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Abstract. This contribution introduces a fractal filtering
technique newly developed on the basis of a spectral energy
density vs. area power-law model in the context of multifrac-
tal theory. It can be used to map anisotropic singularities of
geochemical landscapes created from geochemical concen-
tration values in various surface media such as soils, stream
sediments, tills and water. A geochemical landscape can be
converted into a Fourier domain in which the spectral energy
density is plotted against the area (in wave number units),
and the relationship between the spectrum energy density (S)
and the area (A) enclosed by the above-threshold spectrum
energy density can be fitted by power-law models. Mixed
geochemical landscape patterns can be fitted with different
S-A power-law models in the frequency domain. Fractal fil-
ters can be defined according to these different S-A models
and used to decompose the geochemical patterns into com-
ponents with different self-similarities. The fractal filtering
method was applied to a geochemical dataset from 7,349
stream sediment samples collected from Gejiu mineral dis-
trict, which is famous for its word-class tin and copper pro-
duction. Anomalies in three different scales were decom-
posed from total values of the trace elements As, Sn, Cu,
Zn, Pb, and Cd. These anomalies generally correspond to
various geological features and geological processes such as
sedimentary rocks, intrusions, fault intersections and miner-
alization.
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1 Introduction

Toxic elements such as arsenic occur naturally in surface me-
dia such as soils, water, and sediments, in part because of the
weathering of rocks and ores that contain elevated concentra-
tions of ore and toxic elements. There are many types of hy-
drothermal deposits that contain minerals such as arsenopy-
rite with high levels of arsenic and other toxic elements, in-
cluding gold deposits, Sn deposits and Pb/Zn deposits. Due
to high concentrations of these elements in ores and coun-
try rocks, secondary weathering processes and human activ-
ities such as mining can cause dispersion of these elements
in surface media. Cases of contamination have been reported
worldwide, for example, arsenic contamination at the Mole
River mine, northern New South Wales (Ashley and Lotter-
moser, 1999), arsenic contamination of Bangladesh paddy
field soils and its association with arsenic consumption via
rice (Meharg and Maziburrahman, 2003), sediment contami-
nation by arsenic in parts of central-east India (Pandey et al.,
2004) and contamination by arsenic and other elements of
soil, plants, water and sediment in the vicinity of the Dalsung
Cu–W mine in Korea (Jung et al., 2002). Arsenic contami-
nation related to mining and geology has also been actively
studied in China. For example, studies have been conducted
to assess heavy metal contamination in potatoes and peas in
tin tailings in Gejiu mine (Gan et al., 2008), and arsenic con-
tamination in stream sediments in Gejiu was also investigated
(Zhou et al., 2006). The above two groups both reported sig-
nificant arsenic contamination in the Gejiu area caused by
the Sn mines and the long history of mining activity in the
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area. It has been proven that arsenic contamination of soil,
water and air can cause various health problems such as lung
cancer. It was reported that in Gejiu city, 0.27% of the pop-
ulation is detected as having lung cancer each year, which is
the highest lung cancer death rate of any city in China (Xie
et al., 2000). To understand the spatial distribution of arsenic
in surface media and to identify the various main sources of
arsenic contamination are therefore critical issues both for
environmental management and environmental remediation.
To identify anomalous areas of these types of toxic contam-
ination in association with mineralization and mining is an
interesting subject attracting a great deal of attention from
the ore geology and environmental geosciences community.
To separate the influence of the natural process of mineral-
ization from that of human mining activities is a critical task
for environmental and mineral resource assessments. Due
to the superimposed and complex processes involved in the
formation of element concentrations in the secondary media,
it is a challenge to fully understand the processes and the
properties of their distribution. For example, various cascade
geo-processes and bio-processes can cause singular distribu-
tions of element concentrations in primary and second me-
dia. This paper investigates the scaling properties of toxic
elements in stream sediments by identifying components of
anomalies that can be isolated to reveal the various causes of
elevated toxic element concentrations in surface media

