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ABSTRACT:

Soil surface roughness, as investigated in this study, is a critical parameter in microwave remote sensing. As soil surface roughness
is treated as a stationary single scale isotropic process in most backscattering models, the overall objective of this study was to better
understand the role of soil surface roughness in the context of backscattering. Therefore a simple photogrametric acquisition setup
was developed for the characterization of soil surface roughness. In addition several suited SAR images of different sensors (ERS-2
and TerraSAR-X) were acquired to quantify the impact of soil surface roughness on the backscattered signal. Major progress achieved
in this work includes the much improved characterization of in-field soil surface roughness. Good progress was also made in the
understanding of backscattering from bare surface in the case of directional scattering.

1 INTRODUCTION

Micro scale soil surface roughness is a critical parameter in a
wide range of environmental applications. In microwave remote
sensing, it is well known that micro scale soil surface rough-
ness has a considerable impact on the backscatter signal. With-
out considering roughness terms in several retrieval algorithms,
the derivation of geo-physical variables will lead to insufficient
results or in a general over- or underestimation of the desired
variables. Despite this, recent studies have shown, the periodical
component of soil surface roughness and its orientation cause sig-
nificant backscatter differences in different SAR images acquired
with short temporal intervals under slightly different aspect an-
gles (Wegmuller et al., 2011). However, for an appropriate char-
acterization of in-situ soil surface roughness measurements, the
default measurement devices are still not sufficient in accuracy
(mesh boards) or in the acquisition speed (laser profiler). Thus,
precise roughness measurements with a statistically robust acqui-
sition size are so far rarely available, leading to a generalized
roughness representation in recent backscatter models. In such
models, soil surface roughness is generally treated as single scale
stationary isotropic process. Indeed, as soil surface roughness in
an agricultural environment can be considered as multi-scale and
anisotropic, a three-dimensional acquisition scheme is required
to accomplish theses requirements (Marzahn et al., 2012a,b). In
this paper we present a simple acquisition setup to acquire soil
surface roughness and show the impact of soil surface roughness
on microwave backscattering from agricultural fields in the spe-
cial case of directional scattering. Datasets were acquired at the
Wallerfing test site, which is part of the SMOS Cal/Val Upper
Danube test site (Schlenz et al., 2010).

2 METHODS

Several field campaigns were scheduled in conjunction with ERS-
2 and TerraSAR-X acquisitions over the Wallerfing test site which
is part of the SMO Cal/Val activities (Schlenz et al., 2010) located
in the Upper Danube watershed approx. 100 km northeast of Mu-
nich. The region, which has a low relief energy, is mainly agri-
cultural in character and the main crops are winter wheat, win-
ter barley, corn and sugar beet. During the campaign most of the
crops had been sown already and were already at the beginning of
their growth. The seedbed structure was at all sample points still
well developed due to the lack of precipitation. Thus, the sample
points (elementary sample units, ESU) all represent an already
prepared seedbed pattern. Table 1 summarizes the characteris-
tics of the sample points. In addition to the roughness measure-
ments, soil moisture, vegetation height and coverage, row orien-
tation and linearity as well as row distance were measured. For
the entire test site a landuse map was available.

2.1 Roughness Acqusition Setup

For measuring soil surface roughness a simple photogrametric
approach was chosen. Therefore the setup consists of a cus-
tomized Canon EOS 5D used with a Canon EF 2/35 mm lens
and a reference frame. As the performance of such consumer
grade camera is usually limited by their sensors and lens stabil-
ity (Rieke-Zapp and Nearing, 2005), the lens was fixed by placing
epoxy resin between the focusing tube and the outer lens tube, re-
ducing the maximum absolute LME to 47 µm (Rieke-Zapp et al.,
2009). After fixation of the lens, the camera was calibrated and its
interior orientation parameters estimated by Aicon 3D Studio and
converted for further usage in Leica Photogrametry Suite (LPS).
Parameters of the interior orientation are provided in Marzahn et
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Figure 1: Roughness acquisition scheme and image arrangement
for stereo coverage of the frame

