. 4. Schematic diagrams of the MLP neural network architec-
ture: (a) a single-hidden-layer MLP with D inputs, K hidden layer
processing elements and M outputs and (b) a two-hidden-layer MLP
with D inputs, K processing elements in hidden layer 1, L processing
elements in hidden layer 2 and M outputs.

ping technique (Efron and Tibshirani 1993). This ap-
proach has been shown to be effective in producing
unique networks (i.e., variable weights), which allows
decorrelation of the errors of the individual networks
and, hence, improved ensemble performance (Breiman
1996; Opitz and Maclin 1999).

The first network type, composing five members of
the ensemble, is the multilayer perceptron (MLP) with
a single hidden layer (Fig. 4a). MLP networks have been
used extensively in classification problems (e.g., Bishop
1996; Principe et al. 2000). Each of the single-hidden-
layer MLPs featured seven inputs, 40 processing ele-
ments in the hidden layer, and three outputs (the three
snow-ratio classes). These architectural details were es-
tablished through trial and error (see appendix), maxi-
mizing percent correct from the training dataset.

The second network type, also composing five mem-
bers of the ensemble, is the MLP with two hidden
layers (Fig. 4b). The two-hidden-layer MLPs, whose
architectural details were also established through trial
and error, featured seven inputs, seven processing el-
ements in the first hidden layer, four processing ele-
ments in the second hidden layer, and three outputs.
For all networks, activations were accomplished using
the hyperbolic tangent function everywhere except in
the output layer, where the softmax activation function

was used (so that the output values would lie between
0 and 1 and sum to 1).

When training neural networks, it is sometimes nec-
essary to consider the frequency of occurrence of dif-
ferent classes in the training set. For the 1650 cases
composing the entire 22-yr dataset, 14% are heavy, 41%
are average, and 45% are light. For such unbalanced
datasets where one class is substantially underrepre-
sented compared to the other classes, the neural net-
works may simply treat that class as noise. Results from
preliminary experiments with the networks for the
snow-ratio problem exhibited this effect. Accordingly,
a partial balancing criteria (270 heavy, 360 average, and
360 light cases in each training set) was applied to the
bootstrap sampling, to improve training results across
all three classes. As a result, the network outputs are
not interpretable as posterior probabilities (i.e., a prob-
ability that takes into account the frequency of occur-
rence of a given class), without application of a renor-
malization procedure.

c. Results

Following the training of the 10 individual networks,
each of the networks was run on the independent test
dataset. The individual network outputs were then com-
bined into an ensemble using simple averaging, where
the snow-ratio class with the highest ensemble value
was compared with the observed class. The probability
of detection (POD), false alarm ratio (FAR), bias, and
critical success index (CSI) for each snow-ratio class
were used as measures of performance. The POD is the
fraction of observed events correctly forecast (range of
0–1, optimal performance is 1), the FAR is the fraction
of event forecasts that do not verify (range of 0–1, op-
timal performance is 0), the bias is the ratio of forecast
to observed events (,1 indicates underforecasts, .1
indicates overforecasts), and the CSI is a measure of
forecast accuracy (range of 0–1, optimal performance
is 1), defined by the ratio of successful event forecasts
to the total number of event forecasts that were made
or needed (Gilbert 1884; Schaefer 1990). Geometrically,
the CSI can be thought of as the intersection of the
forecast and observed events divided by the union of
the forecast and observed events. As noted by Schaefer
(1990), the CSI can be expressed in terms of POD and
FAR as

21 21 21CSI 5 [(POD) 1 (1 2 FAR) 2 1] , (1)

where POD 5 0.00 and/or FAR 5 1.00 yields a CSI
of 0.00. Although the CSI is a biased score, since it
depends upon the frequency of the event that is forecast
(Schaefer 1990), it is useful in providing an indication
of the relative worth of different forecast techniques
applied to the same data. Two additional verification
measures, applicable to the overall forecast results rather
than specific snow-ratio classes, are the percent correct
(PC; range of 0%–100%, optimal performance is 100%)
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TABLE 3. Diagnosis results for sample of 333 independent test cases. Shown are (a) percent correct (PC) and Heidke skill score (HSS)
performance measures, along with raw contingency table results and (b) specific class verfication measures: probability of detection (POD),
false-alarm ratio (FAR), bias, and critical success index (CSI). For comparison, all results are also shown for climatological forecasts, based
upon the observed frequencies from the test sample (in parentheses) and forecasts based on the NWS Table 4-9 for surface temperatures (in
brackets; note that the NWS Table 4-9 does not predict heavy snow ratios).

