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Abstract. Ground magnetometer measurements of total
magnetic field strength from 6 stations at low latitudes were
analyzed using power spectrum and Hurst range scaling tech-
niques. The Hurst exponents for most of these time-series
were near 0.5, which indicates stochasticity, with the highest
latitude stations exhibiting some persistence with Hurst ex-
ponents greater than 0.6. Although no definite correlations
are evident, the relative increase of the Hurst exponent with
latitude suggests the possibility that the underlying dynamics
of the magnetosphere change with latitude. This result may
help quantify the dynamics of the inner magnetosphere itself
without the direct presence of the solar wind driver.

Key words. Magnetospheric physics (magnetospheric con-
figuration and dynamics; plasmasphere) – Space plasma
physics (nonlinear Phenomena)

1 Introduction

Strong nonlinear coupling between the solar wind and the
earth’s magnetosphere results in many dramatic disturbances
in the near-earth space environment, such as the dynamic
magnetic and auroral signatures as well as magnetotail
plasma signatures associated with magnetic storms and mag-
netospheric substorms. The strongest coupling between the
solar wind and the magnetosphere occurs near the magne-
topause, close to magnetic field lines that map to the high
latitude ionosphere. The irregular nature of high-latitude
disturbances, which typically occur above 60◦ geomagnetic
latitude, are clearly manifested in the auroral electrojet in-
dicesAE andAL. Studies of these indices have suggested
that the magnetosphere behaves as a self-organized system
with a small number of degrees of freedom (Vassiliadis et
al., 1990; Sharma et al., 1993) although there are questions
as to whether the magnetosphere itself is a self-organized
system or whether it simply reflects the self-organized state
of the solar wind and interplanetary magnetic field (IMF)
to which it is strongly coupled (Price and Newman, 2001).
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If the magnetosphere is self-organized, it would imply that
only a small number of coupled, nonlinear ordinary differen-
tial equations are required to describe its dynamic behaviour.
Indeed, the number of degrees of freedom that describe the
high-latitude phenomena was found to have an average value
of about 3.3 (Vassiliadis et al., 1990; Roberts, 1991; Shan et
al., 1991; Sharma et al., 1993), although these results have
been challenged by other studies (Prichard and Price, 1992,
1993). Such nonlinear approaches have led to the develop-
ment and improvement of various dynamic models of sub-
storms (Ohtani et al., 1995; Baker et al., 1997, 2000; Takalo
et al., 1999; Horton et al., 2001)

Whereas the studies cited above have focused primarily
on magnetic variations due to high-latitude current systems,
in this paper we consider low-latitude magnetic variations
(3 ∼ 35◦

− 40◦). The high-latitude magnetic field lines are
connected to magnetospheric regions that map very closely
to the solar wind but the low-latitude magnetic field lines
are connected directly to the inner magnetosphere. Since the
field lines at low latitudes (L ∼ 1.5 − 1.8) are almost dipo-
lar, they are not as strongly influenced by the interplanetary
medium as the high-latitude regions where chaotic signatures
might simply reflect similar solar wind conditions. Thus, ex-
amination of low-latitude ground magnetometer signals can
provide clues as to whether the magnetosphere is inherently
self-organized.

At lower latitudes, the dominant magnetic variations are
due to the two diurnal solar quiet (Sq) large-scale current
systems with foci at about 30◦ magnetic latitude in the iono-
sphere and peak current densities near local noon. Super-
imposed on these diurnal signals are higher frequency vari-
ations from magnetospheric sources. Coupling of the low-
latitude regions with the magnetosphere is achieved along
magnetic field lines that map to the inner magnetosphere, and
through the variation of the ring current at distances of about
3–5 earth radii (RE), especially during magnetic storms. The
references quoted above have demonstrated a clear nonlinear
behaviour of high-latitude time-series, but the latitudinal ex-
tent and variability of such behaviour is unknown. We are,
therefore, interested in determining whether the quantitative
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Table 1. Geographic latitude and longitude, corrected geomagnetic
latitude, and L-shell location for the various stations