ESU Landuse surface type size
[
m2

]
R11 maize seedbed 6
R12 onion smooth crusted 6
R13 sugarbeet crusted seedbed 8
R14 sugarbeet crusted seedbed 8
R21 sugarbeet crusted seedbed 6
R22 sugarbeet crusted seedbed 6
R23 sugarbeet crusted seedbed 6
R30 winter rape seedbed 22

Table 1: Characteristics of sample points acquired within this
study

al. (2012a). As LPS needs for establishing the exterior orientation
Ground Control Points (GCPs), a reference frame in the size of
1 x 2.5 m2 was built providing 28 GCPs with a vertical accuracy
of 0.1 mm measured with a caliper ruler. As the frame is lim-
ited in its size, it is necessary, for larger roughness acquisitions,
to acquire consecutive image acquisitions of the frame by mov-
ing it along a levelled plane which is ensured by an align fixture
(see Fig. 1). During post processing, the individual DSMs were
merged to a final large DSM by image matching techniques.

In this study, roughness measurements were made over several
bare or sparse vegetated fields. Over the latter ones, the vege-
tation was carefully removed from the scene without disturbing
the soil’s surface. For each sample point acquisitions were made
parallel and perpendicular to the row direction of the agricul-
tural fields. Table 1 summarizes the characteristics of the sample
points where soil surface roughness was measured.

2.2 Roughness Characterization

Soil surface roughness can be characterised by a vertical and a
horizontal component. Thus, to quantify soil surface roughness,
two different roughness indices where chosen to numerically de-
scribe soil surface roughness. To quantify the vertical component,
the RMS height s was chosen, which is defined as:

s [cm] =

√∑n
i=1

(
Zi − Z

)2
n− 1

(1)

and describes the standard deviation of the heights (Z) to a ref-
erence height

(
Z
)
. The horizontal roughness component is de-

scribed by the autocorrelation length l. For an efficient estimation
of l, a variogram analysis was used and inverted the autocorrela-
tion function (ACF) from a calculated theoretical directional var-
iogram

(
γ̃
(
h~j

))
, where l is defined as the distance (h) at which

the ACF drops under e−1 (Blaes and Defourny, 2008). This im-
plies an exponential fit of the theoretical variogram and therefore

of the ACF.
The theoretical variogram (γ̃) with an exponential shape is fit-

ted to a directional experimental variogram
(
γ̂
(
h~j

))
, which is

defined as (Webster and Oliver, 2007):

γ̂
(
h~j

)
=

1

2n

n∑
i=1

[
Z (xi)− Z

(
xi + h~j

)]2
(2)

From the theoretical variogram (γ̃) the ACF (ρ̃) can be derived
as follows:

ρ̃ (h) = 1− γ̃ (h)

γ̃ (∞)
(3)

where γ̃ (h) is the semi variance at distance h between two points
and γ̃ (∞) is the semi variance at distance where the sill of the
variogram is reached. For the assumed exponential model, where
the sill is asymptotically approached, γ̃ (∞) corresponds to the
distance where 95 % of the sill is reached (Blaes and Defourny,
2008).
To characterize the anisotropic pattern of a corresponding soil
surface, the directional autocorrelation length was calculated for
direction between 45°and 135°with a 1°interval.

2.3 Decomposing Soil Surface Roughness

From Figure 2a and its corresponding sample variogram (Fig. 3a)
it is obvious that a two scale roughness pattern can be observed
on an agriculturally formed soil surface. As different roughness
scales have an impact on the backscattered signal in microwave
remote sensing, it is important to characterize both scales. There-
fore, again variography is used to decompose and characterize the
soil surface at different scales. As the variogram shows a surface
inherent behaviour with strong similarities at distances in range of
180 cm, which correspond to the wheel tracks in Figure 2a, a two
scale roughness pattern is indicated. Thus, the variogram for the
whole sample plot describes the semi-variance of the roughness
pattern which is strongly imposed by the large scale roughness
pattern (e.g. wheel tracks of drilling machine). To characterize
the small scale roughness pattern (e.g. seedbed rows, soil clod
distribution) we defined a threshold to mask out the wheel tracks
and calculated variograms for each surface again. As a result, for
each roughness scale a roughness index is calculated.

