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Abstract. In the context of ESA's Cluster mission, four-point et al.(1988. A comprehensive summary of the efforts made
array techniques are widely used to analyze space plasmia the preparation phase of the Cluster mission was published
phenomena such as shocks and discontinuities, waves arty Paschmann and Dalfi999 as the first volume of the
turbulence, and spatial gradients. Due to failures of singlelSSI Scientific Report series. An update of this standard
instruments on the Cluster spacecraft fleet, there is also nee@ference came out recentlipgschmann and Daly008.

for array processing of three-point measurements. In this paMore specifically, multi-spacecraft methods developed for
per we identify planar reciprocal vectors as a generic toolthe different analysis categories are briefly reviewed below
for this purpose. The class of three-point techniques introin Sects.3 (gradient estimation)6.1 (wave identification),
duced here includes methods for discontinuity analysis, waveand6.2 (boundary analysis).

identification, and spatial gradient determination. Parameter Without further assumptions and constraints, four is the
vectors can be resolved fully in the spacecraft plane but furminimum number of measurements to resolve fully the
ther assumptions or physical constraints have to be specifiegpatio-temporal ambiguity. Due to instrument failures there
to estimate the normal components. We focus on the graare, however, several experiments (EDI, EFW, CIS) that
dient estimation problem where we check and illustrate ourfunction only on three of the four Cluster spacecraft. Suit-
approach using Cluster measurements. able array techniques for the analysis of three-point measure-

Keywords. Magnetospheric physics (Current systems: In- _ments would allow, e.g., to estimate pressure gradients from

struments and techniques) — Space plasma physics (Expe'?Qn measuremgnts (_CIS) or make use of electric field data
imental and mathematical techniques) (EDI, EFW) to identify wave vectors. Furthermore, three-

spacecraft array configurations occur regularly in the course
of the THEMIS mission.

This paper offers a unifying approach to the major analy-
sis tasks given above for the case of three-spacecraft array

The Cluster spacecraft mission triggered numerous effortéjataj We, choose a Ie'ast-squares formulation tq introduce
to develop and tailor special techniques for the analysis oft"d identify planar reciprocal vectors as a generic tool for
multi-point measurements in near-Earth space plasmas. Mdrée-point analyses in space plasmas (Sgct.The con-

jor analysis tasks are (a) the analysis of spatial inhomo-Struction of a spatial gradient estimator is discussed in some
geneities through the estimation of derivative operators suciffét@il (Sect3). The planar reciprocal vector approach al-

as grad, curl, and div (generally referred to also as Spajows to estimate the in-plane components of spatial gradi-

tial gradients), (b) the examination of waves and turbulence®"tS, @nd for the out-of-plane components we have to specify
through wave vector identification, and (c) the analysis of@nd test additional conditions, assumptions, or physical con-
plasma discontinuities and shocks through the determinatioff@iNts. In Sectd, the three-spacecraft gradient estimation

of boundary parameters. Four-point analysis techniques fomethod is tested using Cluster magnetic field measurements

these three problem classes were given alreadpinylop where all four in;truments work, and a com_parisop with the
results of established four-spacecraft techniques is possible.

The technique is also applied to data from the Cluster/CIS
Correspondence tal. Vogt instruments. Accuracy, implementation, and other practical
BY (i-vogt@jacobs-university.de) aspects of the gradient estimation scheme are addressed in

1 Introduction
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3250 J. Vogt et al.: Three-spacecraft data analysis

Sect.5. Three-spacecraft analysis methods for wave vector Of key importance for the analysis methodology intro-
and boundary parameter estimation are briefly discussed iduced here is the so-callgdsition tensodefined through
Sect.6. The wave vector estimation scheme is based on the
wave surveyor techniqu&dgt et al, 20083, and the bound- R= Zrarfx . ()
ary analysis technique makes use of the crossing tiMas ( ¢
vey, 1998. We conclude in Sect with a summary of our 5 5 | east-squares approach to multi-point analysis
findings and an outlook.
The problems that we are addressing can all be formulated
by means of cost functions of the type

C=>[mry—dy)? (4)
The least-squares approach allows to address diverse multi- ¢
point analysis tasks such as the estimation of spatial gradient®at have to be minimized with respect to a model parameter
and boundary parametersigrvey, 1998 De Keyser et al.  vectorm for a given set of datd,,« =1,..., S. In the three
2005 2007) as well as wave vector&/ggt et al, 20083. In  categories of analysis tasks mentioned in the introduction,
the case of four spacecraft, and if no further constraints arghe parameter vecton and the datal, have the following
taken into account, the homogeneous least-squares approagfeanings.
to spatial gradient estimation is equivalent to the reciprocal Spatial gradient estimatiorf the gradient of a scalar ob-
vector method that allows to write down estimators for vari- servableg is to be estimated, the, are the measurements
ous analysis parameters in a very transparent Wanteur ¢, at positionsr,, and the model parameter = Vg is the
1998 Chanteur and Harvey998. If the numberS of space-  gradient vectorfiarvey, 1998 Vogt et al, 20081.
craft is larger than four, the reciprocal vector concept can be  wave surveyor approach to wave vector identificatian.
generalized by means of a least-squares formulaNogt( 3 particular (angular) frequenay the problem of identifying
et al, 2008h. We review the basic steps of that approach the wave vectok of a dominant harmonic plane wave in the
first, and then extend the concept to the case of three-poingpserved signal can be formulated as a minimization problem

2 A common approach to different analysis tasks

measurements. where the model parameter #s =k, and the data are the
_ phases of the (complex) eigenvector to the largest eigenvalue
2.1 Notation of the array cross spectral density matNfog@t et al, 20083.

