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The paper presents results of extensive simulations carried out in order to assess the precision and angular resolution of subspace
methods in real radar system. It has been assumed that such a system uses the 32-element uniform linear array (ULA) and radiates
only 3 bursts consisting of 8 pulses in given direction. In order to avoid blind Doppler frequencies, pulse repetition interval (PRI)
is different in each burst. It has been shown that change of PRI is not only necessary to avoid blind Doppler frequencies but also
allows to avoid false values of angular coordinates when two objects are visible in the same beam, in the same range gate, and
their echoes attain maximal values in the same Doppler filter. It has also been shown that precision and angular resolution of both
MUSIC and root-MUSIC method can be improved by appropriate preprocessing of signal samples used by these methods.

1. Introduction

The paper studies the problem of detection and estimation of
angular coordinates of moving objects by means of MUSIC
and root-MUSIC methods. MUSIC and root-MUSIC had
been invented almost 30 years ago [1, 2]; however, applica-
tion of these methods in real radar system has been possible
only recently thanks to the progress in the field of active
electronically scanned arrays, digital beamforming, and mul-
tiprocessor systems containing clusters of high-speed general
purpose PowerPC processors and FPGA devices connected
by means of high-speed serial bus such as RapidIO. An
important reason stimulating the studies on these methods
were difficulties concerning effective estimation of angular
coordinates of closely spaced moving objects by using the
monopulse methods, [3–5]. For example, it is not possible to
separate individual objects even with different radial speeds
if they are illuminated by the same antenna beam and are in
the same range gate. More appropriate to solve problems of
this kind are superresolution methods, represented here by
MUSIC and root-MUSIC, [6, 7]. In application to estimation
of angular coordinates of moving objects, these methods
use the spatial correlation (covariance) matrix R formulated
on the basis of complex samples of received signals. As a

rule, these samples are obtained on the outputs of individual
matched filters (MF) of the array antenna unit, which have
functional scheme similar to that shown in Figure 1.

All computer simulations presented in this paper have
been performed under the assumption that this linear
equidistant array antenna contains M = 32 identical
receiving elements spaced by the distance d = 0.7λ0, where
λ0 is the length of received wave.

This 32-element array antenna has been used to create
new 24-element array. Samples xi(n), where 1 ≤ i ≤ 32,
of signals received by the real, 32-element array antenna are
grouped in the following way:

x(e)
k (n) =

8∑

l=0

wlxk+l(n)√
9

, for 1 ≤ k ≤ 24, (1)

where wl = exp[ jl(2πd/λ) sin(θmax)] is the lth coefficient
of vector w shaping the directive gain characteristics of
antenna elements, belonging to the 24-element array, and
θmax determines the direction of maximum directivity of
each antenna element. This kind of grouping is often called

initial preprocessing. Samples x(e)
k (n), where 1 ≤ k ≤ 24,
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Figure 1: Functional diagram of the array antenna unit. A/D: analog-digital converter, QPD: quadrature phase detector, and MF: matched
filter (digital).

corresponding to individual elements of the equivalent, 24-
element array are subsequently processed using the MUSIC
and root-MUSIC methods.

It has been assumed that the antenna array described
above radiates 24 pulses, grouped into three 8-pulse bursts
differing by the repetition time (frequency), as shown in
Figure 2.

The signals (radar echoes) received at the outputs of ele-
ments of the array are used for digital beamforming, s(n) =
wH

sum · x(n) and are processed later according to the MTD
(moving target detection) technique, [8]. Echo signals s(n)
received after each pulse are subjected to coherent integration
using predefined sets of weight coefficients wk

sdoppl(b) =
8∑

k=1

wks(b + kB), (2)

where b is the number of range gate determining the distance
between the object and the radar, B is the number of range
gates in each scan, and k is the number of pulse belonging
to a given pulse sequence called the burst. This integration

is called Doppler filtration, because it permits to distinguish
between the echo signals from the objects moving with
different radial speeds. The signal samples from individual
array elements, weighted according to (1), form the vector
x(e) that is the basis for calculation of the following estimate:

R̂ = 1
N

N∑

n=1

x(e)x(e)H , (3)

of the correlation matrix R, where x(e)H is the Hermitian
conjugate with respect to the vector x(e). In practical
considerations, the factor 1/N appearing in (3) is usually
neglected, because it has no influence on the values of the
used eigenvectors, but only decides about the scale of the
related eigenvalues of matrix R [2, 9].

