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Abstract
Suppose p(z) is a holomorphic function, the multiplicity of its zeros is at most d, P(z) is
a nonconstant polynomial. Let F be a family of meromorphic functions in a domain
D, all of whose zeros and poles have multiplicity at least max{ k2 + d + 1, k + d}. If for
each pair of functions f and g in F , P(f )f (k) and P(g)g(k) share a holomorphic function
p(z), then F is normal in D. It generalizes and extends the results of Jiang, Gao and
Wu, Xu.
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1 Introduction and results
Let D be a domain in C, let F be a family of meromorphic functions in D. F is said to be
normal in D, in the sense of Montel, if for any sequence {fn} ∈ F contains a subsequence
{fnj} such that fnj converges spherically locally uniformly in D to a meromorphic function
or ∞ [–].
Let a ∈C∪{∞}, let f and g be two nonconstant meromorphic functions inD. If f (z) –a

and g(z) – a have the same zeros (ignoring multiplicity), we say f and g share the value a
in D.
In , Hayman [] proved that if f is a transcendental meromorphic function, then

f nf ′ assumes every finite nonzero complex number infinitely often for any positive integer
n ≥ . He [] conjectured that this remains valid for n =  and n = . Further, the case of
n =  was confirmed by Mues [] in . The case n =  was considered and settled by
Clunie [].
In , Yang and Yang [] proposed a conjecture: If f is an entire function and k ≥ ,

then (ff (k))n – a(z) (a(z) �≡ ) has infinitely many zeros.
Zhang and Song [] proved the following theorem.

TheoremA Suppose that f is a transcendentalmeromorphic function, n, k are two positive
integers, then when n ≥ , (ff (k))n –a(z) has infinitely many zeros, where a(z) �≡  is a small
function of f .

In , Wang [] proved the following theorem.
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Theorem B Let f be a transcendental meromorphic function, let c(z) �≡  be a small func-
tion of f , and let n, k be two positive integers. If n≥ , then f nf (k) – c(z) has infinitely many
zeros.

In the case of ff (k), Yang and Yang [] proposed a conjecture: If f is transcendental, then
ff (k) assumes every finite nonzero complex number infinitely often. In , Wang []
proved that this conjecture holds when f has only zeros ofmultiplicity at least k+ (k ≥ ).
In , Meng and Hu [] obtained the following theorem.

Theorem C Take a positive integer k and a nonzero complex number a. Let F be a family
of meromorphic functions in a domain D ∈ C such that each f ∈ F has only zeros of mul-
tiplicity at least k + . For each pair (f , g) ∈ F , if ff (k) and gg(k) share a, then F is normal
in D.

In , Jiang and Gao [] obtained the following theorem.

Theorem D Suppose that d (≥ ) is an integer, p(z) is an analytic function in D, and the
multiplicity of its all zeros is at most d. Let F be a family of meromorphic functions in D,
let n be a positive integer. If n≥ d + and for each pair of functions f and g inF , f nf ′ and
gng ′ share p(z) in D, then F is normal in D.

In , Wu and Xu [] got the following theorem.

Theorem E Let k be a positive integer, let b �=  be a finite complex number, let P be a
polynomial with either degP ≥  or degP =  and P having only one distinct zero, and let
F be a family of meromorphic functions in D, all of whose zeros have multiplicity at least k.
If for each pair of functions f and g inF , P(f )f (k) and P(g)g(k) share b in D, thenF is normal
in D.

It is natural to ask whether Theorem E can be improved by the idea of sharing a holo-
morphic function. In this paper, we study the problem and obtain the following theorems.

Theorem . Suppose that d ≥  is an integer, p(z) �≡  is a holomorphic function in D,
and the multiplicity of its all zeros is at most d. LetF be a family of meromorphic functions
in D, the multiplicity of all zeros and poles of f ∈ F is at least max{ k + d + ,k + d}. If for
each pair of functions f and g in F , ff (k) and gg(k) share p(z) in D, then F is normal in D.

Remark . Theorem . still holds when p(z) is a nonzero finite constant.