2.4 Detrending

As can be seen in Figure 2b and 3b several DSMs showed a spa-
tial trend in elevation due to higher order topographic patterns
such as general slope effects. Lievens et al. (2009) described the
importance of detrending the data and the effects of different de-
trending procedures on the retrieved roughness indices. In this
study, two detrending models have been defined which can be
described by:

Zmod ∼ mX + b (4)

for the linear model and

Zmod ∼ b+m1X +m2X
2 +m3X

3 + ...mnX
n (5)

for the polynominal model, where m and b represent the regres-
sion coefficients slope and intercept and X the x-coordinate of the
sample DSM. The detrended surface Zres then is defined as:

Zres = Z − Zmod (6)

2.5 SAR Data

Six ERS-2 and TerraSAR-X (TSX) datasets with varying Doppler
centroids were acquired during the campaign in spring 2011 at
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Date Sensor Dop. Centroid [Hz] Mode Pol
20110402 ERS -2427.0 Image VV
20110423 ERS 160.0 Image VV
20110426 ERS 752.0 Image VV
20110507 TSX -9.8 Stripmap VV/HV
20110514 ERS -3598.0 Image VV
20110523 ERS 7.0 Image VV

Table 2: Acquired SAR imagery and corresponding characteris-
tics

R11 R12 R13 R14 R21 R22 R23 R30
0.17 0.13 0.05 0.07 0.05 0.06 0.02 0.22

Table 3: Root mean square error in cm of generated DSM height
values compared to the manually measured GCPs for each sample
point

the beginning of the growing season for the major crops in the
test site. Table 2 summarizes the main characteristics of the ac-
quisitions, while Figure 4 show as an example the backscattering
in an ERS-2 image over the test site.

To detect a potential directional scattering over several agricul-
tural fields, a SAR image is split into five sub looks according to
Wegmuller et al. (2011) with a 50 percent overlap and HSI images
are generated, where hue corresponds to the backscatter ratio of
two sub looks, saturation to the backscatter change and intensity
to the backscattering in the first image of the pair. Figure 5 shows
as an example a HSI composite for the 23 of May 2011.

3 RESULTS AND DISCUSSION

3.1 Roughness characterization

Table 3 shows the root mean square error in the Z-direction (RMSEZ)
of the sample plots. The results show a high accuracy of the gen-
erated DSMs compared to the manually measured checkpoints
installed on the reference frame, thus providing a robust basis for
the characterization of soil surface roughness statistics.

Figures 2 and 3 show as an example three generated DSM with
typical problems occurring when measuring soil surface rough-
ness in an agricultural environment. All DSMs show a multi scale
roughness pattern ranging from small (micro) scale roughness
pattern comprising the soil clods and seedbed rows over meso
scale roughness (wheel tracks) and large scale roughness pattern
such as general slope effects. Table 4 summarizes the character-
ization of the roughness spectra by using the defined roughness
indices for the micro (s1 and l1) and the meso roughness scale (s2
and l2) separately and the output from the detrending procedure.
By analysing the effects of detrending it is obvious that for the
RMS height no significant change is observed due to the detrend-
ing procedure. Results for the autocorrelation length l change
significantly in the order of several decimetres. Except for R30, a
22 m2 large sample plot, a significant change in s can be observed,
due to the strong topographic influence with a range in heights of
20 cm. To model this strong trend a polynomial approach of 9th
order was chosen.