Station Latitude Longitude Magnetic L
(◦South) (◦East) Latitude

Ellis 23.79 27.72 −34.37 1.47
Bronk 25.62 29.05 −35.93 1.53
Lans 25.94 27.93 −36.21 1.54
Vry 27.23 24.62 −37.23 1.58
Bos 28.40 25.54 −38.18 1.62
Herm 34.42 19.27 −42.30 1.83

nonlinear dynamics of the high-latitude regions extends to
lower latitudes; for example, to determine the fractal dimen-
sion pertinent to low-latitudes and whether this is similar to
that found in the high-latitude studies. This paper represents
a preliminary effort to address the issue.

A global index that characterizes the low-latitude mag-
netic variation, isDst . However, sinceDst is computed only
at hourly intervals, it was deemed advantageous to use ac-
tual magnetometer records that provide a higher time res-
olution in order to investigate the fractal properties present
at low-latitudes. Furthermore, the individual magnetometer
time-series give localized estimates of the fractal parameters
rather than the global output that is sampled by geomagnetic
indices. We have analyzed individual magnetometer records
for five days in January 1993 during which magnetospheric
activity indicates no magnetic storms although several small
substorms are observed at high-latitudes. We find evidence
that the dynamics of low-latitude regions of the magneto-
sphere, sampled by the magnetometer stations in the study,
are primarily stochastic, although two stations exhibit sig-
nals that are not inconsistent with self-organized criticality
but with a lower level of complexity than for the dynamics
governing high-latitudes; that is, the calculated fractal di-
mension is lower than that found in the high-latitude stud-
ies cited above. Although the degree of coupling with the
solar wind and the IMF is not clear, our results do suggest
that the low-latitude inner magnetosphere behaves in a fun-
damentally different way to the high-latitude regions.

2 Data

We utilize data from an Anglo American Corporation experi-
ment, which recorded geomagnetic temporal variations from
an array of six magnetometer stations spread in latitude over
South Africa (Wanliss, 1995), shown in Fig. 1. The stations
were at Ellisras (Ellis), Bronkhorstspruit (Bronk), Lanseria
(Lans), Vryburg (Vry), Boshof (Bos) and Hermanus (Herm),
whose geographic locations, corrected geomagnetic latitudes
and L-shell positions are listed in Table 1. The motivation
for the experiment was to provide a rigorous understanding
of the background magnetic field in the region, to be used in
the interpretation of aeromagnetic surveys. A useful byprod-

Fig. 1. Map of South Africa, showing the location of the six magne-
tometer stations used in the present study. From north to south (low
latitude to high latitude): (1) Ellis, (2) Bronk, (3) Lans, (4) Vry, (5)
Bos and (6) Herm. The coordinates shown are geographic.

uct was the high time resolution data used in the present
study. Simultaneous data from the stations were acquired
during 13–18 January 1993. The magnetometer instrument
sensitivity is 0.1 nT with a sampling interval of 10 s. The to-
tal ambient field in the region of these low-latitude stations
is approximately 30 000 nT. Figure 2 shows the time-series
from each of the stations, with their mean values removed.
The most obvious signatures are the diurnalSq variations
that result in minima near local noon; these exist at all sta-
tions but are clearest at Hermanus, primarily due to the so-
called “coastal effect” which arises due to the magnetic field
induced by time varying magnetic fields in the conducting
ocean water (Pal’shin et al., 1999).

The Dst index over this period indicates slowly varying
fields and no magnetic storms although several substorms
were observed in the auroral signatures of the CANOPUS
photometers and magnetometers. SinceDst is computed by
the convolution of magnetometer signals from stations at lat-
itudes lower than about 36◦ (L < 1.53) it gives a good indi-
cation of the state of the inner magnetosphere at the latitudes
we are examining. The mean and maximum values ofDst

during this period investigated were−15 nT and−43 nT, re-
spectively, which represent a relatively small ring current en-
ergy density.