(a) Raw totals: PC, 60.4 (41.7) [51.7];
HSSS, 0.34 (0.00) [0.12]

Predicted No. of cases

Heavy Average Light

Observed
No. of
cases

Heavy
Average
Light

20 (3) [0]
23 (15) [0]

6 (15) [0]

12 (15) [20]
86 (67.5) [70]
49 (67.5) [48]

1 (15) [13]
41 (67.5) [80]
95 (67.5) [102]

(b) Specific class verification
measures

Score Heavy Average Light

POD
FAR
Bias
CSI

0.61 (0.10) [0.00]
0.59 (0.90) [—]
1.49 (1.00) [—]
0.32 (0.05) [0.00]

0.57 (0.45) [0.47]
0.42 (0.55) [0.49]
0.98 (1.00) [0.92]
0.41 (0.29) [0.32]

0.63 (0.45) [0.68]
0.31 (0.55) [0.48]
0.91 (1.00) [1.30]
0.50 (0.29) [0.42]

TABLE 4. Diagnosis results for independent test cases, following data-flagging procedure (see text for details). Shown are (a) PC and HSS
performance measures, along with raw contingency table results and (b) specific class verification measures: POD, FAR, bias, and CSI. For
comparison, all results are also shown for climatological forecasts, based upon the observed frequencies from the test sample (in parentheses)
and forecasts based on the NWS Table 4-9 for surface temperatures (in brackets; note that the NWS Table 4-9 does not predict heavy snow
ratios).

(a) Raw totals: PC, 64.7 (41.9) [56.4];
HSS, 0.42 (0.00) [0.24]

Predicted No. of cases

Heavy Average Light

Observed
No. of
cases

Heavy
Average
Light

20 (3) [0]
23 (17) [0]

0 (12) [0]

12 (17) [20]
86 (78) [70]
26 (55) [14]

0 (12) [12]
41 (55) [80]
81 (40) [93]

(b) Specific class verification
measures

Score Heavy Average Light

POD
FAR
Bias
CSI

0.63 (0.09) [0.00]
0.54 (0.91) [—]
1.34 (1.00) [—]
0.36 (0.05) [0.00]

0.57 (0.52) [0.47]
0.31 (0.48) [0.33]
0.83 (1.00) [0.69]
0.46 (0.35) [0.38]

0.76 (0.37) [0.87]
0.34 (0.63) [0.50]
1.14 (1.00) [1.73]
0.55 (0.23) [0.47]

and the Heidke skill score [HSS; Panofsky and Brier
(1958); range of 21 to 11, optimal skill is 1]. The PC,
which is the ratio of all correct forecasts to the total
number of forecasts, can be hedged by forecasting com-
mon events more frequently. The HSS accounts for this
bias by comparing the PC to that obtained for no-skill
random forecasts.

As expected, the ensemble approach resulted in im-
provement relative to the individual networks. Using
the CSI as a measure of effectiveness, the ensemble
outperformed the individual networks in 77% of the 30
possible situations [10 networks composing the ensem-
ble times three CSI per network (one for each snow-
ratio class)], with no individual network exceeding the

ensemble in all three snow-ratio classes. Overall, the
ANN diagnosis achieves 60.4% correct and an HSS of
0.34 (Table 3a). The CSI shows that the highest forecast
quality is generally associated with the light snow-ratio
class, with a monotonic dropoff through the average to
the heavy class, largely owing to increased false alarms
(Table 3b). The results suggest, however, that the ANN
method provides high-quality diagnoses for all snow-
ratio classes.

The ANN diagnosis scores are compared with those
obtained from two other methods (Table 3). The first
method is a ‘‘climatology’’ derived from the observed
frequencies of the snow-ratio classes in the test dataset
[e.g., the observed frequency of the heavy class is 0.10,
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and the observed frequency of the average class is 0.45,
so that the expected number of diagnosed heavy but
observed average events is (0.10)(0.45)(333) 5 15]. The
second method obtains the diagnoses from the NWS
‘‘new snowfall to estimated meltwater conversion’’ ta-
ble [U.S. Department of Commerce (1996); see also
section 4d of this paper; hereafter, NWS Table 4-9]. All
of the class-specific performance measures (save bias)
are substantially higher for the ANN ensemble. The
NWS Table 4-9, which is based upon surface temper-
ature alone, falls short of the ANN ensemble accuracy
(as measured by CSI) for all snow-ratio classes. Overall,
the ANN technique is the most skillful, with an HSS of
0.34, compared to 0.12 for NWS Table 4-9 and 0.00 for
the climatological estimate. In the 1650-case sample,
the correlation between F1 and surface temperature is
0.94; hence, NWS Table 4-9 is, in this respect, the func-
tional equivalent of providing the ANN with F1 and
withholding the six other inputs. A further exploration
of the importance of the full set of inputs is provided
in section 4.

d. Diagnosis failures

While the ANN results establish that the technique
can provide improved information relative to existing
approaches, it is of interest to understand the circum-
stances governing the failed diagnoses (hereafter, ‘‘hits’’
and ‘‘misses’’ for correct and incorrect ANN classifi-
cations, respectively). Analyses of the inputs (Table 2),
using the Wald–Wolfowitz nonparametric test (Siegel
1956), show statistically significant differences in the
distributions of the temperature inputs (F1 and F3; p
values of 0.02 and ,0.01, respectively) between the hits
and misses for the light snow-ratio class. In particular,
mean temperatures between sigma levels 1–8 are
24.18C for the misses, compared to 210.68C for the
hits. Similarly, mean temperatures between sigma levels
6–14 are 213.08C for the misses, compared to 221.48C
for the hits. Since sigma levels 1–8 extend over a sur-
face-based layer to approximately 800 hPa, the rela-
tively warm temperatures for the missed light snow-ratio
cases are surprising, and warrant further study.