. . Boundary analysis using crossing timeg. A one-
To ease the use of dyadic notation, veciess,c,... are al-  dimensional boundary between two plasma regimes can be
ways understood as column vectors. The superstiet  characterized by its normal unit vectdrand the speed’.

notes the transpose which implies that, eais a row VeC-  The model parameter =§/ U, and the data are the crossing
tor, and the dot pI’OdUCt of two vectarsandb can be written timesra -1 Whereto is the time Origin (—'arvey 1998 Vogt

in the forma~13=atb. Unit vectors are indicated by for et al, 2008h.
example,a or b. Matrices are typeset in upright bold. The
symboll denotes the identity matrix. 2.3 The cases > 4: Generalized reciprocal vectors
The spacecraft position vectors are denotedrpyx =
1,...,S. Except in the general part of this Se2tor when  As discussed bydarvey (1998, the minimization problem
explicitly stated otherwise, the total number of spacecratft in(E-4) leads to the following linear equation
this paper isS = 3. Relative position vectors are written in Rim — d
the formrqg = r —r4. The mean position anesocenteof "= Xa:r“ «
the spacecraft array is given by

®)

for the model parameter vector, see alsoVogt et al.
P EZr (1) (20083. If the S >4 spacecraft are not located all in one
meT g ~ @ plane, the position tensd® can be inverted\ogt et al,
2008h, and the solutiom: can be written in the form
We call a reference frammesocentridf the mesocenter co-
incides with the origin of our coordinate system. In such a™ =Z‘1ada : ©
frame we have =0 and thus “

S re=0. @

Throughout this paper, except when explicitly mentioned, E.g., the least-squares estimator for the spatial gradignt
coordinate systems are chosen to be mesocentric. of a scalar observable can be written)as g, g« .

where

qazR_lra,azl,...,S. )
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In the caseS =4, the vectorgy, coincide with the recip- The vectorgyy, are obviously planar vectors, hence min-
rocal vectors of the spacecraft tetrahedron defined through imum norm solutions of Eqs1@) and thus the generalized
reciprocal vectors for the case= 3. For brevity, we refer
ky=———"—"-"— (8) to them agplanar reciprocal vectors The definition implies

Fpa-(Fpy XTp2) that their geometrical properties are completely analogous to
(Chanteuy1998 where(a, 8, y,A) must be a cyclic permu- those of the tetrahedral reciprocal vectors. kggis perpen-
tation of (1,2,3,4). When we wish to distinguish this case dicular to the side of the triangle that opposes the spacecraft
more clearly from the planar casg£ 3) discussed later, we atry, and the lengthyg,| is inversely proportional to the dis-
call the vectors, alsotetrahedral reciprocal vectorsThe  tance from the spacecraft to the opposing side.

I'gy XTp)

identities) " ko =0,) ko -re =3,> ko xrq =0, and The algebra of planar reciprocal vectors is presented in
Appendix A. Useful identities are:

> karg=1=) rak ©)

* * qo-(rg—ry) = dap—Say , (14)
(Chanteuy 1998 Chanteur and Harvey1998 remain valid _s 1 15
in the general cas& > 4, k, — q4, SeeVogt et al.(20081). Go'Tp =Ocp— 3 (15)
Hence the vectorg, can be understood ageneralizedre- | —hnt = anrg{ _ Zraqfx 7 (16)
ciprocal vectors. > p

| —AA' = RQ=QR. (17)

2.4 The caseS = 3: Planar reciprocal vectors

Here 8,4 is the Kronecker symbol=£1 if « = and=0
otherwise), and the so-called planar reciprocal tensor is given
by Q= ZaqaqL. Finally, if the three spacecraft are part of
a tetrahedral configuration, the planar reciprocal veajgrs
are related to the tetrahedral reciprocal vecioyqdefined
through Eqg8) as follows:

In the caseS = 3, all spacecraft are in one plafie In Ap-
pendix A it is shown that the position tensBris singular,
and its nullspacéV is the subspace of vectors that are per-
pendicular to the spacecraft plaRe For brevity, we refer to
vectors in the plan@® asplanar vectors, and to those iV
asnormalvectors.