3 Analysis

Since temporal variations of the geomagnetic field exhibit
scale-independent behaviour, it is appropriate to analyze
them with fractal methods. In the following, we examine the
behaviour of the low-latitude magnetic field time-series from
several different perspectives in order to determine their frac-
tal characteristics. Since it is demonstrably difficult to mea-
sure the chaotic variability of such space physics data, we
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Table 2. For each station, the columns list the autocorrelation time,τc; the power spectral exponent,β; the corresponding Hurst exponent,
Hβ , calculated fromβ = 2Hβ + 1; the Hurst exponent,HR/S , calculated by theR/S method; and the fractal dimension,DR/S , calculated
from DR/S = 2 − HR/S . The error listed is that from the least-squares regression and so it is only a minimum error as there are other
possible sources of error that are difficult to calculate. (The error ofDR/S is the same as that forHR/S

Station τc (hours) β Hβ HR/S DR/S

Ellis 6.36 2.093± 0.020 0.547± 0.010 0.504± 0.017 1.496
Bronk 6.90 2.175± 0.013 0.588± 0.007 0.501± 0.015 1.499
Lans 5.97 1.963± 0.037 0.482± 0.019 0.492± 0.039 1.508
Vry 5.17 2.129± 0.016 0.565± 0.008 0.523± 0.016 1.477
Bos 4.71 2.328± 0.033 0.664± 0.017 0.696± 0.021 1.304
Herm 3.73 2.382± 0.014 0.691± 0.007 0.675± 0.020 1.325
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Fig. 2. Total relative magnetic field measured at the six stations
from 13–18 January 1993. The series are plotted as a function of
local time (LT) and range from top to bottom in increasing latitude.
From top to bottom (1) Ellis, (2) Bronk, (3) Lans, (4) Vry, (5) Bos
and (6) Herm.

have not relied on a single technique but have investigated
these properties using two different methods described in the
following section, viz. (1) power spectral analysis and (2)
range scaling analysis (Hurst, 1951).

A third, more common, method of discerning nonlinear
behaviour from a time-series is the use of embedding dimen-
sion analysis to evaluate the correlation dimensionν (Grass-
berger and Procaccia, 1983). The value ofν is determined
by counting the number of pairs of points in the time-series
that are separated by less than the distancer. This “correla-
tion integral” should scale asrν for small r. There are two
major difficulties with the application of this method. First,
the pairs of points must be no nearer than the autocorrela-
tion timeτc (e.g. Hilborn, 1994). For the time-series in this
study,τc ranges from about 4–7 h (these are listed in Table 2)
which is a significant fraction of the total length of each time-
series. Even when this restriction is lifted by using only dis-
tant points, the strong periodic modulation due toSq can lead
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Fig. 3. Power spectra of magnetic data measured during 13–18 Jan-
uary 1993 at Ellisras (Ellis). The best-fit line gives a value for the
spectral exponent ofβ = 2.093 ± 0.020. This line (dashed) is
shifted for the purposes of comparison.

to anomalously largeν (Shan et al., 1991). In the present
case, we obtained values forν ∼ 5 which do not agree with
the more robust methods shown below, presumably due to
the large correlation times as well as theSq modulation at
24 h. This is consistent with previous results which indicate
that correlation dimensions are adversely affected by strong
periodic modulations (Shan et al., 1991), and when the cor-
relation time is large (Shan et al., 1991; Prichard and Price,
1992).

3.1 Power spectrum analysis

A great deal of space physics data is self-affine (Ohtani et al.,
1995; Takalo et al., 1999) with a power spectral density of the
form P(f ) ∝ f −β , whereβ is the spectral exponent. The
power spectrum of the time-series from the Ellis station is
shown in Fig. 3 and the best-fit line (calculated over three or-
ders of magnitude in frequency) indicates a spectral exponent
of β = 2.093± 02.020. All six stations have power spectra
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Fig. 4. Range scaling parameter (R/S) versus number of obser-
vations for the Ellis station. The best-fit line (dashed) results in a
Hurst exponent ofHR/S = 0.504± 0.017.

whose exponents remain constant over a similar range of fre-
quencies. The spectral exponents for all stations are listed
in Table 2. With the exception of the Lanseria station,β is
slightly larger than 2. This is significant because a value of
β = 2 corresponds to a random walk and, as investigated be-
low in Sect. 3.2, a larger value indicates some “persistence”
in the time-series (Mandelbrot, 1983).