Since the snow data are collected within 6 h of a
radiosonde launch, it is possible that some cases may
have been adversely affected by rapidly changing
weather conditions (consider, for example, the case
where snow occurs along the cool side of a warm frontal
boundary prior to a radiosonde launch; the warm front
progresses northward, such that by the time the sounding
is taken, the sampling occurs within the warm air). In
the absence of temporally detailed vertical profiles, a
first-order measure of such transitions was estimated
using the variance of surface temperature and wind
speed, calculated over the 12-h period centered on the
radiosonde launch time (steady conditions would yield
a small variance while a transition would produce a large
variance). The analyses (based upon the two-sample t

test with a 0.05 significance level) revealed no statis-
tically significant difference in the variance between the
hits and misses for the light snow-ratio class for either
surface temperature or wind speed. Hence, we conclude
that temporal data limitations are not substantially af-
fecting the results.

A second uncontrolled error source is precipitation
gauge undercatch. This effect, which can produce liquid
equivalents that are 40%–70% less than snow collected
and melted from snowboards (Peck 1972; Larson and
Peck 1974; Goodison 1978; Gray and Male 1981, p.
204; Groisman and Legates 1994), will introduce a bias
toward larger snow ratios. While it is not possible to
directly assess the degree of undercatch from historical
data, it is possible to screen the data for cases that seem
questionable, based on existing data, known biases, and
present physical understanding. The procedure em-
ployed was as follows. All observed light snow-ratio
cases in the test sample (150 out of 333 events) were
flagged if either of the temperature inputs (F1, F3) ex-
ceeded the mean of the light snow-ratio cases by more
than one standard deviation. This procedure was mo-
tivated by the distribution test results noted above. An
additional case, for which the observed snow-ratio class
was heavy, but for which the temperature and compac-
tion variables were inconsistent [the layer average low-
to midlevel (mid- to upper-level) temperatures were 2.8
(1.8) standard deviations colder than the heavy class
mean, while the precipitation was 0.9 standard devia-
tions below the heavy class mean with a surface wind
speed of 5 m s21], was also flagged. A total of 44 cases
were flagged (representing 13.2% of the test dataset),
including 14 hits.

Although we cannot conclude that these 44 cases are
contaminated by measurement error, this is a plausible
interpretation. Accordingly, we present the snow-ratio
class diagnosis results, with these cases removed (Table
4), as a measure of the potential of this technique with
cleaner data (note that this procedure does not screen
for all questionable cases; see below). Screening the test
data in this manner results in improvements in the HSS
for both the ANN and NWS Table 4-9, with the largest
gains in the average and light snow-ratio classes (as
measured by CSI). The HSS suggests that the ANN
technique can provide a 75% improvement in skill rel-
ative to the use of NWS Table 4-9.

Although the results of Table 4 are encouraging,
35.3% of the cases are still classified incorrectly. In real-
world classification problems, ambiguity in the data is
often unavoidable. This ambiguity arises from two
sources: noisy data, as partially addressed above, and
incomplete representation of the feature space. In the
latter case, key inputs that are needed to precisely define
classification boundaries are absent. As a result, the
boundaries are represented in a lower-order dimension,
and the classes overlap within the feature space. In sec-
tion 5, we will provide some discussion of additional
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TABLE 5. Cluster analysis of the 1650 snow cases, using a Kohonen self-organizing (feature) map (SOM) and the input factors F1, F3,
and F6, representing temperature and surface compaction effects. Shown are cluster identifier (C1–C5), number of cases in the cluster (N ),
layer average temperature from sigma levels 1–8 (TF1, 8C), layer average temperature from sigma levels 6–14 (TF3, 8C), surface wind speed
(wind, m s21), liquid equivalent precipitation amount (PP, mm), and percentage of cluster cases in the snow ratio classes (heavy, average,
and light).