Theorem . Suppose that d ≥  is an integer, p(z) �≡  is a holomorphic function in D,
and the multiplicity of its all zeros is at most d. Let P be a nonconstant polynomial, F be a
family of meromorphic functions in D, the multiplicity of all zeros and poles of f ∈ F is at
least max{ k + d + ,k + d}. If for each pair of functions f and g in F , P(f )f (k) and P(g)g(k)

share p(z) in D, then F is normal in D.

2 Some lemmas
Lemma. (see []) Let k be a positive integer, letF be a family ofmeromorphic functions
in D such that each function f ∈F has only zeros with multiplicities at least k, and suppose
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that there exists A ≥  such that |f (k)(z)| ≤ A whenever f (z) = , f ∈ F . If F is not normal
at z ∈ D, then for each α,  ≤ α ≤ k, there exists a sequence of complex numbers zn ∈ D,
zn → z, a sequence of positive numbers ρn → , and a sequence of functions fn ∈ F such
that

gn(ξ ) =
fn(zn + ρnξ )

ρα
n

→ g(ξ )

locally uniformly with respect to the spherical metric, where g is a nonconstant meromor-
phic function on C, all of whose zeros have multiplicity at least k, such that g�(ξ )≤ g�() =
kA + .Moreover, g(ξ ) has order at most .

Lemma . (see []) Let f (z) be a meromorphic function and k be a positive integer. If
f (k) �≡ , then

N
(
r,


f (k)

)
≤ N

(
r,

f

)
+ kN(r, f ) + S(r, f ).

Lemma . (see []) Let f(z), f(z) be two meromorphic functions defined in D = {z : |z| <
R}, then

N(r, ff) –N
(
r,


ff

)
=N(r, f) +N(r, f) –N

(
r,

f

)
–N

(
r,


f

)
.

Lemma . (see []) Let f be a transcendental meromorphic function, let Pf (z), Qf (z) be
two differential polynomials of f . If f nPf =Qf holds and the degree of Qf is at most n, then
m(r,Pf ) = S(r, f ).

Lemma . Let d (≥ ) be an integer, let k be a positive integer, and let p(z) = adzd +
ad–zd– + · · · + az + a be a polynomial, where ad �= , ad–, . . . ,a are constants. Suppose
that f is a transcendental meromorphic function, all of whose zeros and poles have mul-
tiplicity at least , p(z) is a small function of f (z), then ff (k)(z) – p(z) has infinitely many
zeros.

Proof Let

ψ(z) = ff (k) – p(z). (.)

Suppose ff (k) – p(z) has only finitely many zeros, then N(r, 
ψ(z) ) = S(r, f ). By (.), then

(
ψ

p

)′
=
f ′f (k)

p
+
ff (k+)

p
+

(

p

)′
ff (k). (.)

Let

ψ =
ψ

p
.

Since the multiplicity of zeros of f (z) is at least , we can get from (.) that

N
(
r,

f

)
≤ N

(
r,


(ψ)′

)
+ S(r, f ). (.)
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By Lemma ., we know that

N
(
r,


(ψ)′

)
≤ N

(
r,


ψ

)
+N(r, f ) + S(r, f ). (.)

We can get from (.) that

ff (k)

p
(ψ)′

ψ
–
f ′f (k)

p
–
ff (k+)

p
–

(

p

)′
ff (k) =

(ψ)′

ψ
,

i.e.,

f
(
f (k)

p
(ψ)′

ψ
–
f ′f (k)

fp
–
f (k+)

p
–

(

p

)′
f (k)

)
=
(ψ)′

ψ
. (.)

Let

fH =
(ψ)′

ψ
, (.)

where H = f (k)
p

(ψ)′
ψ

– f ′f (k)
fp – f (k+)

p – ( p )
′f (k). By Lemma ., we get m(r,H) = S(r, f ).

From (.) and Lemma ., we obtain that

m
(
r,

f

)
≤ m(r,H) +m

(
r,

ψ

(ψ)′

)

≤ N
(
r,
(ψ)′

ψ

)
–N

(
r,

ψ

(ψ)′

)
+m

(
r,
(ψ)′

ψ

)
+ S(r, f )

≤ N
(
r, (ψ)′

)
+N

(
r,


ψ

)
–N

(
r,


(ψ)′

)
–N(r,ψ) + S(r, f )

≤ N(r, f ) +N
(
r,


ψ

)
–N

(
r,


(ψ)′

)
+ S(r, f ). (.)