2. The Multiple Signal Classification
(Music) Method

As it was mentioned in the introduction, the MUSIC method
belongs to the group of subspace methods in which the
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Figure 2: Sequence of pulses used in radars which employ MTD
processing.

spectral functions are determined on the base of eigenvectors
of the space correlation matrix R. Similarly, the matrix
R is formulated on the base of complex samples of the
received signals, [1, 6, 10]. In order to explain the essence
of this method in the radar application, assume that the N-
element antenna array receives P echo signals, reflected from
P objects, where P < N . In a given moment, to each echo
of the radiated pulse one can assign the vector of complex
samples of the signals received in this moment by individual
elements of the array antenna; see Figure 1. Therefore, we
assume that to the first element of this array, from the
direction θk, where 1 ≤ k ≤ P, arrives the signal s1(t) =
A cos(ωt + φk) represented in further considerations by its
complex amplitude s1 = A exp( jφk). It is easy to prove on the
base of Figure 1 that complex amplitude of the signal coming
from the same direction θk to the i-element of the array
can be written as follows: si = s1 exp[− jβd(i − 1) sin(θk)],
where 2 ≤ i ≤ N , β = 2π f /c is the propagation constant,
c ≈ 3 · 108 m/s is the speed of light, and f denotes frequency
of the narrow-band received signal. The complex samples of

this signal, appearing on the outputs of individual matched
filters MF, will be shifted in phase in a similar way. The set of
these samples constitutes a N-dimensional column vector

xk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x 3

...

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

e− jβd sin(θk)

e− j2βd sin(θk)

...

e− j(N−1)βd sin(θk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s1(θk) = ν(θk)s1(θk),

(4)

where

v(θk) =
[

1, e− jβd sin(θk), e− jβ2d sin(θk), . . . , e− j(N−1)βd sin(θk)
]T

,

1 ≤ k ≤ P,
(5)

is the so-called array steering vector, [10]. Each element
of the array shown in Figure 1 receives simultaneously the
signals from all directions θk, where 1 ≤ k ≤ P, and noise
signal with variance σ2

n . It means that the resulting column
vector of complex samples of all P signals and noise, before
further digital processing, can be written as

x =
P∑

k=1

xk + n =
P∑

k=1

ν(θk)s1(θk) + n = Vs + n, (6)

where

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

e− jβd sin(θ1) e− jβd sin(θ2) e− jβd sin(θ3) . . . e− jβd sin(θP)

e− jβ2d sin(θ1) e− jβ2d sin(θ2) e− jβ2d sin(θ3) . . . e− jβ2d sin(θP)

e− jβ3d sin(θ1) e− jβ3d sin(θ2) e− jβ3d sin(θ3) . . . e− jβ3d sin(θP)

...
...

... . . .
...

e− jβ(N−1)d sin(θ1) e− jβ(N−1)d sin(θ2) e− jβ(N−1)d sin(θ3) . . . e− jβ(N−1)d sin(θP)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

is the N×P matrix, the columns of which are the elements of
direction vectors (5), s = [s1(θ1), s1(θ2), s1(θ3), . . . , s1(θP)]T

is the P-element, column vector representing the signals
received by the first element of the array, and n is the N-
element column vector representing received noise signals.
The correlation matrix R of samples of signals obtained on
the outputs of antenna system, see Figure 1, can be written
in the form of the sum, using the correlation matrix of
desirable signals Rs and the noise correlation matrix Rn,
[1, 10], namely,

R = E
{

xxH
}
= VRsVH + Rn = VRsVH + σ2

nI, (8)

where operator E{ } denotes assignment of the expected
value, I is the unitary matrix N ×N , and xH is the Hermitian
conjugate of the vector x. In other words, in this case,

vector xH is the N-element row vector, elements of which
are complex conjugate with respect to the corresponding
complex elements of the column vector x. Similarly, the
matrix VH is the complex conjugate of the matrix V.
According to [1], the correlation matrix of desirable signals