Figure 3a indicates a significant two-scale roughness pattern for
sample plot R12. Different points with a certain distance in range
of 200 cm to each other show a strong similarity, thus indicating
periodicity in the soil surface roughness pattern with a range of
200 cm. From Figure 2a it is obvious that this pattern is clearly
related to the wheel tracks of the tillage machines used during

Figure 2: Three sample DSMs of different roughness plots show-
ing a.) a significant two scale roughness pattern (R12), b.) a
spatial trend (R14) and c.) no spatial trend with an insignificant
two scale roughness pattern (R21). Units in cm

ESU s1 s2 l1 l2

R11 0.88 1.84 11.0 29.5
R12 0.85 1.73 71.6 38.27
R13 1.15 (1.09) 2.43 (2.84) 38.3 (17.7) 53.04 (69.05)
R14 0.24 (0.86) 2.26 (2.5) 41.01 (96.39) 98.04 (169.14)
R21 1,24 1.45 31.1 38.52
R22 0.77 (0.93) 1.12 (1.51) 20.5 (26.4) 23.47 (55.4)
R23 1.08 (1.31) 2.38 (2.71) 27.3 (25.7) 105.6 (107.5)
R30 1.18 (2.84) 1.19 (3.26) 17.2 (145.7) 17.2 (359.52)

Table 4: Results of two scale roughness representation. In brack-
ets the results for the non detrended original surfaces. Units in
cm, s1, l1 correspond to the small scale roughness pattern, s2, l2
to the large scale roughness pattern

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B5, 2012
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

425



a.)

b.)

c.)

Figure 3: Sample variograms of the roughness plots from Fig 2
showing a.) a significant two scale roughness pattern (R12), b.) a
spatial trend (R14) and c.) no spatial trend with an insignificant
two scale roughness pattern (R21)

Figure 4: ERS-2 scene, acquired at the 23 of May 2011, over the
Wallerfing test site, indicating strong directional backscattering
over several fields in the north-western part of the image

seedbed preparation. Thus the sharply bounded wheel tracks with
a height difference of 4-6 cm to the surrounding seedbed biases
the characterization of the roughness indices. All sample plots
show this two scale roughness representation, due to the avail-
ability of a seedbed structure imposed over wheel tracks, at which
for the small scale roughness pattern the values for s1 and l1 are
lower than for the large scale roughness pattern. For sample plot
R12, which represents a smooth crusted onion field, the auto-
correlation length for the small scale roughness pattern is higher
than the large scale roughness pattern, indicating a very smooth
surface with sharply bounded wheel tracks (Fig. 2a). It should be
highlighted, that even under the same land use type (e.g. sugar
beet) the roughness values indicate different roughness condi-
tions, which are a result of the different tillage machines used
and the state of crusting. Sample plots R14 and R21 illustrate
this effect, both represent sugar beet fields at the same crusted
stage. In contrast, sample plot R30 shows no significant two scale
roughness process, which is due to the missing presence of wheel
tracks or other higher order roughness patterns and thus rough-
ness is only defined by the present seedbed structure. As a result,
the values of s and l are equal for both scales.

3.2 SAR data and the identifying of directional scattering

Figure 4 reveals a strong backscatter for several fields in the north-
western part of the scenes, indicating either vegetated fields as
well as man made structures or directional scattering from bare
fields (Wegmuller et al., 2011). The HSI image with an Doppler
difference of 1000 Hz, which correspond to a difference in the
look vector of 0.5°, indicate that those fields are characterized
by directional scattering. Those fields are mostly bare recently
seedbed prepared or sparsely vegetated fields, with the row pat-
tern orientated quasi perpendicular to the sensors look vector with
a difference of± 5°. Wegmuller et al. (2011) found similar obser-
vations over the Flevoland test site. Comparing those fields with
the neighbouring fields, with a different row orientation but same
landuse type and phenology, the backscattering is up to 10 dB
higher. Thus, a directional backscattering, which mainly origi-
nates from the row orientation can be observed, however there
are several differences between different fields (see Fig. 4) which
only differ in the observed roughness conditions.