As R is not invertible, generalized reciprocal vectors can-
not be defined on the basis of E@).(Nonetheless, the solu-
tion m of Eq. ) and hence of the minimization problem can for ¢ (1, 2,3}, andkg||f.
still be written in the form

qo =1 x (ko X 1) (18)

" Xa:q“d‘” (10) 3 Spatial gradient estimation
as long as the vectogg, satisfy the equations The gradient of an observable (scalar or vector field) com-
Rgy=re,a=123. (11)  Prises all information about the linear part of its spatial vari-
ations. Other spatial derivatives such as the divergence or
The solutions of the latter equations and that of BY.ffow-  the curl of a vector field can be constructed from its gradi-
ever, are no longer unique but determined only up to an arbient matrix, so it is both convenient and appropriate to refer
trary contribution from the nullspac¥'. to the problem of spatial derivative determinationgaadi-

To extend the reciprocal vector concept to the cise3,  ent estimation In the preparation phase of the Cluster mis-
we consider the minimum norm solution, i.e., the shortestsion, Dunlop et al. (1988 introduced the so-called curlome-
vectorm that satisfies Eq.5). In Appendix A it is demon-  ter technique to determine the curl and the divergence of a
strated that there is a one-to-one correspondence betwessctor field from multi-spacecraft data. The least squares es-
minimum norm solutions and planar solutions, and that thetimator presented bijarvey(1998 allows to take additional

vectors constraints likeV - B =0 into account. Note that without
nxr such constraints, the problem of linear gradient estimation
By
qDl: 9 a=1,2,3, (12) _ H H . .
n|2 from four-point measurements is expected to yield a unique

solution {fogt et al, 2008). Assuming a certain degree

satisfy the E_qs.](l_). Here_(a,ﬁ,y)_i_s the Cycli_c permutation ¢ homogeneity in both space and timBe Keyser et al.
of (1,2,3) with « in the first position, ana is the normal (2007 presented a comprehensive method also based on a
vector defined through least squares formulation that allows to carry out detailed
(13) error analysis and an assessment of the quality of the gra-

dient estimates, see alf#e Keyser(2009. A related ap-
Note thatr is not normalized. The corresponding unit vector proach was taken bidamrin et al.(2008 to construct the
is denoted ag =n/|n|. so-called GALS scheme that is able to resolve convecting

nR=r12Xri13.
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structures on spatial scales smaller than the typical spaceso far the analogy with the tetrahedral case is rather straight-
craft separation distanc€hanteur(1998 based his estima- forward. In order to see which part of the curl operator can be
tor on a linear interpolation scheme within the Cluster tetra-estimated from three-point measurements, we consider the
hedron using barycentric coordinates, and then constructedecompositionV =V, +V, of V into planar and normal
gradient estimators on the basis of the tetrahedral reciproeomponents to write
cal vectors defined through E8)( The accuracy of lin-
ear gradient estimators was studied, e.g.ahanteur and VXV = (Vp+Va) x (V) +V,)
Harvey (1999, Robert et al (19983, Vogt and Paschmann =V, xV,+V,xV,
(1998, andChanteur(2000. A number of papers on Clus- +VuxV,p+VyxV,. (24)
ter data have applied the curlometer or the reciprocal vector
technique to compute spatial derivatives such as grad, div, oHereV, x V, e N, V,xV, €P, V,x V, € P, andV, x
curl. With the FGM instruments being fully operational on V, =0. The terms involvingv,, can be estimated using pla-
all four spacecraft, a number of studies to estimate the elechar reciprocal vectors. This applies to the normal component
trical current density (through the curl of the magnetic field) of the curl operator:
have been carried out in various regions of geospace such -
as the magnetopause (e.Buynlop et al, 2002, the mag- (VX V)=V, xV,= an xVpa- (25)
netotail Runov et al. 2005 2006, and the ring current re- ¢
gion (Vallat et al, 2005. SeeDunlop and Eastwoo(2008 Using elementary vector calculus, the planar component can
andVogt et al.(2008H for an overview. be further rearranged to yield

Without prior information or physical assumptions, only
the planar component of the spatial gradient is accessibléV X V)p =V, xV,+V, xV,
from three-point measurements in space. Using the results =V,Vaxn+@@-V)axV,) (26)
from the previous Sec®, we first formulate a planar gra-
dient estimator before we present different options to makevhereV, =V, -i. The first term can be estimated through
up for the missing information from the normal direction.

For notational convenience, we make frequent use of the pla—v” X V= Vpx Vo= Xa:q“ X Vi (27)

nar componenV,, and the normal componeR®, of the del _

(nabla) operato¥ formally defined through or, equivalently,

Vn:ﬁ(ﬁ-V)Eﬁai (19) Vanxn:Vanxnz(Za:ann,a)xn. (28)
n

Vp=V—=Va (20)  The second term involves the normal derivativey = 9/0n

t that is accessible only if further information or assumptions

wheren -V = 8/dn is the directional derivative along the uni )
are given.

vectori.