We can get from (.) that

ff (k)
(
(ψ)′

pψ
–
f ′

fp
–
f (k+)

pf (k)
–

(

p

)′)
=
(ψ)′

ψ
. (.)

Let

ff (k)G =
(ψ)′

ψ
, (.)

where G = (ψ)′
pψ

– f ′
fp –

f (k+)

pf (k) – ( p )
′. By Lemma ., thenm(r,G) = S(r, f ).

By (.), we have that

m
(
r, f (k)

) ≤ m
(
r,
(ψ)′

ψ

)
+m

(
r,

f

)
+m

(
r,


G

)

≤ m
(
r,

f

)
+N(r,G) –N

(
r,


G

)
+ S(r, f ). (.)
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Since (ψ)′
ψ

has only simple poles, and by (.) we know that the poles of f are impossible
G’s. Hence the poles of G are only possible from the zeros and poles of p(z) or the zeros of
ψ, f and f (k).
Hence by (.) and (.), we obtain that

N(r,G) ≤ N
(
r,


ψ

)
+N

(
r,

f

)
+N

(
r,


f (k)

)
+N

(
r,

p

)

≤ N
(
r,


ψ

)
+N

(
r,

f

)
+N

(
r,


f (k)

)
+ S(r, f ). (.)

Since (ψ)′
ψ

has only simple poles, so by (.) we know that

N
(
r,


G

)
≥ N(r, f ) +N

(
r, f (k)

)
–N(r, f ). (.)

Combining (.) and (.)-(.), we have

m
(
r, f (k)

) ≤
{
N

(
r,


ψ

)
+N

(
r,

f

)
+N

(
r,


f (k)

)}
–

{
N(r, f ) +N

(
r, f (k)

)
–N(r, f )

}

+
{
N(r, f ) +N

(
r,


ψ

)
–N

(
r,


(ψ)′

)}
+ S(r, f ).

Hence

T
(
r, f (k)

) ≤ N
(
r,


ψ

)
+N

(
r,

f

)
+N

(
r,


f (k)

)
–N(r, f ) +N(r, f )

+N(r, f ) +N
(
r,


ψ

)
–N

(
r,


(ψ)′

)
+ S(r, f ).

Since the multiplicity of the zeros and poles of f (z) is at least , by an elementary calcula-
tion and combing with Lemma ., (.) and (.), the above inequality yields

T
(
r, f (k)

) ≤ N
(
r,


f (k)

)
+ N

(
r,


ψ

)
+ S(r, f )

≤ N
(
r,

f

)
+ kN(r, f ) + N

(
r,


ψ

)
+ S(r, f )

≤ (k + )N(r, f ) + N
(
r,


ψ

)
+ S(r, f ). (.)

Since the multiplicity of the poles of f (z) is at least , we can get from (.) that

T
(
r, f (k)

) ≤
(
 –


k + 

)
N

(
r, f (k)

)
+ N

(
r,


ψ

)
+ S(r, f )

≤
(
 –


k + 

)
N

(
r, f (k)

)
+ S(r, f ).

This implies T(r, f (k)) = S(r, f ), then f (k) is a rational function, thus f is a rational func-
tion which contradicts with f is transcendental. Hence ff (k)(z) – p(z) has infinitely many
zeros. �
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Remark . When p(z) is a nonzero finite constant or a small function of f (z), similarly
we can get the same conclusion.

Lemma . Let d (≥ ) be an integer, let k be a positive integer, and let p(z) = adzd +
ad–zd– + · · ·+az+a be a polynomial, where ad �= , ad–, . . . ,a are constants. If f (z) is a
nonconstant polynomial, all of whose zeros and poles have multiplicity at least k + d, then
ff (k)(z) – p(z) has at least two distinct zeros, and ff (k)(z) – p(z) �≡ .