Cluster N TF1 TF3 Wind PP Heavy Average Light

C1
C2
C3
C4
C5

274
336
290
319
431

214.0
29.2
24.0
22.7
24.7

219.8
217.9
214.3
213.6
214.6

4.2
5.8
6.6
4.4
2.6

5.5
7.3

14.0
8.7
6.2

2.9
4.2

37.9
21.3

7.9

21.9
44.9
42.1
49.5
43.9

75.2
50.9
20.0
29.2
48.3

FIG. 5. The snow-ratio class for each of the 1650 events was pro-
jected in a three-dimensional volume with the axes represented by
F1, F3, and F6. Snow-ratio class interfaces were then extracted from
this volume and projected on the two-dimensional plane described
by F1 and F3. Shown are the interfaces between (a) the heavy and
average class and (b) the average and light class. Contour lines are
the position of the interface as measured by F6 (contour interval is
0.5 units of F6). Locations with observed data are denoted by the
gray squares (analyses in unsampled regions were generated using
simple interpolation).

inputs that might lead to improved snow-ratio class sep-
aration.

As a means of understanding the degree to which this
classification boundary issue affects the performance of
the ANN, we have undertaken a cluster analysis of the
input data, using all 1650 cases. Cluster analysis is con-
cerned with organizing data into meaningful structures.
This is distinct from the classification problem, since a
single cluster defined by the inputs may overlap a clas-
sification boundary and multiple clusters may fall within
a single class. A neural network technique known as the
Kohonen self-organizing map (SOM) forms one basis
for cluster analysis. The details as to how this network
performs the cluster analysis are beyond the scope of
this paper; interested readers should consult Kohonen
(1995).

Experiments with the full set of inputs and other input
combinations showed that the most optimal clusters (de-
fined by distinct input values across the clusters and the
relative separation of snow ratio classes; Table 5) were
generated using three inputs (F1, F3, and F6) to an SOM.
The results of the cluster analysis demonstrate the
boundary issue, with only C1 showing an obvious sep-
aration into a specific snow-ratio class (light). Of par-
ticular note is the high percentage of average snow-ratio
cases in each of the remaining four clusters, suggesting
the existence of a complex boundary between the av-
erage and extreme classes. Visual inspection of the da-
taset using a three-dimensional projection, with the three
axes represented by F1, F3, and F6, respectively, con-
firms this supposition (Fig. 5). Undulations, steep gra-
dients, and local maxima and minima in the interfaces
between the average and extreme classes are evident.
Although the four remaining inputs (month index, F2,
F4, and F5) provide additional discriminatory power,
advances in diagnostic capability beyond that demon-
strated in Tables 3 and 4 will likely require inputs related
to physics that are presently neglected. This issue is
discussed in section 5.

4. Discussion
a. Interpretation of network diagnoses

An important but often overlooked aspect of the use
of ANNs is the interpretation of the outputs. Since it is
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FIG. 6. Importance of inputs (see text for details) for heavy snow-ratio class (black), average
snow-ratio class (dark gray), and light snow-ratio class (light gray). The thickness of the line
indicates the variance of the response to the input, where 61 standard deviation $0.25 is a thick
line, between 0.10 and 0.25 is a medium thickness line, and #0.10 is a thin line. Shown are (a)
month index, (b) F1, (c) F3, and (d) F6. For reference, approximate layer average quantities (as
obtained from a linear regression) are also shown along the abscissa (e.g., for F1, the mean
temperature for sigma levels 1–8). For F6, the wind (m s21) and precipitation amounts (mm) are
obtained under the null assumption for the other variable. All temperatures are degrees Celsius.

not necessary to have prior knowledge of the precise
relationship between the inputs and the desired outputs
in an ANN, a trained network that generalizes well may
yield new knowledge concerning these relationships.

The importance of inputs could be measured by sev-
eral methods, including evaluation of the network
weights (e.g., size, sums of products, or more elaborate

functions), or measuring the gradient of the output with
respect to the input (i.e., a vector of partial derivatives
that measures the local rate of change of the output with
respect to the corresponding input, holding the other
inputs fixed). Each of these approaches suffers from
deficiencies that may lead to incorrect conclusions con-
cerning importance. A thorough discussion of these is-
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FIG. 7. Thermodynamic diagrams for 0000 UTC 11 Dec 1989 at
PIA (black), and 1200 UTC 26 Dec 1988 at RAP (gray). The solid
line is temperature and the dashed line is dewpoint temperature.
Winds are plotted according to the standard meteorological conven-
tion.

sues can be found online (ftp://ftp.sas.com/pub/neural/
importance.html).

A more robust method is to compute differences rath-
er than derivatives, an approach that adheres to the strict
definition of causal importance. This method is applied
here by varying each of the seven inputs (Table 2) in
turn across the range of values existing in the 201 cor-
rectly classified events of the test dataset (Table 3) while
holding the other inputs to their observed values. The
average value of an output snow-ratio class across all
the cases (which can range from zero to one) is plotted
as a function of the input value, as a means of defining
the central tendency of the input importance. Since there
may be substantial variations in the response under cer-
tain circumstances (consider, for example, cases in
which no changes occur until a critical threshold is
passed, such as the familiar example of precipitation),
the standard deviation in the response across all cases
as a function of the input value is also computed.