3.3 Impact of soil surface roughness on backscattering

Figure 6 shows the directional backscattering in dB over bare or
sparsely vegetated fields in dependency of the row orientation to
the sensors look vector and the roughness conditions at the time
of each image acquisition. As one can clearly observe, there is
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Figure 5: HSI (HueSaturationIntensity) composite of the
backscatter ratio (hue), backscatter change (saturation) and
backscattering in the first image of the pair (intensity) over
Wallerfing site on 23 of May 2011. Backscatter ratio (hue) ranges
from 6 to + 6 dB; mean intensity (intensity) from 22 dB to +
6 dB; absolute backscatter change (saturation) from 0 to + 6 dB.
Red indicates higher intensity for the sub look 1, and green higher
intensity for sub look 5.

a strong first order dependency of the directional scattering from
the row orientation which was also observed by Wegmuller et al.
(2011). However, a secondary dependency can be observed from
the roughness conditions. Thus, the first order dependency can be
described by a Gaussian model (Mattia, 2011; Wegmuller et al.,
2011) with a peak at rows orientated perpendicular to the sensors
look vector (in Figure 6, perpendicular =0°). However, for sam-
ple points R12 and R21 the backscattering is significantly higher
compared to the other sample points. This could be related to
the roughness conditions measured at both sample points, as both
show the same roughness values for the meso scale roughness
pattern with an autocorrelation length of approx. 38 cm. In con-
trast, for the TSX data, no significant dependency of the direc-
tional scattering from the measured roughness conditions could
be observed, thus it is only dependent from the row orientation.
Following the study of Lievens et al. (2009), detrending of rough-
ness measurements has a strong impact of the calculated rough-
ness indices. As mentioned above, this effect is mainly present
for the autocorrelation length. Indeed, the different scales of soil
surface roughness, which were reduced by detrending to a sin-
gle scale, have an impact on microwave backscattering. From
Figure 6 one could observe that sample point R13 has a signifi-
cantly lower backscatter in every SAR acquisition than samples
R12 and R21, even when detrending reveals the same autocor-
relation length. Looking closely to the non-detrended roughness
values of R13, the surface shows a general slope and as a conse-
quence lowering and disturbing the superimposition of the micro
and meso scale roughness component to a comparable strong di-
rectional backscatter .

4 CONCLUSIONS AND FUTURE WORK

In this paper we proposed a simple and efficient approach for
measuring multi dimensional soil surface roughness in an agri-
cultural environment for microwave remote sensing applications.
A customized Canon EOS 5D was used to generate and pro-
vide highly accurate digital surface models. With a vertical dis-
placement of RMSEz ≤0.2 mm, the technique is suited for the
characterization of soil surface roughness for microwave remote
sensing studies (Lievens et al., 2009). In this study we proposed
an approach to decompose soil surface roughness in its different
scales, ranging from micro scale (soil clods and seedbed rows)

Figure 6: Backscattering [dB] versus row direction (0°= rows per-
pendicular to the sensors look vector) for the roughness sample
plots

over meso scale soil surface roughness (wheel tracks) to a macro
scale component (general slope, formed by the landscape). As
each scale has its contributions to microwave backscattering, the
effect of detrending on soil surface roughness measurements has
to reconsidered. From the roughness measurements made in this
study one can obtain that for the detrended data, several samples
yield the same roughness values (e.g. R13) as for other sam-
ples without detrending (e.g. R12/R21). However, under the
same conditions (soil moisture, row orientation, phenology) the
backscattering is significantly lower than for the non detrended
samples, leading to the assumption that using detrended rough-
ness measurements biases a potential backscatter model. Indeed,
this conclusion has to be approved by further investigations. In
the context of “Flashing Fields”, which are characterised by a
strong directional scatter caused by the seedbed rows orienta-
tion to the sensors look vector, we confirmed the investigations
of Wegmuller et al. (2011) and Mattia (2011). However, we also
identified a second order dependency of the flashing by the soil
surface roughness conditions. From this study, it is to conclude
that for a C-Band sensor such as ERS-2 an autocorrelation length
of approx. 38 cm significantly increases the flashing effect in mi-
crowave remote sensing.
Future work will comprise an in depth analysis of the effect of de-
trending on roughness values and their impact on SAR backscat-
ter. In addition further “Flashing Fields” will be analysed with a
focus on the impact from soil surface roughness and the impact
of the different roughness scales.
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