3.1 Three-point estimation of the planar gradient 3.2 Different options to estimate the normal gradient

In order to make up for the missing normal component of the
gradient operator, some kind of redundancy must be present
in the data. We consider three options. The gradient may
be geometrically constrained to be (a) parallel or (b) perpen-
V,8 :%g =anga (21) dlculiar to a given vector. This approach leads to algebraic
a relations between the normal and planar components of the
h h 4 val ition F gradient. Alternatively, (c) there may be physical reasons to
whereg, are the measure ' values at pos'm oravec-  assume that the gradient structure is stationary in the plasma
tor f'?ld V. the corresponding planar gradient estimator is Aframe. In the latter case we can disregard possible temporal
matrix: contributions to the variability of the signal, and attribute all
VV~T V= vt 22 non-planar variations t.o the chang_es mduced.by the normal
b b ;q“ o (22) component of the gradient. Of key importance in this context

is the normal derivative defined through
The divergence of a vector field is the trace of its gradient

matrix. Hence the planar contribution to the divergence can?g _ »
. —=n-Vg (29)
be estimated through on

On the basis of the concepts introduced in S&ain estima-
tor Vg for the planar componeit, g of the spatial gradient
of a scalar observableis defined through

23) whereg denotes a scalar observable, or one component of a

V, V~V,.V= V. . o P . .
P P Xa:q“ * vector field. Once the normal derivative is determined using

Ann. Geophys., 27, 3248273 2009 www.ann-geophys.net/27/3249/2009/
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any of the three options, the full gradient vector (or matrix) so we cannot apply an additional consistency check as in the

can be reconstructed: caseVg]le.
dg Stationarity assumptionThe third condition can be un-
Vg=Vpg+ PR (30)  derstood as a kind of dynamical rather than a geometric con-

straint. If the structure that carries the spatial gradient is mov-

Gradient parallel to a given vector. We first look at  ing with the plasma, and the velocity = U, + Uy, of the
situations when the spatial gradieWtg of an observable plasma frame relative to the spacecraft array is known (e.g.,
g is parallel to a given unit vectoé. E.g., in a quasi- using bulk velocity measurements of ions or even electrons),
magnetohydrostatic configuration, the pressure gradient ishe temporal rate of change in the spacecraft frame is given
balanced by thg x B force. In the case of the Cluster mis- py
sion, pressure data are not available from all four spacecraft
but magnetic field data are. Hence it is possible to estimateng dg
the current density, and the resulting proxyJjok B canbe 3, = U-V&=— <U,,-Vpg+ Un@) (35)
normalized to yielde. The conditionVg||e eliminates two
degrees of freedom while effectively only one is left (the because the plasma frame derivativg/dt vanishes:
normal component of the gradient), so we are dealing withdg /dr = 9g/97 + U - Vg = 0. Hence the normal derivative
an overdetermined problem. The misalignmen¥vgfande can be obtained from
can be measured through the magnitude of the veéctdvg
that we wish to minimize. The rearrangements g 1 (38 +U,,-V,,g> ' (36)

an~ U,

ot
le x Vg|2 =lex V,,g|2+2(e xVpg)-(exV,g)
116 X V, g2 The termag/at is the slope of the measured time series and
dg can be estimated through a linear fit of
= 16X Vpgl* =2 V)@ i)~

1
2 mclf) =5 ol 37
+|éxﬁ|2(8g> 31) 8me(?) 3% 8a (1) (37)

yield a quadratic equation that can be differentiated with re-" & interval around the time of interest.

spect to the paramet@ég/dn =i - Vg. The resulting linear The stationarity constraint can be formulated is a slightly
relation is set to zero to obtain more general way as it builds on the conditiagyd:s =0 in

R . a reference system moving at velodfythat, however, does
g _(e-Vpg)(e-n) (32)  Nothave to be the plasma bulk velocity. If there is evidence
on lexn2 that a stationary structure is moving at a constant velocity

with respect to the plasma frame, the same approach would
work. Note that in the four-point GALS scheme introduced

" X : by Hamrin et al.(2008, their stationarity condition uses a
close tota. We also note that the full gradieMg is l0-  fame velocityr that does not need to be specified in ad-
cated in the plane spanned by the vecioendV g, thuse \nce pyt is a parameter of the optimization procedure.
should be close to that plane to be consistent with the con- Other conditions.The three constraints given above can

strglntzg ”f |mposedq h?re.t . oM wrn t be considered prototypes for the kind of conditions that are
h ra l;n Eefp_?r? Icu alrt_o aglvg_r:_vec enoWIIm 1o 4 pe supplemented to construct the normal gradient esti-
€ casévg L e. The resuling conaition mates. Other types of conditions may also work. For mag-

The denominatofé x 7|2 on the right-hand side of the for-
mula should not become too small, &should not be too

. . . A 08 netic fields, it is tempting to make use @f. B = 0 which as
O0=e-Vg=e- Vpg"'(e'")a (33) a single equation makes up for one degree of freedom. The
o ) problem of estimating the gradient matikB (and a con-
can be solved for the normal derivative to yield stant ambient magnetic field value, yielding 12 free param-

dg 6-V,g eters) from t_hree-point mea_surements of magnetic field vec-
P (34) tors B (providing 9 data points), howe_ver, is short of thr_ee

degrees of freedom and would thus still be underdetermined
Here the value ofé - 72| can be taken as a quality indicator that even if the conditiorvV - B =0 was taken into account. Fur-
should not be too small. |&- 72| « 1, then the small denom- thermore, only the diagonal of the gradient maiB can
inator on the right-hand of the formula may introduce large be constrained that way but the dynamically interesting terms
errors. Geometrically, this means that the veétshould not  are the off-diagonal entries which (combined into the curl of
be too close to the spacecraft plane. Note that by construcB) yield the electrical currents. Thus in this paper we have
tion, the geometric constraiRtg L e can be satisfied exactly, made no attempt to take advantage of the condi¥eB = 0.