The results of this analysis are shown in Fig. 6 for
the four most critical inputs (month index, F1, F3, and
F6). The march of the seasons has the most substantial
effect on the heavy and light snow-ratio classes, with

an increasing likelihood of either class in midwinter,
albeit subject to considerable variation in the response
(Fig. 6a). Increasing low- to midlevel temperatures have
the effect of decreasing (increasing) the possibility of
light (heavy) snow ratios, whereas the response of the
heavy class is the most variable (Fig. 6b). Increasing
temperatures aloft yields a similar response (Fig. 6c).
Increasing winds and/or larger liquid equivalent precip-
itation amounts, both processes tending to produce
greater surface compaction, also leads to decreasing (in-
creasing) the likelihood of light (heavy) snow ratios,
although in this case the light class response exhibits
the greatest variability (Fig. 6d).

It is important to note that Fig. 6 shows the ANN
response to an input rather than a prediction based upon
that input, since a specific prediction will depend in a
complex fashion on all of the inputs. The large variation
in response ($0.25) for the heavy and light classes to
month index (Fig. 6a), for the heavy class to low- to
midlevel temperatures (Fig. 6b) and to mid- to upper-
level temperatures (Fig. 6c), and for the light class to
surface compaction (Fig. 6d), is an important indicator
of the complexity of the problem. A specific comparison
of two instances with a low- to midlevel layer average
temperature of 2118C demonstrates this complexity. In
the first (second) example, the profile of the remaining
inputs yields the following representative conditions:
month April (March), mid- to upper-level layer average
temperature ;2208C (278C), low- to midlevel layer
average relative humidity ;93% (88%), midlevel layer
average relative humidity ;91% (90%), upper-level lay-
er average relative humidity ;80% (91%), and precip-
itation ;15 mm (38 mm) with no wind. The primary
difference between the two examples is in the mid- to
upper-level layer average temperature and precipitation.
Both of these factors act to produce higher densities in
the second example, which results in a network prob-
ability of 0.77 for the heavy class. In contrast, the first
example exhibits a network probability of 0.10 for that
same class. Hence, although the general effect of an
input can be isolated as depicted in Fig. 5, the actual
prediction in a specific case can be strongly modified
by the conditions represented by the other inputs.

Finally, the importance of the profiles of relative hu-
midity (as represented by the principal component fac-
tors F2, F4, and F5) in the diagnosis of snow-ratio class
was further examined. Experiments in which the net-
works were retrained while withholding the relative hu-
midity inputs indicated an overall network performance
loss of at least 5% (based upon percent correct), sug-
gesting that these inputs are helpful, if nonessential,
diagnostic quantities. A demonstration of this effect is
provided by a pair of examples, in which all of the inputs
except the low- to midlevel layer average relative hu-
midities, are identical. In the first (second) example,
these humidities are ;40% (100%). The remaining con-
ditions are the following: month (March), low- to mid-
level layer average temperature ;288C, mid- to upper-
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FIG. 8. (a) Surface analysis at 0000 UTC 11 Dec 1989, (b) 850-hPa analysis at 0000 UTC 11 Dec 1989, (c) surface analysis for 1200
UTC 26 Dec 1988, and (d) 850-hPa analysis at 1200 UTC 26 Dec 1988. The location of the case site is indicated by the black dot [(a), (b)
PIA, (c), (d) RAP]. For surface analyses, solid (dashed) lines are isobars (iostherms), with contour interval of 4 hPa (58C, thick line is 08C).
For 850-hPa analyses, solid (dashed) lines are geopotential height (iostherms), with contour interval of 3 dam (58C, thick line is 08C).

level layer average temperature ;258C, midlevel layer
average relative humidity ;92%, upper-level layer av-
erage relative humidity ;94%, and precipitation ;24
mm with no wind. For the first (second) example, the
network probability for the heavy class is 0.60 (0.82).

In both examples, the relative warmth of the sounding
and higher precipitation amounts skew the network to-
ward the heavy class. In the second example, the ele-
vated low- to midlevel layer average relative humidity
indicates the availability of supercooled liquid water and
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FIG. 8. (Continued )

the likelihood of riming, shifting the network prediction
further toward the heavy class.

b. Case examples

In this section, a series of cases are presented that
demonstrate the difficulties inherent in the diagnosis of

snowfall density. Of particular note is the degree to
which case-to-case variations in snowfall density are
dependent upon subtle features, not readily apparent
from a synoptic perspective. A search was conducted
for cases in which all but one of the seven input variables
showed considerable agreement (as measured by stan-
dardizing the inputs to mean 0 and standard deviation
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FIG. 9. Thermodynamic diagrams at 0000 UTC 16 Dec 1983 at
AMA (black), and 1200 UTC 28 Dec 1993 at HTS (gray). The solid
line is temperature and the dashed line is dewpoint temperature.
Winds are plotted according to the standard meteorological conven-
tion.

1, and computing the Euclidean distances for all the
inputs relative to the comparison case). Hence, the com-
parison cases will not necessarily be from the same site
or date. This process was repeated for the two temper-
ature inputs (F1 and F3) and the compaction input (F6).