2 Study area and materials

2.1 Study area

The area chosen for the case study is Gejiu district, a word-
class tin production region that is located along the suture
zone of the Indian and Eurasian plates on the southwestern
edge of the China sub-plate, approximately 200 km south of
the city of Kunming, capital of Yunnan Province. The mining
of, exploration for and utilization of tin resources play an im-
portant role in economic development in both Gejiu city and
Yunaan province. The tin resources in Gejiu are important
for both the international and domestic non-ferrous metals
industries. However, there is a current shortage of Gejiu tin
resources because the tin reservoir has been mined for several
decades. Therefore, mineral exploration in the deeper and
peripheral spaces has become a top priority in Gejiu district.
Contamination by toxic elements caused by natural mineral-
ization processes and the mining activity has also become a
critical issue for the sustainable development of the region.

To assess toxic element contamination in surface media
and implement environment remediation, one needs to un-
derstand the sources of the contamination and their spatial
distribution. These are the main objectives of the current
study.

2.2 Materials and data

The dataset used in this paper comprises (1) a detailed
1:200 000 scale geological map (2) geochemical data regard-
ing As, Cd, Cu, Pb, Zn and Sn derived from 7,349 stream
sediment samples, and (3) Sn mineral distribution informa-
tion that includes geographic coordinates and other geolog-
ical attributes. The geochemical data were the main dataset
for the study. The area chosen for this study was covered
by about 7,349 evenly distributed stream sediment samples,
each covering a 2 km× 2 km (4 km2) area. These samples
were collected and analyzed by the Chinese National Geo-
chemical Mapping Project as part of the Regional Geochem-
istry National Reconnaissance (RGNR) Project, which was
initiated in 1979. Between 1979 and 1997, the project has
generated a vast quantity of geochemical data covering a total
area of 5.17 million km2 in China (Xie et al., 1997). For each
sample, the concentrations of 39 geochemical elements and
7 compounds were measured at equally spaced 2-km inter-
vals throughout the study area. The data used in the current
paper are geochemical concentration values in unit of ppm
of As, Sn, Cd, Cu, Pb, and Zn trace elements. Further de-
tails about the processes involved in sampling and analyzing
the stream sediment geochemical data can be found in Xie et
al. (1997). The trace elements and their associations with Sn
mineralization in the area were previously studied (Cheng,
2007; Cheng and Agterberg, 2009; Cheng et al., 2009).

2.3 Geology of Gejiu district

The geological units of Gejiu district are hosted by a se-
quence of Paleozoic to Mesozoic sedimentary rocks (the
Gejiu formation and other formations) and igneous rocks
including Paleozoic volcanic rocks and Mesozoic intrusive
rocks (Fig. 1). The Gejiu Batholith, which is located in
the center of Gejiu district, is key factor for Sn mineraliza-
tion. The Gejiu formation is hosted by limestone with minor
dolomites. The Gejiu formation is the main country rock
hosting most of the discovered Sn deposits. Carbonate min-
erals such as calcites and dolomites are the dominant min-
erals found in the ore tailings (Gan et al., 2008). The main
faults and folds in the central part of the study area have N–S
and E–W orientations, and the main faults and folds in the
other parts of the study area are NE–SW, NW–SE and E-W
trending. Intersections of the three groups of fault systems
are commonly seen in the area. These fault systems control
the general configuration of the mineralization and distribu-
tion of ore bodies in this area. The main trend of the miner-
alization is in the NNE–SSW orientation in the central area,
but the ore fields are concentrated along the intersections of
NNE–SSW and E-W faults. The mineral assemblages as-
sociated with the mineralization include pyrrhotite, pyrites,
cassiterite, galena, sphalerite and arsenopyrite. The Sn ores
also contain high concentration values of the trace elements
Pb, Zn, Cu, As, Sb, Bi, Au, and Ag. More comprehensive
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Fig. 1. Simplified geology of the study area derived from four 1:200,000 scale 
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carbonate sedimentary rocks, grey is for other sedimentary rocks, dark red is for 

mafic igneous rocks including basalts, red is for felsic intrusive rocks, solid lines 

are for faults systems and the two types of point symbols, black triangles and 

green circles, respectively represent Sn and Cu mineral deposits and 

occurrences.  