www.ann-geophys.net/27/3249/2009/ Ann. Geophys., 27, 322F3-2009
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4 Cluster case studies of gradient estimation matrix depend on which of the three options is selected: the
stationarity assumption, or one of the geometric conditions
The three-point gradient estimation method introduced in thewvhere the gradient (of a cartesian componenBdfis con-
previous Sect3 is now demonstrated and validated using strained to be perpendicular or parallel to a given unit vec-
data from the Cluster mission. The events have been studietbr e. Here we choosé to be either the normalized mag-
and published already beforBiinlop et al, 2002 Marghitu netic field vectorB, or the eigenvectof min, corresponding
et al, 2006 Hamrin et al, 2006 and thus may serve as to the minimum eigenvalue of the magnetic covariance ma-
benchmark cases. This kind of reanalysis is meant to proirix. The vectorxm, is obtained through Minimum Vari-
vide a proof of concept for and also illustrate the use of theance Analysis (MVA). When a plasma boundary such as the
new method. magnetopause is crossed by spacecraft, the minimum vari-
ance directiornt i, can be taken as a proxy for the boundary
4.1 Comparison of three-point and four-point estimates  normal. For a discussion of MVA in the context of multi-
of magnetic field gradients spacecraft missions, the reader is referre@émnerup and
Scheible(1998. If the stationarity assumption is chosen, the
In our first case study, we use data from the Fluxgate Magplasma frame velocity/ is taken to be the average ion bulk
netometer (FGM) experiment that is operational on all four velocity measured by the Cluster lon Spectrometry (CIS) ex-
Cluster satellites (see, e.8alogh et al,200]). Gradientes-  periment. For each of the three options, we obtained the mag-
timates using any three-point subset of the spacecraft arragetic field gradient and curl estimates for the parallel and per-
obtained with our planar reciprocal vector approach can therpendicular directions to the three-spacecraft plane using the
be compared with the results of an established four-pointhree-spacecraft method, and compared them with the corre-
method. We are using FGM measurements at spin resolutiogponding four-point estimates.
(four seconds) from the Cluster spacecraft 1, 2, and 3 (all ex- Displayed in the upper three panels of Fig. 1 are the GSE
cept Cluster Tango) taken on 4 February 2001. This magneticomponents of thé/ x B estimates obtained through the
cally quiet day K, = 1) was studied already HWyunlop etal.  three-point method with the stationarity assumption, together
(2002 using the curlometer approach. The selection of thiswith the results of the reference four-point method. Included
particular subset of spacecraft was partly motivated by the reare also the normal and the planar components of the three-
sulting array geometry: the GSE position vectors of the Clus-point curl estimates. Planar and normal flow speeds are
ter spacecraft 1, 2, and 3 differ much lesg ithan in theitx ~ shown in the bottom panel. The andy-components of the
andy components, hence the three-spacecraft plane is almosg¥ x B), estimate (normal component of the curl, BX%)
parallel to the GSEX, y) plane, and the three-spacecraft nor- are close to zero, and the total curl estimate is given largely
mal is close to the GSE-axis. This kind of configuration py the(V x B), estimate (see E@6). The third panel from
allows to assess the analysis results more conveniently as §bove shows that for the.component of the curl the situ-
normal and planar contributions to the gradient enter all GSEation is reversed, i.e., the dominant contribution to the curl
components simultaneously. Other subsets of the Cluster aestimate is(V x B),. The termsiB;/dt (see Eqs36 and
ray have also been tested, with minor effects on the analysi37) were computed using a sliding window of 20 data points
results. corresponding to a time interval of 80 s. We observe a good

The time interval considered here is 05:50-06:25 UT of overall match of the three-point estimates and the reference
4 February 2001, when the Cluster spacecraft were locateébur-point results except for a time interval around 06:03 UT
in the magnetosheath. An inbound magnetopause crossinghatched in the figure). Here we find small values of the nor-
occured later at around 07:15UT. During this interval, the mal flow speedU,,|, producing large errors in the three-point
geometry of the Cluster array remained close to a regulacurl estimates through Ec36).
tetrahedron. Thus gradient estimation using the four-point Figure 2 separates the planar and normal components of
method ofChanteur(1998) is expected to yield small errors the gradient in the form of scatter plots where three-point es-
and can be employed as a reference for comparison with thémates are drawn versus their four-point counterparts. Since
three-spacecraft method. most of the magnetic variation is seen in thieomponent,