Proof We discuss the following two cases.
Case . If ff (k) – p(z) �= , then ff (k) – p(z) ≡ C, where C is a nonzero constant. So ff (k) ≡

p(z) +C. Since the multiplicity of all the zeros of f is at least k + d, thus deg(ff (k))≥ k + d,
which contradicts with deg(p(z)) = d.
Case . If ff (k) – p(z) has only one zero z, we assume ff (k) – p(z) ≡ A(z – z)l , where A is

a nonzero constant, l is a positive integer.
We discuss the following two cases.
(i) If l ≤ d + , then ff (k) ≡ p(z) +A(z – z)l . Since deg(ff (k)) ≥ k + d, the degree of the

right of the equation is at most d + , which is smaller than the degree of the left of
the equation. We get a contradiction.

(ii) If l > d + , then ff (k) ≡ p(z) +A(z – z)l . So (ff (k))(d) ≡ ad +Al · · · (l – d + )(z – z)l–d .
Since ad �= , so (ff (k))(d) has only simple zeros, which contradicts with the
multiplicity of all the zeros of f is at least k + d.

By Case  and Case , ff (k) – p(z) has at least two distinct zeros.
If ff (k) – p(z) ≡ , then similar to the proof of Case , we get a contradiction. Hence

ff (k) – p(z) �≡ . �

Lemma . Let d (≥ ) be an integer, let k be a positive integer, and let p(z) = adzd +
ad–zd– + · · · + az + a be a polynomial, where ad �= , ad–, . . . ,a are constants. If f (z)
is a nonconstant rational function and not a polynomial, and the multiplicity of whose
zeros and poles is at least k

 + d + , then ff (k)(z) – p(z) has at least two distinct zeros, and
ff (k)(z) – p(z) �≡ .

Proof Since f (z) is a nonconstant rational function and not a polynomial, then obviously
ff (k)(z) – p(z) �≡ . Let

f (z) = B
(z – α)m (z – α)m · · · (z – αs)ms

(z – β)n (z – β)n · · · (z – βt)nt
, (.)

where B is a nonzero constant. Since the multiplicity of the zeros and poles of f is at least
k
 + d + , we havemi ≥ k

 + d +  (i = , , . . . , s), nj ≥ k
 + d +  (j = , , . . . , t). For simplicity,

we denote

m +m + · · · +ms =m ≥
(
k

+ d + 

)
s, n + n + · · · + nt = n≥

(
k

+ d + 

)
t.

By (.), we get

f (k)(z) = B
(z – α)m–k(z – α)m–k · · · (z – αs)ms–kg(z)

(z – β)n+k(z – β)n+k · · · (z – βt)nt+k
, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/288
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where g(z) = (m – n)(m – n – ) · · · (m – n – k + )zk(s+t–) + · · · + cz + c is a polynomial, ci
(i = , ) are constants and deg(g(z)) ≤ k(s + t – ). Thus (.) together with (.) implies

ff (k)(z) = B
(z – α)m–k(z – α)m–k · · · (z – αs)ms–kg(z)

(z – β)n+k(z – β)n+k · · · (z – βt)nt+k
. (.)

By (.), we obtain

(
ff (k)(z)

)(d+) = B
(z – α)m–k–d–(z – α)m–k–d– · · · (z – αs)ms–k–d–g(z)

(z – β)n+k+d+(z – β)n+k+d+ · · · (z – βt)nt+k+d+
, (.)

where deg(g(z)) ≤ (k + d + )(s + t – ).
Next, we discuss the following two cases.
Case . If ff (k) – p(z) has only one zero z, then let

ff (k)(z) – p(z) = C
(z – z)l

(z – β)n+k(z – β)n+k · · · (z – βt)nt+k
. (.)

Subcase .. When d ≥ l.
Combining (.) and (.), we get d+n+kt = deg(g(z))+m–ks≤ k(s+t–)+m–ks.

That is, (m – n) ≥ k + d, and thenm > n.
Differentiating both sides of (.), we have

(
ff (k)(z)

)(d+) – p(d+)(z)

= C
g(z)

(z – β)n+k+d+(z – β)n+k+d+ · · · (z – βt)nt+k+d+
, (.)

where deg(g(z)) ≤ t(d + ) + l – d – .
By (.) and (.), we know m – (k + d + )s ≤ deg(g(z)) ≤ t(d + ) + l – d – . Thus

m – (k + d + )s – t(d + ) ≤ l – d – . Since m – (k + d + )s – t(d + ) ≥ m – (k + d +
) m

k/+d+ – (d + ) n
k/+d+ > , then  < l – d – , which contradicts with d ≥ l.