Soundings from this analysis for low- to midlevel
temperatures (F1) (Fig. 7) document the similarity in
thermodynamic structure between RAP, and PIA, except
for the strong surface-based inversion at RAP, consistent
with that site being located on the cold side of a frontal
boundary (Fig. 8c). For this event at RAP, the observed
snow-ratio class was light (ratio of 18:1). PIA, with
warmer low- to midlevel temperatures in association
with a site location shifted farther toward the warm side
of the low-level thermal gradient (Fig. 8a) and within
the warm-core circulation at 850 hPa (Figs. 8b,d), de-
veloped heavy snow-ratio conditions (ratio of 7:1).

The comparison soundings for mid- to upper-level
temperatures (F3) (Fig. 9) document the relative warmth
at those levels at HTS, which led to a heavy snow ratio
(8:1), while an average snow ratio (12:1) developed at
AMA (note that this comparison demonstrates the need
to normalize the raw sounding data to the sigma co-
ordinate system described in section 3b). At the surface,
both sites were positioned to the northeast of a cyclone
and associated frontal boundary, with arctic air to the

north and west (Figs. 10a,c). However, the 500-hPa flow
was nearly zonal across eastern North America in the
HTS case (562-dam, 500-hPa height; Fig. 10d), whereas
a trough was positioned across the southern and central
United States in the AMA case (548-dam, 500-hPa
height; Fig. 10b). In both of these cases, a diagnosis
based upon surface temperatures alone (e.g., NWS Table
4-9) would have indicated light snow ratios (20:1).

Finally, the thermodynamic profiles at HON, and INL
(Fig. 11), exhibit considerable similarity, consistent with
the primary differences resulting from surface compac-
tion processes, with stronger winds (8 versus 5 m s21)
and higher precipitation amounts (13.0 versus 2.8 mm)
at HON (observed average snow ratio of 10:1) than at
INL (observed light snow ratio of 22:1). Interestingly,
low-level temperatures at both of these sites are fairly
warm, which affirms the complexity in some instances
in correctly diagnosing snow ratios. Examination of the
synoptic charts reveals that both sites were positioned
between a downstream anticyclone and an upstream cy-
clone (Figs. 12a,b), with HON located most directly
within the pressure gradient (;5 m s21 stronger geo-
strophic southerlies).

Each of these three cases suggest that subtle syn-
optic scale differences can be associated with a
change in snow-ratio class. However, the results pre-
sented in Tables 3 and 4 indicate that considerable
improvement beyond current operational practice can
be obtained by more complete consideration of the
available data.

c. Deficiencies of NWS Table 4-9

The results obtained by application of NWS Table 4-
9 to the test data (Tables 3 and 4) make clear that serious
damage to the climatological record will ensue in the
absence of careful direct measurements of snow depth
and liquid equivalent. Unfortunately, current NWS prac-
tice is not promising in this regard. The U.S. Department
of Commerce (1996, section 4.3.3.5.2) states, ‘‘Report
the water equivalent of snow on the ground to the larger
Weather Service Forecast Office; or the Smaller Weather
Forecast Office at 1800 UTC if the average snow depth
(to the nearest inch) is 2 inches or more. . . . Whenever
the water equivalent of snow on the ground cannot be
measured by melting or weighing of the core sample,
enter an estimated water equivalent on the basis of a 1/
10 ratio method unless a different ratio is more appro-
priate. . . . Table 4-9 (New Snowfall to Meltwater Con-
version) can only be used as an observing aid in de-
termining water equivalency of newly fallen snow.’’

Super and Holroyd (1997, p. 24) shed further light
on this problem: ‘‘personal communication with Grant
Goodge of the National Climatic Data Center revealed
this table [NWS Table 4-9] was developed as a guide
for quality control checking of observations and was
not intended to be a substitute for observations of [snow
water equivalent]. The table’s temperature dependence
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of density is not based on actual measurements but rath-
er on general impressions in the eastern Tennessee and
western North Carolina areas. Hence, the reality of the
apparent temperature dependence is uncertain.’’ As was
shown in the previous section, this temperature depen-
dence is, in fact, inadequate [see also Kyle and Wesley
(1997) for a specific example relevant to snowfalls in
the high plains region].

5. Summary

Consideration of the cloud microphysical aspects
of the production of snowfall combined with a prin-
cipal component analysis of radiosonde and surface
data led to the identification of seven factors that in-
fluence the diagnosis of snow ratio. They are solar
radiation (month), low- to midlevel temperature, mid-
to upper-level temperature, low- to midlevel relative
humidity, midlevel relative humidity, upper-level rel-
ative humidity, and external compaction (surface
wind speed and liquid equivalent precipitation
amount). A 10-member ensemble of artificial neural
networks was shown to improve the diagnosis of
snow-ratio class compared to existing techniques (10-
to-1 ratio, sample climatology, NWS new snowfall to
estimated meltwater conversion table). The most crit-
ical factors in the neural network performance are
related to month, temperature, and external compac-
tion, with relative humidity information providing
useful, but less essential input.