Fig. 1. Simplified geology of the study area derived from four
1:200 000 scale maps (Southwestern Geological Exploration Team,
1984). Pink represents Proterozoic metamorphic rocks, yellow is
for the Gejiu Formation of Paleozoic carbonate sedimentary rocks,
grey is for other sedimentary rocks, dark red is for mafic igneous
rocks including basalts, red is for felsic intrusive rocks, solid lines
are for faults systems and the two types of point symbols, black tri-
angles and green circles, respectively represent Sn and Cu mineral
deposits and occurrences.

descriptions of the geology, geochemistry and mineralogy
of the area can be found in Qing et al. (2004) and Yu et
al. (1988).

3 Methodology

A fractal filtering method developed on the basis of the gen-
eralized self-similarity principle (Cheng et al., 1999; Cheng,
2004) was used to separate the mixing patterns of As in the
area.

3.1 A generalized self-similarity and spectrum
density/area power-law model

Scale invariance, including self-similarity (or isotropic), self-
affinity (or stratification) and generalized self-similarity (or
anisotropy) is a common property of spatial patterns gener-
ated from various geological processes and events. Fractal
and multifractal models have been applied in various fields
as powerful tools to characterize the scale invariance of geo-
processes and geo-events. Multiple successes have been re-
ported with the application of fractal and multifractals in
the context of geocomplexity (Lovejoy et al., 2009). While
most of the fractal models were used to deal with isotropic
scale invariance, several models have been investigated for
modeling anisotropic scale invariance. For example, a new
formalism of generalized scale invariance (GSI) was pro-
posed and utilized by Schertzer and Lovejoy (1985, 1987)

to model scale invariance more generally. This formalism
states that large and small scales of geo-fields can be related
by general scale-transform operations without introducing a
characteristic size. Various models were developed to simu-
late geo-fields with anisotropic scale invariance (Lovejoy and
Schertzer, 2007; Lovejoy et al., 2009). A different model
was proposed on the basis of extreme value distributions of
2-D multifractal fields stating that the concentration value
(C) and the area enclosed by the cutoff concentration value
(A[> C]) follow a power-law relation (Cheng et al., 1994).

A[> C] ∝C−β (1)

This concentration-area model (C-A model) idea was further
extended to characterize the spectral energy density/area re-
lation in frequency domains (Cheng et al., 1999). A power-
law was proposed to relate the spectral energy density (S[ω],
whereω is wave number vector) to the area with thresholdS

(A[> S]), and

A[≥ S] ∝ S−2d/β (2)

where∝ stands for “proportional to”,β is the anisotropic
scaling exponent, and d is a parameter representing degree of
overall contraction (Cheng et al., 1999; Cheng, 2004). Since
the shape ofA involved in these models (C-A and S-A) at
different concentrations (C) or spectral energy densities (S)
can be any self-similarly shaped contour, these self-similar
contours characterize the anisotropic scale invariance of the
density distribution. Thus, the exponent of the power-law re-
lation becomes an essential index that characterizes general-
ized self-similarity, implying that a geo-field shows diversity
in the spatial domain and depicting self-similarity in a special
domain such as a Fourier domain (Cheng 2004, 2005).