Subcase .. When d < l.
Differentiating both sides of (.), we have

(
ff (k)(z)

)(d+) – p(d+)(z)

=D
(z – z)l–d–g(z)

(z – β)n+k+d+(z – β)n+k+d+ · · · (z – βt)nt+k+d+
, (.)

where g(z) = (l – n – kt) · · · (l – n – kt – d)zt(d+) + · · · + dz + d, where di (i = , ) are
constants and deg(g(z)) ≤ t(d + ).
Differentiating both sides of (.) step by step for d times, we have z is a zero of

(ff (k)(z))(d) – p(d)(z), as p(d)(z) = ad �=  and the multiplicity of all the zeros of f (z) is at least
k
 + d + , thus αi �= z (i = , , . . . , s). When p(z) is a constant, from (.) we can also get
αi �= z (i = , , . . . , s).
Here, we discuss three subcases as follows.
Subcase ... When l < n + kt + d.
Combining (.) and (.), we get d+n+kt = deg(g(z))+m–ks≤ k(s+t–)+m–ks.

That is, (m – n) ≥ k + d, and thenm > n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/288


Qiu and Hu Journal of Inequalities and Applications 2013, 2013:288 Page 8 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/288

Since αi �= z (i = , , . . . , s), by (.) and (.), we have t(d+)≥ deg(g(z)) ≥ m– (k +
d + )s. Thus m ≤ (k + d + )s + t(d + ) ≤ (k + d + ) m

k/+d+ + (d + ) n
k/+d+ < m, which is

impossible.
Subcase ... When l = n + kt + d.
Ifm > n, by a similar discussion to Subcase .., we can get a contradiction. Thusm ≤ n.

Since αi �= z (i = , , . . . , s), by (.) and (.), we have l – d –  ≤ deg(g(z)) ≤ (k + d +
)(s + t – ), since l = n + kt + d, thus n + kt + d – d –  ≤ (k + d + )(s + t – ). Then
n ≤ (k + d + )s + (d + )t – (k + d) < (k + d + ) m

k/+d+ + (d + ) n
k/+d+ ≤ n, which is

impossible.
Subcase ... When l > n + kt + d.
By (.) and (.), we get l = deg(g(z)) + m – ks ≤ k(s + t – ) + m – ks = m + kt – k.

Ifm > n, by a similar discussion to Subcase .., we get a contradiction. Thusm ≤ n.
Case . If ff (k) – p(z) has no zero. Then l =  in (.), by a similar discussion to Sub-

case ., we get a contradiction.
By Case  and Case , we get ff (k) – p(z) has at least two distinct zeros. �

3 Proof of Theorem 1.1
For any point z in D, either p(z) =  or p(z) �= .
Case .When p(z) = .Wemay assume z = . Then p(z) = adzd+ad+zd+ + · · · = zdh(z),

where ad(�= ),ad+, . . . are constants, d ≥ , h(z) �= , without loss of generality, let h(z) =
ad , where h(z) is a holomorphic function.
Let F = {Fj|Fj = fj

zd/ , fj ∈ F}. If F is not normal at , then by Lemma ., there exists a
sequence of complex numbers zj → , a sequence of positive numbers ρj →  and a se-

quence of functions Fj ∈ F such that Gj(ξ ) = ρ
– k


j Fj(zj + ρjξ ) → G(ξ ) spherically locally
uniformly in C, where G(ξ ) is a nonconstant meromorphic function in C, and the multi-
plicity of the zeros and poles of G(ξ ) is at least max{ k + d + ,k + d}. Here, we discuss two
cases as follows.
Case .. There exists a subsequence of zj

ρj
, we may denote it as zj

ρj
such that zj

ρj
→ c, c is

a finite complex number. Then

φj(ξ ) =
fj(ρjξ )