Until an integrated and well-verified scheme for fore-
casting snow is provided as a direct output from nu-
merical weather prediction models, it will be necessary
to convert liquid water to snow through the diagnosis
of snow ratio. The method developed in this paper could
be applied in the operational environment as follows:
(a) QPF techniques, including the output from numerical
models, are used to determine the amount of liquid
equivalent precipitation; (b) forecast soundings and the
QPF obtained from (a) are used within the neural net-
work framework described in this study to diagnose the
snow-ratio class; (c) the snowfall forecast is derived
from the results of (a) and (b). For example, consider
the simple case in which 0.5 in. of liquid equivalent
precipitation is forecast and for which the snow-ratio
class is diagnosed to be light. Then, the forecast snow
depth would be approximately 10 in. (reflecting a me-
dian snow ratio of 20:1 in the light class). It should be
noted that this forecast depth is twice that obtained by
application of the 10-to-1 rule. Probabilities could be
generated by using probabilistic QPFs, normalizing the
network outputs by class frequency and accounting for
the frequency distribution of snow ratios within each
class. Such manipulations of forecast data could be ac-
complished through the ‘‘Smart Tool’’ portion of the
Interactive Forecast Preparation System (IFPS), a com-
ponent of the Advanced Weather Interactive Processing
System (AWIPS) at NWS facilities. A pilot study of the

ANN technique will be implemented during winter
2002/03 in the Pacific and Yukon regions of Canada by
the Meteorological Service of Canada. Given the large
number of weights required to implement an ensemble
of ANNs (e.g., a single hidden layer MLP with seven
inputs, 40 processing elements, and three outputs re-
quires 300 weights), operational implementation of the
technique would be most readily accomplished by ac-
quiring the training datasets used in this study and train-
ing the networks locally. Interested persons should con-
tact the study authors.

Although the findings in this paper suggest that im-
provements in current snow forecasting practice are al-
ready obtainable, a key aspect, the role of in-cloud ver-
tical motions (highlighted in the microphysical review
of section 1), has been neglected in this study. It is
expected that cloud-scale vertical motion input would
further improve these results, perhaps substantially so.
Empirical evidence for the importance of vertical mo-
tion is provided online [http://www.nws.noaa.gov/er/hq/
ssd/snowmicro; see also Auer and White (1982)]. In this
preliminary study, the intersection of areas of moderate
vertical motion with temperatures favorable for den-
dritic crystal formation (2128 to 2188C) within cloudy
regions was found to be a useful indicator of snow ad-
visory events. One means to obtain such vertical mo-
tions for a longitudinal study of this kind might be to
use a mesoscale model and the National Centers for
Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis (Kalnay et
al. 1996) within a four-dimensional data assimilation
framework. In this approach, the reanalysis data could
be used to provide lateral boundary conditions in a nest-
ed mesoscale model configuration, with an interior do-
main of sufficient resolution to obtain the necessary
cloud-scale vertical motions.

Other physical effects have also been neglected. In
early and late season, ground temperature effects may
lead to melting and compaction of new snowfalls.
Strong low-level winds can lead to snow crystal frag-
mentation and density changes. Cloud aerosol effects
may also contribute to the resulting density of snowfall.
Borys et al. (2000) showed that snowfall rate decreased
when clear-air equivalent sulfate concentration in-
creased. They hypothesized that increased pollution re-
sults in more cloud condensation nuclei, more cloud
droplets, and less efficient riming. Another factor that
may negatively affect the performance of the network
diagnosis is storm electrification. As reviewed in
MacGorman and Rust (1998, 352–355), variations in
the electrical state inside the cloud can produce signif-
icant changes in the likelihood of aggregation and frag-
mentation of ice crystals. The range of electric field over
which these effects can be important are consistent with
such measurements inside winter storms (e.g., Schultz
et al. 2002). Such investigations could form the basis
of future improvements in this technique.
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FIG. 10. (a) Surface analysis at 0000 UTC 16 Dec 1983, (b) 500-hPa analysis at 0000 UTC 16 Dec 1983, (c) surface analysis at 1200
UTC 28 Dec 1993, and (d) 500-hPa analysis at 1200 UTC 28 Dec 1993. The location of the case site is indicated by the black [(a), (b)
AMA, (c), (d) HTS]. For surface analyses, solid (dashed) lines are isobars (iostherms), with contour interval of 4 hPa (58C, thick line is
08C). For 500-hPa analyses, solid (dashed) lines are geopotential height (iostherms), with contour interval of 6 dam (58C, thick line is 2158C).
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FIG. 10. (Continued )
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Winds are plotted according to the standard meteorological conven-
tion.
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APPENDIX