Rs = E
{

SSH
}
= diag ·{σ2

1 , σ2
2 , σ2

3 , . . . , σ2
P

}
(9)

is the diagonal matrix P × P, if the received desirable signals
are not correlated. Under the assumption P < N , matrix
VRsVH is the singular matrix, which means that

det
[

VRsVH
]
= det

[
R− σ2

nI
] = 0. (10)

It follows from (10) that σ2
n is the eigenvalue of the matrix

R, [9]. Space, in which the desirable signals are not defined
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has the dimension N − P. Hence, σ2
n is (N − P)-order

eigenvalue of the matrix R. The matrices R and VRsVH are
not negative defined, and therefore, the matrix R has also P
other eigenvalues λk, satisfying condition λk > σ2

n > 0, where
1 ≤ k ≤ P. The eigenvectors qk , assigned to these eigenvalues
are mutually orthogonal [9, 10]. According to the general
definition of matrix eigenvalues problem, (R − λk)qk = 0,
we can write

Rqk =
[

VRsVH + σ2
nI
]

qk = λkqk for 1 ≤ k ≤ N , (11)

where λk > σ2
n > 0 if 1 ≤ k ≤ P and λk = σ2

n if P + 1 ≤ k ≤ N .
It follows from (11) that

[
VRsVH

]
qk =

⎧
⎨
⎩

(
λk − σ 2

n

)
qk , 1 ≤ k ≤ P,

0, P + 1 ≤ k ≤ N.
(12)

Relation (12) shows that N-dimensional space of signals and
noise can be divided into two mutually orthogonal sub-
spaces, that is, subspace of signals Qs ≡ [q1, q2, q3, . . . , qP]
and subspace of noise Qn ≡ [qP+1, qP+2, qP+3, . . . , qN ].
According to this partition, the correlation matrix R can be
written as the following sum:

R =
P∑

k=1

(
λk − σ2

n

)
qkqHk +

N∑

k=1

σ2
nqkqHk , (13)

where λk denotes the eigenvalue corresponding to the vector
qk and σ2

n is the variance of the white noise received from the
individual antenna elements. After appropriate grouping of
the factors of sum (13), we obtain the relation, in which one
can distinguish P eigenvectors representing desirable signals
and N − P eigenvectors belonging to the noise subspace

R =
P∑

k=1

λkqkqHk +
N∑

k=P+1

σ2
nqkqHk . (14)

Each of vectors (4) containing complex samples of desirable
signal belongs to the signal subspace Qs, and therefore, it can
be written in the form of sum of eigenvectors, defined in this
subspace, namely,

xk = ν(θk)s1(θk) =
P∑

k=1

bkqk , (15)

where bk is the k coefficient of a suitable value. It should
be pointed out that each component qk of vector (15) is
orthogonal with respect to an arbitrary eigenvector qm from
the noise subspace Qn. Consequently, the whole vector (15)
is orthogonal to qm.This unique property can be expressed as
follows:

xHk qm = [ν(θk)s1(θk)]Hqm

= sH1 (θk)[ν(θk)]Hqm

= 0 for 1 ≤ k ≤ P < m ≤ N.

(16)

Applying equation (16) to all eigenvectors of the noise
subspace Qn, we find that the dot product of the vector v(θk),
representing the signal received from direction θk, and the
sum of eigenvectors from the noise subspace Qn, will also
take the value close to zero. In the ideal case (exactly defined
correlation matrix R, exactly evaluated eigenvalues and their
corresponding eigenvectors, and precise partition onto the
vectors from the subspaces of signal and noise), we have

vH(θk)
N∑

k=P+1

qk = 0. (17)

Using the property described by (17), the following estimate
of the spectral power density of the signal can be formulated:

P̂(θ) = 1
∑N

k=P+1

∣∣vH(θ)qk
∣∣2 =

1
∑N

k=P+1 vH(θ)qkqHk v(θ)
.