ρ
d+k


j

=
(ρjξ )

d
 Fj(zj + ρj(ξ – zj

ρj
))

ρ
d

j ρ

k

j

→ ξ
d
G(ξ – c) =H(ξ )

spherically locally uniformly in C, so

φj(ξ )φ(k)
j (ξ ) –

p(ρjξ )
ρd
j

=
fj(ρjξ )f (k)j (ρjξ ) – p(ρjξ )

ρd
j

→ H(ξ )H (k)(ξ ) – adξd

spherically locally uniformly in C.
Since ∀f ∈ F , the multiplicity of whose zeros and poles is at least max{ k + d + ,k +

d}, then the multiplicity of all zeros and poles of H is at least max{ k + d + ,k + d}, by
Lemmas .-., we get H(ξ )H (k)(ξ ) – adξd �≡ , and H(ξ )H (k)(ξ ) – adξd has at least two
distinct zeros.
Suppose ξ, ξ ∗

 are two distinct zeros of H(ξ )H (k)(ξ ) – adξd . We may choose a proper
σ >  such that D(ξ,σ )∩D(ξ ∗

 ,σ ) = ∅, where D(ξ,σ ) = {ξ ||ξ – ξ| < σ }, D(ξ ∗
 ,σ ) = {ξ ||ξ –

ξ ∗
 | < σ }.

http://www.journalofinequalitiesandapplications.com/content/2013/1/288
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By Hurwitz’s theorem, there exists a subsequence of fj(ρjξ )f (k)j (ρjξ ) –p(ρjξ ), we may still
denote it as fj(ρjξ )f (k)j (ρjξ ) – p(ρjξ ), then there exist points ξj ∈ D(ξ,σ ) and points ξ ∗

j ∈
D(ξ ∗

 ,σ ) such that for sufficiently large j, fj(ρjξj)f (k)j (ρjξj) – p(ρjξj) = , fj(ρjξ
∗
j )f

(k)
j (ρjξ

∗
j ) –

p(ρjξ
∗
j ) = .

Since fjf (k)j and gjg(k)j share p(z) in D, it follows that for any positive integer m,
fm(ρjξj)f (k)m (ρjξj) – p(ρjξj) = , fm(ρjξ

∗
j )f

(k)
m (ρjξ

∗
j ) – p(ρjξ

∗
j ) = .

Fixm, let j → ∞ and note ρjξj → , ρjξ
∗
j → , we obtain fm()f (k)m () – p() = .

Since the zeros of fm()f (k)m () – p() have no accumulation points, in fact when j is large
enough, we have ρjξj = ρjξ

∗
j = . Thus, when j is large enough, ξ = ξ ∗

 = , which contra-
dicts with D(ξ,σ )∩D(ξ ∗

 ,σ ) = ∅. Thus, F is normal at .
Case .. There exists a subsequence of zj

ρj
, we may denote it as zj

ρj
such that zj

ρj
→ ∞.

Then

fj(zj + ρjξ )f (k)j (zj + ρjξ ) = (zj + ρjξ )
d
 Fj(zj + ρjξ )

[
(zj + ρjξ )

d

(
Fj(zj + ρjξ )

)(k)

+
k∑
i=

ci(zj + ρjξ )
d
 –i

(
Fj(zj + ρjξ )

)(k–i)]

= (zj + ρjξ )dGj(ξ )G(k)
j (ξ ) +

k∑
i=

ci(zj + ρjξ )d–iρ i
jGj(ξ )G(k–i)

j (ξ ),

where ci = d
 (

d
 – ) · · · ( d – i + )Ci

d/ when
d
 ≥ i, and ci =  when d

 < i.
Thus, we have

adfj(zj + ρjξ )f (k)j (zj + ρjξ )
p(zj + ρjξ )

– ad

=

(
Gj(ξ )G(k)

j (ξ ) +
k∑
i=

ci
Gj(ξ )G(k–i)

j (ξ )