It appears thatβ tends to increase with increasing geomag-
netic latitude. A linear least-squares fit givesβ = (0.95 ±

0.39)L+(0.66±0.63) which indicates a correlation between
β andL. The correlation coefficient, however, isr = 0.77
which implies only a weak linear correlation. We are, there-
fore, unsure of the significance of this result but find that it
suggests the possibility that there is some latitudinal depen-
dence in the nonlinear statistics. In addition, the autocorrela-
tion time tends to decrease with increasing geomagnetic lati-
tude. A best-fit line givesτc = (−8.3±2.1)L+ (18.7±3.3)

(correlation coefficientr = −0.90). Unfortunately, these six
stations have only a narrow spread inL, which means that
the strength of these trends is only hinted at with the present
data. In fact, we cannot say with certainty that either of these
correlations is linear. However, these results do suggest the
need for a study over a wider range of low-latitude L-shells
which could, quantitatively, discern a trend and perhaps the
physical processes of the underlying dynamics with geomag-
netic latitude.

3.2 Range scaling analysis

Range scaling (R/S) analysis was developed by Hurst (1951)
to study time-series whose underlying processes are inde-
pendent, though not necessarily Gaussian. Here, our time-
series consists of a sequence of measurements of the total
magnetic fieldB(t0), B(t1), . . . B(tM), wheret0 = 0, t1 =

τ, . . . , tM = Mτ . The time-series is characterized by an

exponent,H , which is a quantitative measure of the self-
affinity of the time-series. That is,H relates the typical
change inB, 1B, to the difference in time1t by the scal-
ing law 1B ∼ 1tH (Mandelbrot, 1983) whereH is in the
range 0 ≤ H ≤ 1. This is a nonuniform scaling where
the shape of the time-series is invariant under a transforma-
tion that scales the coordinates differently and is a hallmark
of self-affinity. For the usual Brownian motion, which is a
stochastic random walk,H = 0.5. Larger values ofH in-
dicate some memory or persistence. Smaller values indicate
“anti-persistence,” which means that the time-series is more
volatile and choppy. One method of determiningH is to use
R/S analysis. For example,R/S analysis was recently ap-
plied to the high-latitudeAE index and shown to provide a
robust estimator of deterministic chaos (Price and Newman,
2001).

Our analysis consisted of taking the raw positive definite
time-seriesx(t) of lengthM and taking the first differences
of the natural logarithm, thus creating a new time-seriesB(t).

B(tp) = ln(x(tp+1)) − ln(x(tp)); p = 1, 2 . . . , M − 1 (1)

Following this we take the time-seriesB(t) and subtract the
sample meanB to obtain a new series

Zr = B(tr) − B; r = 1, 2 . . . , n (2)

Next, a cumulative time-series,Y , is derived

Yl =

l∑
i=1

Zi; l = 2, 3, . . . , n (3)

and an adjusted range,R, is formed in terms of the maxi-
mum minus minimum value of the cumulative seriesY , R =

sup(Y1, Y2, . . . , YT ) − inf(Y1, Y2, . . . , YT ). The rescaled
range,R/S, is then given by the ratioR/σ , whereσ is the
usual standard deviation. This quantity scales, with respect
to T , by the power law