(18)

This estimate is usually called the spectrum of the MUSIC
method, [1, 6]. Placing all eigenvectors qk from the noise
subspace into the columns of matrix Qn, spectrum (18) can
be written in the equivalent, simpler form

P̂(θ) = 1
vH(θ)QNQH

Nv(θ)
. (19)

Function P̂(θ) attains local maximum values for angles θk
determining directions of arrival of signals being received.

3. The Root-Music Method

Determination of angular positions θk on the base of
spectrum (18) or (19), requires performing calculations
for great number of discrete values of angle θ and next
determination of all its maximum values in the given,
relatively large scanning range θmin ≤ θ ≤ θmax. This task is
especially laborious and time consuming when the angular
resolution of the order of one tenth or one hundreds of
degree is required. Therefore, in order to reduce the amount
of calculations, the modified version of the MUSIC method,
called root-MUSIC, has been elaborated. In this improved
version, the problem of evaluation of the local maximum
values of function (19) is replaced by the problem of finding
the roots θk of the polynomial vH(θ)QNQH

Nv(θ). Estimated
values of angular coordinates of objects can be evaluated for
the assumed number of roots that should be equal to the
number of received desirable signals multiplied by 2. This
number is usually determined by means of special criteria,
among which the most known are AIC (akaike information
criterion) and MDL (minimum description length), [11].

Denominator of function (19) is in general a polynomial,
which can be written as

vH(θ)QNQH
Nv(θ) = vH(θ)Pv(θ) = C(z) =

N−1∑

n=−N+1

cnzn,

(20)
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where P = QNQH
N and z = exp[− jβd sin(θ)]. According to

this definition,

P = QNQH
N

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 · · · p1,N−1 p1,N

p21 p 22 p23 · · · p2,N−1 p2,N

p31 p32 p33 · · · p3,N−1 p3,N

...
...

... · · ·
...

...

pN−1,1 pN−1,2 pN−1,3 · · · pN−1,N−1 pN−1,N

pN ,1 pN ,2 pN ,3 · · · pN ,N−1 pN ,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

is the Hermitian matrix of degree N . Coefficients cn of the
polynomial (20) can be determined by summing elements
pkl of matrix P placed on its nth diagonals, namely,

cn = 1
N

∑

k−l=n
pkl . (22)

According to this formula,

c0 =
(
p11 + p22 + p33 + · · · + pN−1,N−1 + pN ,N

)
/N ,

c1 =
(
p12 + p23 + p34 + · · · + pN−2,N−1 + pN−1,N

)
/N ,

c2 =
(
p13 + p24 + p35 + · · ·+ pN−3,N−1 + pN−2,N

)
/N ,

· · ·
cN−1 =

(
p1,N

)
/N.

(23)

As was mentioned earlier, P is the Hermitian matrix, and
therefore, the coefficient of polynomial (20) with indexes −n
and n are mutually conjugate, so c−n = c∗n for 1 ≤ n ≤ N −1.
Equation C(z) = 0 is of degree 2N − 1 and has 2N − 1
roots, and to each root zn, there corresponds another root
1/z∗n . These roots are most frequently evaluated by means of
the companion matrix method, [12, 13]. It follows from the
literature that this method ensures sufficient accuracy of cal-
culations for all roots, even when polynomial C(z) = 0 is of
relatively high degree; for instance, 2N − 1 = 63. Due to this
valuable property, the companion matrix method has been
implemented in the computational environment MATLAB.

Estimates of P angular positions of objects being detected
are evaluated on a basis of 2P roots situated nearest to
the unitary circle determined on the complex plane z =
Re(z) + j Im(z), namely, on the basis of P pairs (zn, 1/z∗n ). Of
course, each pair chosen in this manner determines only one
location. With negligibly small power of the noise, σ2

n ≈ 0,
the roots lay exactly on the unitary circle mentioned above.
From the substitution z = exp[− jβd sin(θ)] introduced

above, it follows that estimates of angular positions θ̂n are

θ̂n = arc sin

[
− 1
βd

arg(zn)

]
, (24)

where 1 ≤ n ≤ P, β = 2π/λ and d is the antenna element
spacing.