As described above at the beginning of S&twe de-  estimates ofvB, are shown. Excluded from the analy-
compose the (total) gradient of the magnetic fiel® intoa  sis were the outliers around 06:03 UT caused by small val-
planar componeri, B and a normal componefit, B. The ues of the normal plasma flow speed. Theomponent of
planar partv, B can be readily obtained from the planar re- the planar par(V,By), and thez component of the nor-
ciprocal vector formalism introduced in this paper, and themal part(V,B,). are displayed in the upper panel and the
results are expected to be consistent with the planar projedewer panel, respectively. Linear regression analyses were
tion of the four-point estimate o B because of the rela- performed to obtain the slopesand the Pearson correlation
tionships between planar and tetrahedral reciprocal vectorsoefficientsR. On the diagonal line (solid blue, slope= 1),
given in Appendix A. The estimates of the normal deriva- the three-point estimates coincide with the four-point refer-
tive 9B /on and thus the normal paK, B of the gradient ence results. As expected, the match is perfect for the planar
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2001-02-04, 05:50:0—06:25:0 UT. (Inactive Sensor: 4; Stationarity assumption)
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Fig. 1. 4 February 2001, 05:50—-06:25 UT: GSE componentg af B (first three upper panels) as well as normal and planar components of

the plasma flow velocity (lowest panel). Shown are profiles that have been averaged over 20 s. The estimates obtained using our three-poin
method with the stationarity assumption (solid blue line) are compared against the four-point estimates (dotted black line). The normal
componentV x B), (Eg.25) and the planar compone(¥ x B), (Eq. 26) of the curl with respect to the three-spacecraft plane are also

given (dot-dashed green line and dashed red line, respectively). A significant mismatch of the three-point and four-point estimates occurs
around 06:03 UT when the normal plasma flow speed takes very small values.

components of the gradient. The three-point estimates of théhe large-scale magnetic field gradient is perpendicular to the
normal gradient component deviate from the four-point ref-ambient magnetic field direction. This is consistent with the
erence values typically by several 10% and tend to be smallegeometry of a wide range of discontinuities where the mag-
in magnitude. netic field is tangential, and it implies that the two conditions
Normal derivative estimates that result from the two ge-that give reasonable estimat&aH, || *min andV By, L B) are
ometric constraints are displayed in Figs. 3 and 4 for thein fact identical. The reader is referred to studies on dis-
same time interval as before, and also in the form of scatteeontinuity analysis (e.gSiscoe et a).1968 Sonnerup and
plots. The panels show the z-component of the three-poinBcheible 1998 Knetter et al. 2004 Bargatze et a].2005
estimates o, B, versus the corresponding four-point esti- 2006 Haaland et a).2006 Weimer and King2008 for fur-
mates. The constrain®B, | #mn andV B, L B give reason-  ther information.
able estimates whereas the opposite ca&B$ | Xnyin and
VB, | B yield wrong results. Since during the time inter- 4.2 Estimation of pressure gradients
val considered here, the Cluster spacecraft are in the vicinity
of the magnetopause where the minimum variance directionn this subsection, the planar component of the gradient op-
can be taken as a proxy for the boundary normal and thugrator is denoted ag (instead ofV, as elsewhere in the
the large-scale gradient of magnetic pressure, the assumptigsaper) to avoid confusion with the (full) pressure gradient
V By | £min makes physical sense whereas the opposite cas¢ p, and the normal component of the gradient operator is
VB, 1 Xmin does not. The conditio¥ B, L B means that  written asv,.

www.ann-geophys.net/27/3249/2009/ Ann. Geophys., 27, 322F3-2009
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Fig. 3. 4 February 2001, 05:50-06:25UT: Three-point normal
derivative estimate¥, By using the geometric constraiRtBy||e
(lower panel) in GSE coordinates, calculated using the stationarYersus the corresponding four-point estimates. The unit védeor
ity assumption. Measurements during the time interval aroundchosen to be the normalized ambient magnetic field diredi¢up-
06:03 UT with small normal plasma flow speeds were excludedP€" Panel) and the minimum variance directiafin (lower panel).
from the analysis. The horizontal axis represents the gradient comiNotation as in Fig. 2.
ponent estimate using the reference four-point method. The vertical
axis represents the estimate using our three-point method. The slope
m of the linear regression (dotted red line) and the Pearson corre-
lation coefficientr are given. The perfect match in the case of the formerly investigated byarghitu et al.(200§ andHamrin
V, B, estimate is due to the construction of the planar reciprocalet al.(2009. In all these events, located near midnight in the
vectors. plasma sheet boundary layer (PSBL)~&9 R geocentric
distance, it was found thd - J < 0 (with E the electric field
and J the current density). This implies that mechanical en-
ergy is locally converted into electromagnetic energy. Based
The Cluster/CIS experimenRéme et al.2007) provides  on the orientation of the plasma sheet boundary, it was also
ion data that enables the computation of macroscopic paranpossible to obtain a rough estimate of the pressure gradient
eters, like the density, velocity, pressure, and temperatureand it was further inferred thavg > 0, consistent with the
However, because the instrument on spacecraft 2 (SC2) is nsense of the energy conversion.
operational, only three measuring points are available, there- Here we shall apply the three-spacecraft method to CGR1,
fore the gradients cannot be estimated by four-spacecrafthe most intense CGR among those investigated in more de-
tools. In order to check the three-spacecraft approach, wéail. The geometry of the Cluster tetrahedron at 22:15 UT,
computed the ion pressure gradieMtp, and the work of  the time of the peal - J and Wi (equal, respectively, to
the ion pressure force$Vx = —v-Vp (with v the ion bulk ~ —5pW/n? and 6 pW/nd), is presented in Fig. 5. The (SC1,
velocity), for a few concentrated generator regions (CGRs) SC3, SC4) plane is slightly tilted with respect to the GSM