(R/S)T ∝ T H (4)

whereT = tn, andH is the Hurst exponent. The value of
H can then be evaluated from a plot of log(R/S) versus
log(T ) and a measurement of the slope of the best fit line.
Figure 4 shows the rescaled rangeR/S for the Ellis station,
and a best-fit line is shown, resulting in a Hurst exponent of
HR/S = 0.504± 0.017. The rescaled ranges for the other
stations result in similarly good linear fits. The Hurst ex-
ponents,HR/S , for all the stations as calculated by theR/S

analysis are listed in Table 2.
The uncertainties in the calculated values for the Hurst ex-

ponent were calculated by starting with the uncertainty in the
measured magnetic field,± 0.1 nT. These errors were propa-
gated through the calculations listed above to obtain the error
value forR/S (see Fig. 4). The best-fit slope in Fig. 4 was
obtained through linear least-squares analysis taking into ac-
count the error in the dependent variable (e.g. Press et al.,
1988). All of the linear fits were consistent with the data
with chi-square probabilities greater than 0.99, that is, the
linear slopes are highly significant.
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Fig. 5. Plot of HR/S (from range scaling analysis) versusβ (from
power spectral analysis). The best-fit linear curve is indicated as the
solid line. The straight line representsHR/S = (0.54± 0.13)β −

(0.62± 0.29).

There is no reason to expect, a priori, that there should
be a linear relationship betweenβ andHR/S . However, for
self-affine data, there is a relation between the Hurst expo-
nent and the spectral exponent,β = 2H + 1 (Turcotte, 1992,
p. 78). In Table 2, therefore, the Hurst exponents as cal-
culated from the measured spectral exponent (Hβ ) are also
listed. Although the power spectrum andR/S analysis are
independent modes of investigation, these two techniques of
calculating the Hurst exponent are relatively consistent al-
though they do not always agree within the estimated errors.
We do not expect a perfect correspondence since the methods
of investigation are independent and the calculation ofR/S

is significantly more stable against sudden phase changes of
fluctuations than the calculation of a power spectrum. A
more rigorous method to measure the strength of their agree-
ment is to determine if the spectral exponent,β, is correlated
to the Hurst exponent,HR/S . A linear least-squares fit results
in the relationHR/S = (0.54± 0.13)β − (0.62± 0.29) with
a correlation coefficient ofr = 0.90. This result leads to
the conclusion that these magnetic field time-series are self-
affine (see Fig. 5). In addition, this is evidence that the data
behave in a self-organized manner and the calculation of the
fractal dimension is meaningful. For a time-series that can be
modeled as fractional Brownian motion (Mandelbrot, 1983),
the relationship betweenH and the fractal dimensionD is

H = 2 − D (5)

Under these assumptions the fractal dimensions of all sta-
tions, as calculated fromHR/S and Eq. (5), are listed in Ta-
ble 2. As expected, the fractal dimensions are all near 1.5
although the stations at the higher latitudes exhibit a some-
what lower value forD; this is consistent with the fact that
the Hurst exponents exhibit somewhat more persistence.

Similar to the autocorrelation times and spectral expo-
nents, the Hurst exponent exhibits a weak correlation with

magnetic latitude or L-shell. The four lower latitude stations
are consistent withH ∼ 0.5, indicating stochastic behaviour.
On the other hand, the Bos and Herm stations, located at
the highest L-values, demonstrate persistent behaviour (as
indicated by a value ofH > 0.5) which means that these
time-series have long memory effects. In the language of
nonlinear dynamics, the data exhibit a sensitive dependence
on initial conditions, one of the hallmarks of chaos. This
feature, the latitudinal dependence of nonlinear features in
magnetic time-series, is strong enough to warrant further re-
search. Analysis of data from other magnetometer chains
(IMAGE, CANOPUS, MEASURE) is underway.

3.3 Possible systematic errors and sources of bias

Because we have used relatively short time-series, it is a rea-
sonable concern that our estimates of the Hurst exponent are
affected by the length of the time-series rather than by ac-
tual dynamics; a time-series that is too short may bias the
estimates. We have investigated this possibility by randomly
reorganizing the data so that the order of observations is com-
pletely different from that of the original time-series. Be-
cause the actual observations remain the same, the frequency
distribution of the time-series remains unchanged. If there
was a long memory effect in place, the order of the data
would be very important and the scrambling effect would
be to destroy the structure of the system, thus resulting in a
much lower Hurst exponent estimate. However, if the length
of the time-series is resulting in bias, scrambling can have
the opposite effect, resulting in a Hurst exponent that is even
larger than the original estimate (Peters, 1991, p. 75). For
stations 5 and 6 which showed persistence, we found that
scrambling the original series caused a drop in the value of
the Hurst exponents which shows that the long memory pro-
cess was destroyed by the scrambling process. The other four
stations, of course, were already stochastic and the reorder-
ing process left their Hurst exponents effectively unchanged.