4. Application of Music and Root-Music
Methods to the Estimation of Angular
Coordinates of Moving Objects

As was already mentioned in the introduction, exact estima-
tion of the angular coordinates of moving objects by means
of monopulse methods is in many cases impossible because
of their limited angular resolution. For this reason, they can-
not distinguish the objects illuminated by the same antenna
beam and situated at the same slant distance. In order
to compare angular resolution of the monopulse, MUSIC
and root-MUSIC methods, some computer simulations have
been carried out. In these simulations, angular coordinates of
two objects (planes) moving with the speed of v = 100 m/s
have been evaluated. It has been assumed also that both
planes are moving at 45◦ with respect to the north direction.

The position of the first plane is determined by constant
angle θ1 = −14.1◦, while the second plane changes its
position θ2 gradually from −14.1◦ to −10.1◦ preserving
the course and speed. In other words, angular separation
Δθ = |θ1 − θ2| between these planes (objects) changes in
the range of Δθ = 0◦ ÷ 4◦. A limited number of pulses
radiated by the radar in given direction and consequently
limited number of signals vectors x(e) cause that estimate of
correlation matrix R̂ is inaccurate and have to be modified
using diagonal loading technique before eigendecomposition
and estimation of angular coordinates by means of subspace
methods

R̂ = 1
N

N∑

n=1

x(e)x(e)H + δ · I, (25)

where δ = 4σ2
n− loading factor.

The value of mean pulse repetition interval (mean PRI)
has been set to Tp = Tp−mean = 2 ms. The real PRI
in ith burst is equal to 0.9 · Tp−mean ≤ Tpi ≤ Tp−mean

and is modified in each burst in order to avoid blind
Doppler frequencies (Tp1 = 1.0 · Tp−mean, Tp2 = 0.95 ·
Tp−mean, Tp2 = 0.9 · Tp−mean).

The mean square errors of estimates of angular coordi-
nates of both objects obtained by means of the monopulse
method are illustrated in Figure 3.

As it is seen, the second plane changing its angular
position causes estimation errors of angular coordinates of
the first of them. This effect can be eliminated in some extent
by means of the additional Doppler filtration. This filtration
allows to attenuate echo signals coming from the second
plane when both signals have substantially different Doppler
frequency shifts normalized with respect to pulse repetition
frequency (PRF) Fp. The change of angular position of the
second plane causes observable change of its radial speed,
understood as the plane speed component with respect to
the radar station and consequently causes the change of
its Doppler frequency shift. The results of simulations have
shown that for relatively small velocities (v = 100 m/s), the
maximal difference of Doppler frequencies Δ fd = fd1 −
fd2 is comparable with −3 dB bandwith of Doppler filter
B−3 dB = 60 Hz and is smaller than its −18 dB bandwith
B−18 dB = 120 Hz. The Doppler filters have the sidelobes
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Figure 3: Mean square errors of estimates of angular coordinates
of two objects determined by means of the amplitude monopulse
method.

level located at −18 dB. Therefore, if echo of the first object
attain its maximal value in nth Doppler filter, Doppler
frequency of echo of the second object is not located in the
stopband of this filter and cannot be sufficiently attenuated.
The difference of Doppler frequencies Δ fd is proportional
to the speed of both objects, and at some point, echoes
of these objects can be separated using Doppler filtration.
Unfortunately, at higher speeds (v = 1000 m/s) these echos
may have similar normalized Doppler frequencies fd−norm =
fd1%Fp = fd2%Fp despite the fact that their Doppler
frequencies are different fd1 = fd−norm + n · Fp, fd2 =
fd−norm + m · Fp. This effect causes errors of estimation of
angular coordinates of the objects being detected.

The disadvantageous effect under discussion is well
illustrated by the simulation results shown in Figure 4. These
simulations have been performed for the planes, the speed
of which has been increased to v = 1000 m/s. The pulse
repetition interval (PRI) has been also increased toTp = 4 ms
in order to lower the PRF and increase number of similar
normalized Doppler frequencies.

From the results presented above, it follows that the
additional Doppler filtration is not an universal solution
ensuring proper distinction of the moving objects at all
times.