Background on ANNs

This section provides additional detail concerning the
construction and operation of ANNs, following the in-
formation provided online (ftp://ftp.sas.com/pub/neural/
FAQ.html). An ANN builds discriminant functions from
its processing elements and the architecture determines
the number and shape of the discriminant functions.
Since ANNs are sufficiently powerful to create arbitrary
discriminant functions, ANNs can, in theory, achieve
optimal classification. Further, since ANNs are adaptive
systems, the parameters of the system under study need
not be specified (in contrast, for example, to an expert
system) but rather are extracted from the input data and
the desired outputs (snow-ratio classes) by means of the
training algorithm. In this way, if the relevant inputs are
known but the precise relationship between the inputs
and the snow-ratio classes is not known, diagnosis is

still possible. Additionally, postprocessing of the di-
agnoses may reveal new knowledge concerning these
relationships (see section 4).

A major ANN architecture is the feed-forward type
(i.e., the connections between processing elements do
not form loops) known as the multilayer perceptron
[MLP; Figs. 4a,b; Bishop (1996)]. This architecture can
contain one or more hidden layers, that is, layers con-
taining processing elements that are not directly con-
nected to either the inputs or the desired outputs. It can
be shown that an MLP with one hidden layer and an
arbitrarily large number of processing elements can ap-
proximate any function (e.g., Bishop 1996). In practice,
however, it is not possible to specify the number of
processing elements that are required, and for more
complicated functions, it is often more efficient to have
several processing elements in a second hidden layer.
Networks with too few hidden processing elements will
generalize poorly as a result of underfitting (i.e., insuf-
ficient specification of the mapping between the inputs
and the outputs), while networks with too many hidden
processing elements will also generalize poorly, in this
case due to overfitting (which produces a model of the
statistical noise as well as the desired signal). Since there
is no theoretical basis for defining the number of hidden
processing elements, this aspect of the architecture is
obtained through experimentation.

The connections between processing elements are
constructed using combination and activation functions.
In MLPs, each noninput processing element linearly
combines values that are fed into it through connections
with other processing elements, producing a single value
called the net input. An activation function then non-
linearly transforms the net input (necessary to represent
nonlinear discriminant functions), yielding an ‘‘activa-
tion,’’ which is fed through connections to other pro-
cessing elements. A common activation function, used
in this study, is the hyperbolic tangent, which tends to
produce fast training. The desired outputs, the snow-
ratio classes, are defined using 1-of-C coding, such that
three binary output variables (0/1) are specified, one for
each snow-ratio class.

A requirement for a network to generalize well is its
ability to represent every part of the multidimensional
input space. In this way, it is possible to define the
mapping from the inputs to the desired outputs. Since
the data required to define the mapping is proportional
to the hypervolume of the input space, networks with
more inputs will require more training examples. Fur-
ther, the training set must be a sufficiently large and
representative sample of the population to promote in-
terpolation (i.e., test cases are in the ‘‘neighborhood’’
of training cases) rather than extrapolation (i.e., test cas-
es lie outside the range of the training cases or are within
holes in the training input space). This also suggests
that if irrelevant inputs are provided to the network,
then performance will tend to be poor, since the network
will squander resources in order to represent irrelevant



APRIL 2003 285R O E B B E R E T A L .

FIG. 12. (a) Surface analysis at 1200 UTC 12 Nov 1988, and (b) surface analysis at 1200 UTC 21 Mar 1993. The location of the case
site is indicated by the black dot [(a) INL, (b) HON]. For surface analyses, solid (dashed) lines are isobars (iostherms), with contour interval
of 4 hPa (58C, thick line is 08C).

portions of the mapping. Hence, careful selection of
inputs is required to improve generalization. Another
important generalization consideration relates to noise
in the desired outputs. Noise increases the risk of ov-

erfitting (Moody 1992), since the network will attempt
to approximate artificial boundaries in the training data
rather than the desired signal. Problems associated with
overfitting can be reduced by using large training sets,
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applying early stopping, and combining networks (into
a so-called committee of networks).

The principle of a committee of networks (hereafter,
the ensemble network) is tied to the familiar concept of
ensemble forecasting. For a set of M networks for which
the errors are uncorrelated with each other and for which
there is no bias, it can be shown that the error of the
ensemble network will be M times smaller than the mean
error of the individual networks (Principe et al. 2000).
In practice, network errors will tend to be correlated
such that the actual advantage of the ensemble is less
than that suggested by the theory. By incorporating dif-
ferent network architectures into the ensemble, it is pos-
sible to reduce the occurrence of correlated errors and
improve ensemble network performance (Opitz and Ma-
clin 1999 and references therein). Further improvements
are made possible by altering the training process, for
example, by creating different training sets for each in-
dividual network through bootstrapping techniques (Ef-
ron and Tibshirani 1993; Breiman 1996; Opitz and Ma-
clin 1999). Previous research suggests that ensembles
of O(10) members will provide most of the advantage
obtainable using this technique (e.g., Opitz and Maclin
1999).
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