3.2 Fractal filtering technique

The fractal filtering technique was developed on the basis
of the S-A power-law model by Cheng, Xu and Grunsky
(1999) for decomposing mixing patterns into components ac-
cording to distinct self-similarities identified in Fourier do-
mains. According to the power-law relation betweenS and
A, when the data ofS andA are plotted on a log-log plot,
several straight-line segments can usually be fitted to the re-
lation S-A. Each spectral energy density range within which
S andA is fitted by a straight-line segment can be used to
define a fractal filter. For example, if two straight-line seg-
ments are fitted to the data and these straight-lines yield the
thresholdS0, then two filters can be defined as:GB(ω) = 1 if
S(ω) > S0, and if otherwise,GB(ω) = 0; and asGA(ω) = 1
if S(ω) ≤ S0, and if otherwise,GA(ω) = 0. From the def-
initions of GA(ω) andGB(ω), we can see that the shapes
of the filters could be irregular depending on the complexity
of the spectral energy density distribution. However, in gen-
eral, the wave numbersω in filter GA(ω) are relatively larger
than those inGB(ω), implying that the frequency inGA(ω)

is relatively higher than that inGB(ω). In this sense,GA(ω)
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corresponds to a relatively high frequency component and
GB(ω) to a relatively low frequency component. However,
one must keep in mind that the two filters are not sharply
bounded either by frequency or by wave number. They are
defined in such a way that the spectral energy density distri-
butions on the two filters satisfy distinct power-laws or have
different anisotropic scaling properties that, in a simple situ-
ation, may correspond to distinct (isotropic) self-similarities
or self-affinities (stratification). Applying the inverse Fourier
transformation with these two filters applied to the Fourier-
transformed functions we get decomposed components in the
space domain:

TB = F−1
[F(T)GB)],TA = F−1

[F(T)GA)] (3)

whereF andF−1 represent the Fourier and inverse Fourier
transformations of a map T, respectively. From the property
of the Fourier transformations, we can see that the total field
T is decomposed into two components TA and TB with dif-
ferent frequency properties, T = TA + TB . The frequencies
of TA and TB may not be totally different but they must
show distinct scaling properties in their spatial distribution
as quantified by two distinct power-laws in the frequency do-
main. Depending upon the actual property of the spectral
energy density distribution of the field, one may define two
or three filters on the basis of the power-law relations ofS

andA.
We know there are many different types of filtering tech-

niques such as frequency – based high- low- and band-pass
filters and wavelet filters. Most of these filters are involved
filters defined with predetermined functions. The problem
for these types of filters is how to decide the separation of
low- and high-pass filters. In some cases these types of deci-
sions are made arbitrarily. The method S-A introduced in the
current paper involves separation of filters based on distinct
self-similarities as defined using S-A plots. However, to em-
pirically and systematically compare the results obtained by
S-A method and many other filtering methods are still needed
for a comprehensive evaluation of the effectiveness of S-A on
filtering. This should be studied in our future research. This
paper introduces a simple version of S-A so that it can be
readily used in the field of soil imaging and non-linear imag-
ing processing.

4 Results and discussion

The original geochemical data for Sn, As, Cu, Pb, Zn and
Cd were converted into a grid with 2-km intervals without
interpolation. For example, the concentration distribution of
the element As (Fig. 2) shows that the high values are mainly
distributed in the central and upper parts of the study area
where carbonate sedimentary rocks of the Gejiu formation
and basalts are the dominate rock types. High anomalies of
As are also found around the felsic intrusions and around
several large tin deposits. The elevated values of Sn, Cu, Zn,

Fig. 2. A geochemical landscape created by As concentration values in 

ppm of stream sediment samples. The black polygons are mapped 

intrusions. The black triangles are tin mineral deposits. 

Fig. 2. A geochemical landscape created by As concentration val-
ues in ppm of stream sediment samples. The black polygons are
mapped intrusions. The black triangles are tin mineral deposits.