The signal to noise ratio S/Nnoise, given in Figures 3 and
4, determines the value of this parameter on the outputs
of matched filters MF, see Figure 1. The power ratio of
desired signal and jamming signal S/Njamm is calculated
for the inputs of pulse compression blocks. This ratio has
been defined before digital compression, because the noise
signal can be differently correlated to the radiated LFM
pulse. The second, very important advantage of MUSIC
and root-MUSIC methods is their sufficient immunity to
relatively high power jamming signals. In order to confirm
this conclusion, the additional narrowband strong signal,
situated in the direction defined by θjamm = 1.4◦ has been
introduced. The surface power density of this signal is 60 dB
greater than the corresponding surface power density of both
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Figure 4: Mean square errors of estimates of angular coordinates
of two objects determined by means of the amplitude monopulse
method and Doppler filtration (v = 1000 m/s, Tp = 4 ms).
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Figure 5: Mean square errors of angular coordinates of two objects
obtained by using the monopulse method and Doppler filtration in
presence of the jamming signal (v = 100 m/s).

desirable radar signals. In this situation, the radar systems
with receiving antennas nonadapted to the interferences,
will be jammed and eventual detections may have improper
estimates of angular coordinates. Mean square errors of such
improper estimates of angular coordinates are illustrated in
Figure 5. Of course, a negative influence of the single strong
jamming signal can be decreased by using the receiving
antenna in a form of multielement array, which can be
adapted to this undesirable signal, [14, 15].

In other words, the jamming signal should be attenuated
by the array antenna in the highest degree. The simulation
results presented in Figure 6 confirm an effectiveness of
application of the above approach to solve the radiolocation
problem under consideration.
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Figure 6: Mean square errors of angular coordinates of two objects
obtained using the monopulse method with Doppler filtration in
presence of the jamming signal attenuated by the adaptive receiving
antenna, (v = 100 m/s, Ljam = 98.6 dB).
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Figure 7: Mean square errors of angular coordinates of two objects
obtained using the MUSIC method in presence of the jamming
signal, and S/Nnoise = 0 dB (v = 100 m/s).

Next, the same radiolocation problem has been solved by
using the MUSIC and root-MUSIC methods. Figures 7 and 9
show mean square errors of estimates obtained by means of
MUSIC method for S/Nnoise = 0 dB and S/Nnoise = 30 dB in
presence of jamming signal determined above.

Similarly, the corresponding mean square errors of
estimates evaluated using the root-MUSIC method for
S/Nnoise = 0 dB, S/Nnoise = 30 dB and the same jamming
signal are shown in Figures 8 and 10.

The values of angular resolution evaluated for these
methods are given correspondingly in Tables 1 and 2.

For comparison, Tables 3 and 4 contain values of
angular resolution obtained, when MUSIC and root-MUSIC
methods determine angular coordinates on the basis of
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Figure 8: Mean square errors of angular coordinates of two objects
obtained using the root-MUSIC method in presence of the jamming
signal and S/Nnoise = 0 dB (v = 100 m/s).
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Figure 9: Mean square errors of angular coordinates of two objects
obtained using the MUSIC method in presence of the jamming
signal, and S/Nnoise = 30 dB (v = 100 m/s).

signal samples received by the real antenna array with
32-elements.

In other words, in this process, the stage of initial
preprocessing, see introduction, has been omitted. Compar-
ing results given in Tables 1 and 2, as well in Tables 3 and
4, we can see that using the proposed initial preprocessing,
see relation (1), gives significant amelioration of precision
and angular resolution. According to these results, using of
initial preprocessing permits to reduce the S/Nnoise ratio for
about 6 dB conserving necessary precision and resolution.
Thus, the error magnitudes given in Tables 1 and 2 seem
to be acceptable for most similar radiolocation problems
encountered in practice. As it has been mentioned in the
beginnig of the paper, all simulations have been carried out
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Figure 10: Mean square errors of angular coordinates of two objects
obtained using the root-MUSIC method in presence of the jamming
signal and S/Nnoise = 30 dB (v = 100 m/s).

assuming that PRI is changing in each burst. The following
values of PRI have been used:

Tp1 = 1.00 · Tp−mean,

Tp2 = 0.95 · Tp−mean,

Tp3 = 0.90 · Tp−mean .