Fig. 2. 4 February 2001, 05:50-06:25 UT: Scatter plots of the
component oV, By (upper panel) and the-component ofv, By
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x axis (~15°), and cuts the GSM-zplane along a line that (V,B,),
makes an angle of30° with the z-axis (see also Fig. 7). In ; ' ' ' ' aRaC
the magnetospheric tail, where the magnetic field and plasma 15 0
pressure have little variation in thedirection, the a priori E ob . y T
expectation is to have the pressure gradient dominated by the 2 R
component in the—-plane. In terms of the three-spacecraft = 5k . y fé'm 3
approach, we expect both a planar and a normal component, & N R R
whose sum is presumably normal to the plasma sheet/lobe & of et A o ]
interface. 8 bt

The pressure gradients obtained by imposing the geomet- = P e & E ]
ric constraintsVp || J x B, Vp L J, andVp L B, as well 2 1ok . f"*‘ " Rel mo1 — M
as the respective work of the pressure forces, are shown A R Lt o o |
in Fig. 6. The planar pressure gradient (c) is obtained by —15ll Tut . . s s ]
Eqg. (21) and, as expected, its x-component is small. The -5 -10 -5 0 5 10 15
th?ee(2 g)eometric conF;traints result in sFi)miIar normal compo- (B,).(# S/C) [nT/Mm]
nents (d, e, f), by using Eq3®) in the first case and Eq34) (VaB,),
in the other two cases. We note that the first constraint, 4o ' ' '
Vp |l J x B, implies thatVp is normal to bothJ and B, _
therefore the results obtained provide a consistency check for g 20, | 8
the three approaches. e S .,

In the PSBL J is often dominated by the diamagnetic = A e
current carried by ionsJ; = —Vp x B/B?, andVp, J, Q or o Sy gg{..*:-
B are orthogonal to each other. A schematic configuration - IR
of the three vectors, that includes the projections of the 3- N -20f ]
spacecraft plane, and of the plasma sheet/lobe interface in E:
the GSM f,z) plane, is sketched in Fig. 7. For simplicity, = ol L et — 1]
B is aligned with the x-axis, whose tilt with respect to the R=-089 +
spacecraft plane is neglected. The pressure gradient and its _"1 o _'2 o (') 2'0 4;)
components reflect the results in Fig. 6 and is assumed to (V,B,),(4 S/C) [nT/Mm]
be normal to the plasma sheet/lobe interface, which is close Event: 2001-02-04. 05:50:0-06:25:0 UT.

to the GSM §, y)-plane. The magnetic field lines thread the _. _ . :
interface in the x-direction, while the current is close to the Fig. 4. n Same as Fig. 3A but based on the geometric constraint

o _ VBy L é (instead ofV By | €).
y-direction. Note that, although the current is plotted normal
to B, a field-aligned component (as it is actually the case for
CGR1) would not chang® p — forced to be normal to the
same (/, B) plane.

It is instructive to check in more detail the conditions Consequently, the three geometric constraints should provide
under which the geometric constraiip || J x B is valid. similar V p results irrespective of the Cluster location.
In order to have the magnetohydrostatic condition fulfilled, A different approach is based on the stationarity assump-
Vp >~ J x B, one needs to disregard the inertial term, tion, Eq. 86), which can be interpreted as a dynamic con-
nmdv/dr (Wheren is the particle density andh the ion  straint. If the stationarity condition is indeed observed, this
mass). Withn equal to the proton mass,~10-2"kg, and  approach can be used also with vector operatorsgikand
typical values ofr ~ 0.3cn3, v ~50km/s, j ~ 1 nA/n?, curl, where imposing geometric constraints is less straight.
B ~30nT, one obtains that for time scales longer tiiag On the other hand, the stationarity assumption can be diffi-
nmv/jB >~ 1s the inertial effects are less important. Since cult to fulfill on the time scales required by the experimental
the time resolution of the CIS measurements is, at best, 4 data. For example, with the CIS data averaged over 24s,
(equal to the spin period), it appears as reasonable to assunifeone uses a sliding window of widthy equal to at least 3
that the magnetohydrostatic condition is fulfiled. The datapoints in order to computép/dr (see Eq.37), the investi-
used to investigate the CGRs were actually averaged ovegated structure should be stationary on a time scale of 72s
24 s (roughly, the time needed by the plasma to cross th@r more. In our case we checked the stationarity assump-
Cluster tetrahedron), therefore the magnetohydrostatic aption for several values af > 3 and the results faw = 3 and
proximation is sound, and valid not only in the PSBL. The w =7 (168 s) are presented in Fig. 8. The power density in
setup withVp, J, and B orthogonal to each other is more the bottom panel is less negative than in Fig. 6, becoming
peculiar to the PSBL but, as discussed above, the presence aofore flat with the increase af, which indicates that the sta-
a field-aligned current is not expected to change the resultdionarity assumption becomes progressively less successful