Pb, Cd and As are generally in agreement with the locations
of known tin and copper mineral deposits (the results for the
other elements are not shown here). The patterns of As in
Fig. 2 represent the total values analyzed in the stream sed-
iment samples and these values were caused by overlapping
processes such as sedimentation, volcanic activity, igneous
activity, faulting activity and mineralization. They can also
be influenced by surface weather processes and human ac-
tivities, among other things. Due to the different nature of
these processes, the patterns related to these types of pro-
cesses may be distinguishable according to various proper-
ties such as frequency distribution when the patterns treated
as space series. It is its distinctive frequency distribution and
scaling property that allow the S-A fractal filtering technique
to separate patterns according to their distinct self-similarity
observed from the spatial patterns in the frequency domain.

To apply the spectrum-area model (S-A) to the dataset, the
landscape of As values (Fig. 2) was converted into the fre-
quency domain by means of Fourier transformation. Two
components: power spectrum density and phases, were ob-
tained by Fourier transformation. On the power spectral en-
ergy plane, various thresholds of power spectral energy den-
sity were set and the areas enclosed with the thresholds were
plotted on a log-log plot (Fig. 3a). A number of straight
lines can be fitted to the data. How many straight lines to
fit the data can be intuitively determined with several consid-
erations: how good the fitting will be, how significant dif-
ferent between the slops of straight lines fitted to the data,
and whether the results to be obtained with the filtering de-
termined are physically meaningful, in other word, the re-
sults can be geologically interpreted. In the case study,
three straight lines were fitted to the data using the least
squares (LS) method. These three lines separate the values
into three ranges, where the distinct scaling properties of the
S-A relation are maintained in each. These three ranges ofS
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Fig. 3. (A) Plot showing the S-A relationship between the spectral energy density (S) 

and area (A). The dots are the calculated results and the three red lines labeled as I, II, 

and III were fitted by the LS method. The logarithmic transformations are base ten. (B) 

–(D) Decomposed background, anomalous and noise components of As using filters I, 

II and III, respectively. The black polygons are mapped intrusions. The black triangles 

are tin mineral deposits. 
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Fig. 3. (A) Plot showing the S-A relationship between the spec-
tral energy density (S) and area (A). The dots are the calculated
results and the three red lines labeled as I, II, and III were fitted by
the LS method. The logarithmic transformations are base ten.(B–
D) Decomposed background, anomalous and noise components of
As using filters I, II and III, respectively. The black polygons are
mapped intrusions. The black triangles are tin mineral deposits.

are separated by two cutoff values,S = 662.95 and 2295.79.
The slopes of these three straight lines are significantly dif-
ferent, for example,−1.33,−1.97,−1.68, and the intercepts
of the three straight-lines are 16.21, 20.34, and 18.15, re-
spectively. The standard errors related to these three linear
fits are 0.007, 0.002 and 0.004, respectively. These stan-
dard errors (values< 0.01) indicate the fittings of all three
straight lines are statistically significant. The cutoff values
S = 662.95 and 2295.79 were used to define three filters: one
consists of wave numbers withS ≤ 662.95 as the noise filter,
662.95< S ≤ 2295.79 as the anomaly filter and wave num-
bers withS > 2295.79 as the background filter. The shapes
of the three filters are irregular and maintain the anisotropic
properties and spatial structure of the geochemical pattern.
Within these three filtersS andA follow three distinct power-
law relations each with its own exponent, implying that the
signals in these ranges are self-similar.

Applying the three filters with ranges ofS defined as I, II
and III in Fig. 3a to the Fourier-transformed functions and
then converting them back to the spatial domain, three de-
composed maps were created and are shown in Figs. 3b, c
and d. Figure 3b represents the background component of
the geochemical landscape, which generally coincides with
the Gejiu formation except for an anomaly located east of the
Gejiu Batholite coinciding with known mineral deposits. It
was proposed that these areas are underlined by buried Gejiu
Batholite (Cheng et al., 2009). However, Fig. 3c shows that
local As anomalies are distributed not only in the central re-
gion but also in other areas. The anomalous areas are spa-
tially in good agreement with the locations of known mineral
deposits, along faults or around fault intersections. Figure 3d

Fig. 4. Distribution of first principal component scores calculated using principal 

component analysis with a correlation coefficient matrix for the log-transformed values 

of the elements Sn, As, Zn, Pb, Zn and Cd. The loadings of these elements are similar 

and the first component accounts for 67% of the variance of the total dataset. The black 

polygons are mapped intrusions. The black triangles are tin mineral deposits. 