(26)

Estimation of correlation matrix on basis of signals
vectors received for 3 different intervals allows MUSIC
and root-MUSIC methods to estimate the correct values
of angular coordinates despite the fact that signals could
have the same or very close normalized Doppler frequency
fd−norm = fd%Fp and be correlated for given PRI. This
technique is well known in radar literature, but it has been
mainly used to avoid blind speeds. Presented simulation
show, that it also helps to mitigate the problem of estimation
of angular coordinates of closely spaced highly correlated
signals. When objects are moving with very high velocities
(v = 1000 m/s) their angular coordinates could be false when
emitted signals have the same PRI in each burst as shown in
Figures 11 and 12.

This effect is especially apparent when PRF is relatively
small for instance when Fp = 250 Hz (Tp = 4 ms). The values
of normalized Doppler frequencies and mean square errors
of angular coordinates obtained for this case are illustrated
in Figures 13 and 14.

The further study of this problem and comparison of
these approach with well-known techniques of decoration of
signals such as spatial smoothing or redundancy averaging is
behind the scope of this paper.

5. Conclusions

The radiolocation problem defined at the beginning of
the introduction and in Section 4 has been subsequently
solved by different methods, that is, amplitude monopulse
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Figure 11: Values of normalized Doppler frequencies of two objects
moving with speed v = 1000 m/s (Tp = 2 ms).
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Figure 12: Mean square errors of angular coordinates of two objects
obtained using the root-MUSIC method (S/Nnoise = 0 dB, v =
1000 m/s, Tp = 2 ms).

method, amplitude monopulse method aided by the coher-
ent Doppler filtration, MUSIC, and root-MUSIC. Diagrams
shown in Figures 3 and 10, respectively, illustrate the results
of computer simulations obtained by means of these meth-
ods. Thus, on the basis of diagrams shown in Figure 3, we
can deduce that traditional amplitude monopulse method
is inadequate for this purpose. Some amelioration can be
obtained using the additional coherent Doppler filtration.
Unfortunately, this solution is not always effective, because
false estimates can appear in cases when echo signals after the
Doppler filtration [8] attain similar values in the same fre-
quency channel or have similar normalized Doppler frequen-
cies. This effect is illustrated on diagram shown in Figure 4.
Partial elimination of this undesirable effect is possible using
multiburst radar signals with variable pulse repetition time
(frequency), that is, similar to that shown in Figure 2. The
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Figure 13: Values of normalized Doppler frequencies of two objects
moving with speed v = 1000 m/s (Tp = 4 ms).
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Figure 14: Mean square errors of angular coordinates of two objects
obtained using the root-MUSIC method (S/Nnoise = 0 dB, v =
1000 m/s, Tp = 4 ms).

most effective and sufficiently precise for these applications,
see Tables 1 and 2, proved to be MUSIC and root-MUSIC
methods. This conclusion is well justified by the correspond-
ing simulation results illustrated in Figures 7 and 10.

The radiolocation problem under consideration becomes
especially difficult to solve after introducing the narrowband
strong jamming interference. In the paper, it has been
assumed that this jamming signal is incoming from the
direction θjamm = 1.4◦, and its power density is 60 dB
greater than the corresponding surface power density of both
desirable radar signals. The influence of this jamming signal
on results of the similar simulations performed by using the
MUSIC and root-MUSIC methods is illustrated by diagrams
shown in Figures 7 and 10.

The presented results confirm that MUSIC and root-
MUSIC methods are suitable for effective solution of radi-
olocation problems similar to that discussed here. Moreover,

Table 1: Angular resolution evaluated for MUSIC method.

Angular
resolution,
degrees
(estimation error
< 0.23◦)

Maximum value
of estimation
error, degrees

S/Nnoise, dB S/Njamm, dB

1.45 0.188 0 no jamming

2.05 0.094 0 −30

1.35 0.170 0 −60

1.0 0.145 6 no jamming

1.575 0.064 6 −30

1.025 0.106 6 −60

0.725 0.105 10 no jamming

1.275 0.059 10 −30

0.75 0.121 10 −60

0.475 0.048 20 no jamming

0.5 0.213 20 −30

0.5 0.041 20 −60

0.3 0.033 30 no jamming

0.275 0.147 30 −30

0.3 0.034 30 −60

Table 2: Angular resolution evaluated for root-MUSIC method.