Another reasonable concern is the affect of the periodicSq

variations which might increase the value of the Hurst expo-
nent in an unphysical manner. We investigated whether this
had an effect on our analysis by considering the data from
the Hermanus station for the whole of January 1993 (unfortu-
nately, the other stations were only temporarily in operation
for the 5 days reported here). Range scaling analysis was
performed on a new time-series obtained by subtracting the
mean of the three quietest days of the month (21, 22, 23 Jan-
uary) from the original time-series (this essentially removes
theSq effect). There was no significant change in the Hurst
exponent. We further investigated this possible effect on an
artificial (chaotic) time-series for the Lorenz attractor. The
Hurst exponent was calculated for this time-series, and then
compared to the Hurst exponent that was computed when the
time-series was added to a sinusoidal curve that had 5 periods
for the entire length of the series. The two Hurst exponents
were statistically equal (i.e. within the error bars).
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4 Discussion and conclusion

Several previous studies have investigated the fractal proper-
ties of high-latitude geomagnetic variations through the use
of theAE andAL indices. The number of degrees of free-
dom that describes the system, as measured by the correla-
tion dimension, was found to be between 2.2 and 4.2 (Vassil-
iadis et al., 1990; Roberts, 1991; Shan et al., 1991; Sharma
et al., 1993). In the present paper, low-latitude geomagnetic
variations have been examined using different fractal tech-
niques that are not subject to difficulties due to long corre-
lation times and strong periodicities. As stated above, indi-
vidual magnetometer measurements were used because they
have higher spatial and temporal resolution than a global in-
dex such asDst .

The L-shells of the stations ranged overL = 1.47− 1.83,
indicating that the stations are sampling a very different re-
gion of the magnetosphere, namely the plasmasphere, to the
high-latitude stations used to computeAE andAL. The pe-
riod studied encompassed low dynamic magnetospheric ac-
tivity, as indicated by relatively steadyDst values. This im-
plies that the influence of the ring current perturbations is
not large and that the perturbations are primarily due to the
ionospheric solar quiet and auroral electrojet currents, as well
as possible plasmaspheric influences. The previous studies
mentioned have argued that the dynamical processes associ-
ated with substorms and, in particular with theAE andAL

indices, are low dimensional. Here, we conclude that an even
lower dimensional behavior characterizes the low-latitude
magnetosphere. The average fractal dimension obtained was
nearD ∼ 1.5 which is lower than the high-latitude results.
This might indicate that the inherent dynamical properties of
the low-latitude magnetosphere are less complex and can be
described by fewer degrees of freedom than the high-latitude
magnetosphere that was previously examined via global in-
dices. Qualitatively, the good agreement between the spectral
exponent and the Hurst exponentHR/S lends credence to the
existence of self-organized behaviour at low latitudes.

Perhaps the most interesting result is the correlation of ev-
ery statistical property of the magnetic field time-series with
magnetic L-shell. In particular, the increase ofHR/S (to val-
ues greater than 0.5) with increasingL suggests that the com-
plexity of the inner magnetosphere increases with magnetic
latitude and L-shell. However, it is impossible to be certain
of the significance of these results since we have only a small
sample of data (only six stations over a very narrow latitudi-
nal range). A more detailed global study, with many lati-
tudinally spread stations, is necessary to determine whether
the behaviour found here is consistent with that at higher lat-
itudes. Of course these trends, if extrapolated to high lati-
tudes, would lead to unreasonable values in the auroral re-
gion. For this reason, we conclude not that the complexity
increases linearly withL but only that the trend is suggested
and further study is needed.

Acknowledgement.Topical Editor T. Pulkkinen thanks C. P. Price
for his help in evaluating this paper.
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