( zj
ρj
+ ξ )i

)
ad

h(zj + ρjξ )
– ad

→ G(ξ )G(k)(ξ ) – ad,

spherically locally uniformly in C – {ξ |G(ξ ) = ∞}.
Since the multiplicity of all zeros and poles of G is at least max{ k + d + ,k + d} and

by Lemmas .-., we have G(ξ )G(k)(ξ ) – ad �≡ , and G(ξ )G(k)(ξ ) – ad has at least two
distinct zeros.
Suppose ξ, ξ ∗

 are two distinct zeros of G(ξ )G(k)(ξ ) – ad . We may choose a proper δ > 
such that D(ξ, δ)∩D(ξ ∗

 , δ) = ∅, where D(ξ, δ) = {ξ ||ξ – ξ| < σ }, D(ξ ∗
 , δ) = {ξ ||ξ – ξ ∗

 | < δ}.
By Hurwitz’s theorem, there exists a subsequence of adfj(zj + ρjξ )f (k)j (zj + ρjξ ) – adp(zj +

ρjξ ), wemay still denote it as adfj(zj+ρjξ )f (k)j (zj+ρjξ )–adp(zj+ρjξ ), then there exist points
ξj ∈ D(ξ, δ) and points ξ ∗

j ∈ D(ξ ∗
 , δ) such that for sufficiently large j, adfj(zj + ρjξ )f (k)j (zj +

ρjξ ) – adp(zj + ρjξ ) = , adfj(zj + ρjξ )f (k)j (zj + ρjξ ) – adp(zj + ρjξ ) = .
Similar to the proof of Case ., we get a contradiction. Then F is normal at .
By Case . and Case ., we knowF is normal at . Hence there exists �ρ = {z : |z| < ρ}

and a subsequence of Fjk of Fj such that Fjk converges spherically locally uniformly to a
meromorphic function F(z) or ∞ (k → ∞) in �ρ .
Here, we discuss the following two cases.

http://www.journalofinequalitiesandapplications.com/content/2013/1/288
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Case i. When k is large enough, fjk �= . Then F() = ∞. Thus, for ∀ constant R > ,
∃σ ∈ (,ρ), we have |F(z)| > R when z ∈ �ρ . Thus, for sufficiently large k, |Fjk(z)| > R

 ,

fjk

is
a holomorphic function in �ρ . Hence when |z| = σ

 ,

∣∣∣∣ fjk
∣∣∣∣ =

∣∣∣∣ 
Fjkzd/

∣∣∣∣ ≤ d/+

Rσ d/ .

By the maximum principle and Montel’s theorem, F is normal at z = .
Case ii. There exists a subsequence of fjk , we may still denote it as fjk , such that fjk() = .

Since ∀f ∈F , the multiplicity of whose zeros is at leastmax{ k +d+,k +d}, then F() = .
Thus, there exists  < r < ρ such that F(z) is holomorphic in �r = {z : |z| < r} and has a
unique zero z =  in�r . Then Fjk converges spherically locally uniformly to a holomorphic
function F(z) in �r , fjk converges spherically locally uniformly to a holomorphic function
z d
 F(z) in �r . Hence F is normal at z = .
By Case i and Case ii, we obtain F is normal at z = .
Case . When p(z) �= .
Suppose that F is not normal at z. Then by Lemma ., there exists a sequence of

complex numbers zt → z, a sequence of positive numbers ρt →  and a sequence of
functions ft ∈F such that gt(ξ ) = ρ

– k


t ft(zt +ρtξ ) → g(ξ ) spherically locally uniformly inC,
where g(ξ ) is a nonconstant meromorphic function in C, and the multiplicity of the zeros
and poles of g(ξ ) is at least max{ k + d + ,k + d}.
Hence by Lemmas .-., we have g(ξ )g(k)(ξ ) – p(z) �≡ , and g(ξ )g(k)(ξ ) – p(z) has at

least two distinct zeros. Similar to the proof of Case ., we get a contradiction. Thus,F is
normal at z.
Hence, F is normal in D as z is arbitrary. The proof is complete.

4 Proof of Theorem 1.2
Because P(z) has at least one zero, we may assume, with no loss of generality, that P(z) =
zn +an–zn– + · · ·+aqzq, where q ≥  is a positive integer and aq �= . Suppose thatF is not
normal in D. Then similar to the proof of Theorem ., we can get a contradiction. Hence
F is normal in D. The proof is complete.
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