Angular
resolution,
degrees
(estimation error
< 0.23◦)

Maximum value
of estimation
error, degrees

S/Nnoise, dB S/Njamm, dB

1.1 0.202 0 no jamming

1.1 0.208 0 −30

1.075 0.206 0 −60

0.45 0.180 6 no jamming

0.475 0.201 6 −30

0.5 0.210 6 −60

0.325 0.206 10 no jamming

0.325 0.215 10 −30

0.35 0.195 10 −60

0.2 0.220 20 no jamming

0.225 0.133 20 −30

0.25 0.137 20 −60

0.125 0.188 30 no jamming

0.15 0.113 30 −30

0.125 0.152 30 −60

they show that these methods can be treated as reliable for the
radar signals, for which the power signal-noise ratio is not
less than the signal-noise ratio, at which the signal surpasses
a detection threshold. It has been also confirmed that
the proposed initial preprocessing, see (1), makes possible
significant amelioration of precision and angular resolution
of MUSIC and root-MUSIC methods. Consequently, they
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Table 3: Angular resolution evaluated for MUSIC method (32
elements array).

Angular
resolution,
degrees
(estimation error
< 0.23◦)

Maximum value
of estimation
error, degrees

S/Nnoise, dB S/Njamm, dB

1.7 0.139 0 no jamming

2.125 0.080 0 −30

2.05 0.107 0 −60

1.1 0.134 6 no jamming

1.15 0.122 6 −30

1.2 0.111 6 −60

0.9 0.121 10 no jamming

0.95 0.109 10 −30

0.925 0.096 10 −60

0.475 0.072 20 no jamming

0.475 0.071 20 −30

0.5 0.060 20 −60

0.35 0.038 30 no jamming

0.325 0.050 30 −30

0.35 0.045 30 −60

Table 4: Angular resolution evaluated for root-MUSIC method (32
elements array).

Angular resolution,
degrees estimation
error < 0.23◦)

Maximum value of
estimation error,

degrees
S/Nnoise, dB S/Njamm, dB

1.7 0.098 0 no jamming

2.125 0.067 0 −30

2.05 0.081 0 −60

0.85 0.114 6 no jamming

0.875 0.117 6 −30

0.875 0.097 6 −60

0.475 0.094 10 no jamming

0.45 0.131 10 −30

0.475 0.104 10 −60

0.275 0.123 20 no jamming

0.275 0.130 20 −30

0.275 0.124 20 −60

0.175 0.091 30 no jamming

0.175 0.094 30 −30

0.175 0.093 30 −60

can be applied for relatively weak radar signals, for which
S/Nnoise ≈ 0 dB.

All simulation results presented in this paper have been
obtained under the assumption that the number P of objects
being detected is known exactly. This number is required
to the appropriate partition of space, spanned on the
correlation matrix R, into the useful signal subspace Qs and
the noise subspace Qn. Of course, is not easy to determine

this number for the majority of quasireal radiolocation
scenarios, and for this reason, it can be a source of potential
errors. Thus, the additional algorithm determining this
number with highest possible precission, according to AIC
or MDL criterion, is required.

6. Summary

The main subject of considerations are MUSIC and root-
MUSIC methods used to estimation of the angular coor-
dinates (directions of arrival) and angular distance of two
moving objects in presence of uncorrelated noise signal and
an external, relatively strong narrowband jamming inter-
ference. At the receiving antenna, the 32-element uniform
linear array (ULA) is used. Extensive computer simulations
have been carried out to demonstrate the sufficient accuracy
and good spatial resolution properties of these methods in
the scenario defined above. It is also shown that using the
proposed initial preprocessing, we can increase the accuracy
and angular resolution of the methods under discussion.
Most of simulation results, presented mainly in a graphical
form, have been compared with the corresponding simu-
lation results obtained by using the traditional amplitude
monopulse method and the amplitude monopulse method
aided by the coherent Doppler filtration.
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