Fig. 4. Distribution of first principal component scores calculated
using principal component analysis with a correlation coefficient
matrix for the log-transformed values of the elements Sn, As, Zn,
Pb, Zn and Cd. The loadings of these elements are similar and the
first component accounts for 67% of the variance of the total dataset.
The black polygons are mapped intrusions. The black triangles are
tin mineral deposits.

shows patterns generally of a random nature except for some
locations with individually high values.

To further investigate the association of As and other rel-
evant ore elements found in tin and copper mineral deposits,
six maps were created for the elements Sn, As, Pb, Zn, Cu
and Cd in the same way as the As map. These six maps were
combined by means of principal component analysis with a
correlation coefficient matrix model. More about the general
use of principal component analysis (PCA) and some new
extensions of PCA can be found in many references, such as
Cheng et al. (2006). The first principal component reflects
the combination of all six elements with evenly distributed
positive loading. This indicates that the component repre-
sents the main elements associated with Sn and Cu mineral-
ization. This component accounts for 67% of the variance of
the entire dataset. The scores of the six elements on the first
principal component were calculated and are shown in Fig. 4.
The score patterns in Fig. 4 generally show high values in
the area of the Gejiu formation and around the Gejiu Batho-
lite and other felsic intrusions. Again, the patterns represent
the overlapping contributions of various geological features
and processes. In order to further decompose the score pat-
terns on the basis of self-similarity using the S-A method, the
score map was further converted into a frequency domain by
means of Fourier transformation. The S-A plot is shown in
Fig. 5a. The values ofS andA generally show a descending
trend. Three straight-line segments were fitted to the data by
means of the LS method. Using processes similar to those
used in Fig. 3a, three straight lines yield two cutoff values of
S = 487.57 and 2387.63. The slopes of these three straight
lines are−1.25, −1.88, and−1.69, and the intercepts are
15.80, 19.69, and 18.28. The standard errors related to these
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Fig. 5. (A) Plot showing the S-A relationship between the spectral energy density (S) and 

area (A). The dots are the calculated results and the three red lines labeled as I, II, and III 

were fitted by the LS method. The logarithmic transformations are base ten. (B) –(D) 

Decomposed background, anomalous and noise components of As using filters I, II and 

III, respectively. The black polygons are mapped intrusions. The black triangles are tin 

mineral deposits. 

Fig. 5. (A) Plot showing the S-A relationship between the spec-
tral energy density (S) and area (A). The dots are the calculated
results and the three red lines labeled as I, II, and III were fitted by
the LS method. The logarithmic transformations are base ten.(B–
D) Decomposed background, anomalous and noise components of
As using filters I, II and III, respectively. The black polygons are
mapped intrusions. The black triangles are tin mineral deposits.

three linear fits are 0.006, 0.004 and 0.005, respectively. The
cutoff valuesS = 487.57 and 2387.63 were used to define
three filters: one consists of wave numbers withS ≤ 487.57
as the noise filter, 487.57< S ≤ 2387.63 as the anomaly filter
and wave numbers withS > 2387.63 as the background filter.
Applying these three filters to the Fourier-transformed func-
tions and then converting them back to the spatial domain
generates the three decomposed maps: background, anomaly
and high frequency (noise) maps as shown in Fig. 5b, c
and d, respectively. The background map (Fig. 5b) shows
the general trend with elevated values located in the areas
around the Gejiu formation and basalts. This implies that
the Gejiu formation must be favorable rock for Sn miner-
alization. In addition, a distinct anomaly is highlighted in
the east Gejiu Batholite where igneous rocks are observed
in drill halls and buried intrusions were inferred by process-
ing geophysical data (Cheng et al., 2009). In this anomaly,
most tin and copper mineral deposits are found. In Fig. 5c,
the local anomalies appear as elongated or chain patterns.
These linear anomalies are highly associated with either the
known mineral deposits, faults or the intersections of fault
systems, implying that these types of anomalies may indi-
cate locations where mineralization occurred on the surface
or at depth. These anomalies provide small target areas for
further mineral exploration. It was reported that some new
mineral deposits have been found in the areas identified by S-
A method (Li et al., 2006). Fig. 5d shows the high frequency
component of the geochemical landscape, which mainly re-
flects random noise except some locations with individually
high values. This small-scale highly noisy pattern may also
be related to mine tailings and ore transportation in the area.

This case study, where we separated the geochemical land-
scape into various components on the basis of generalized
self-similarities quantified in frequency domains, has demon-
strated that the low-frequency background component is gen-
erally related to favorable rock types as well as the influ-
ence of intrusions, whereas the anomalies as intermediate
frequency components are generally related to fault systems
and intersections of faults, which are favorable areas for lac-
tating mineral deposits. Most of the known large mineral
deposits are located in these anomalous areas. The high-
frequency component decomposed with the high-pass filter is
generally random noise except some locations with individu-
ally high values that may be due to mining activities and tail-
ing storage. It has been shown that the self-similarity prop-
erty quantified by the S-A power-law model in a frequency
domain can be used to decompose the total and often mixed
geochemical patterns into separate components with distinct
frequency distribution self-similarities that are related to var-
ious geological features and/or processes. This example has
also demonstrated that igneous intrusions (such as the Gejiu
and Rushan Batholiths), sedimentary rocks (Gejiu Forma-
tion) and various fault systems in the study area play impor-
tant roles in controlling mineralization. The Gejiu formation
of carbonates shows high concentrations of element associa-
tions and the igneous rocks intruded into the Gejiu formation
caused large anomalies in their outer contact zones that pro-
vide a favorable background environment for mineralization.
Fault activity and intersections of fault systems provide a fa-
vorable environment for local anomalies and for the occur-
rence of mineral deposits. Due to the dimensional distinction
of these types of features and processes and their influences
on the patterns of the geochemical landscape, it is possible to
decompose the geochemical patterns according to the contri-
butions of these features and processes.

5 Conclusions

A generalized self-similarity S-A model was successfully
used to decompose the mixed geochemical landscapes
caused by various scales of geological processes and fea-
tures. The anomalies decomposed using the S-A model in
the case study not only coincide with the locations of known
mineral deposits, new anomalies delineated in other locations
may be promising target areas for the discovery of new min-
eral deposits of the same type. Since the anomalies are de-
lineated according to their self-similarity in the frequency
domain, the size and intensity of these anomalies are not
constant but follow the same self-similarity relation as in
frequency domain. Therefore, the size and the number of
anomalies may depict fractal properties that can be charac-
terized by a fractal model. Since it often involves multiple
ranges of energy power density (S) in the process of defin-
ing filters, for example, in the case study used in the current
paper, it involves three ranges ofS within each a power-law
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function is established between energy density (S) and area
(A), these types of filters can be termed multifractal filters.
The results obtained from this study also indicate that there
are potential areas for the discovery of new mineral deposits.
The favorable areas are those places with local geochemical
anomalies and other geological factors including the Gejiu
formation, intrusions and fault systems. Toxic elements and
ore elements are closely associated in this area, which indi-
cates a potential for toxic element contamination due both to
natural processes and human activity. Although strategically
planning for both resource utilization and environmental pro-
tection is challenging, our results indicate that such planning
will be required in order to maintain sustainable development
in the region.
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