www.ann-geophys.net/27/3249/2009/ Ann. Geophys., 27, 322F3-2009
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Fig. 5. Projections of the Cluster satellites in the GSM coordinate planes on 19 September 2001, at 22:15 UT.

for longer time scales. Unlike in Fig. 6, the components of factors on the analysis schemes. In the first volume of the
ISSI Scientific Report serie?éschmann and D3aly998,
chapters 12-17 deal with this subjekiafvey, 1998 Robert

A closer examination of the stationarity assumption is pro-et al, 1998h Chanteuy 1998 Chanteur and Harvey1998
Robert et al. 19983 Vogt and Paschmani998. We adopt
the convention used there and classify the errors as follows.

V. p are now negative (c, d), aiflx has a flat maximum of
<2 pW/n?® (h).

vided in Fig. 9, where the various contributions tp/dr =
dp/dt+v-Vp are computed for two estimates &b/on —
based on the geometric constraifyp | J x B and on the dy-
namic constraint gd/dr = 0. When the geometric constraint
is used, ¢h/dr is negative inside the CGR (e), possibly con-
sistent with a magnetosonic wave. Thev p term (d), equal

to —Wg, can be compared to panel (i) in Fig. 6 (where, how-
ever, Wk is not smoothed withw = 3 as in Fig. 9), and to
panel (h) in Fig. 8. For the geometric constraint, there is lit-
tle contribution tov - V p from the normal direction, and the
positive peak ofWg inside the CGR is related to the neg-
ative peak ofv - V| p (b). When the dynamic constraint is
imposed,Wgx = —v-Vp =09p/adr, which is a rather smooth
function (a), slightly positive inside the CGR. In this case,
the negative peak afj - V| p is almost canceled by a positive
peak ofv, -V, p (C).

5 Practical aspects of gradient estimation
After the theoretical framework of three-point gradient es-

timation was formulated in SecB, and analysis examples
were given in Sec# to demonstrate the validity of the over-

(b)

(©

(a) Measurement (physical) errord.hese are intrinsic in-

accuracies of the measurements taken by the various in-
struments onboard the spacecraft of the array.

Positional (geometrical) errors.The positions of the
spacecraft are not known precisely. These inaccura-
cies affect the inter-spacecraft distances and thus also
the gradient estimates as they are formed by finite dif-
ferences of measurements and positions. The quality of
the gradient estimates is affected by the intrinsic length
scale and the shape of the spacecraft configuration.

Deviations from linearity. Most gradient estimation
schemes implicitly assume that the observables vary
linearly in space. Nonlinear variations in general,
and structures with scale sizes smaller than the inter-
spacecraft distance in particular, impose systematic er-
rors that are difficult to assess.

In the three-spacecraft case, we are dealing with a fourth po-
tential source or error.

all concept, we now look at a few important practical issues. (d) Uncertainties in the imposed conditionThe normal

We start with reviewing the accuracy of four-point techniques

to provide a reference for assessing the quality of the three-

spacecraft gradient estimation scheme.

5.1 Error classification, accuracy of four-point
estimates

component of the gradient cannot be determined di-
rectly from measurements in the three-spacecraft plane,
and additional assumptions (dynamical or geometric
constraints) have to be made that in general are not sat-
isfied exactly.

Some consequences of the errors in (d) are illustrated in the
In the preparation phase of the Cluster mission, a humbenext subsectiob.2, and they are more thoroughly discussed
of studies were carried out on the accuracy of spatial gradiin Appendix C. We do not attempt to quantify the (negative)
ent estimators, and to quantify the influence of geometricaleffects of (c) but only note that they are expected to decrease
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Fig. 7. Parallel, perpendicular, and total pressure gradient, together
with the current density/, and the magnetic field (into the page),

B. The 3-spacecraft plane and the plasma sheet/lobe interface are
shown as well.

tors have been suggested to assess the quality of gradient es-
timates but none of them has proven to work perfectly in all

Fig. 6. Pressure gradients and the work of the pressure forces fopg5eg Robert et al. 1998ha; Chanteur and Harvey998.

three different geometric constrainté) H energy spectrogram
for SC1. (b) HT pressure for SC1 (black), SC3 (cyan), and SC4
(magenta), averaged over 24(s) Pressure gradient parallel to the
3-spacecraft plane (SC1, SC3, SC®),p, computed via Eq21.
(d, e, f) Pressure gradient normal to the 3-spacecraft pl&hep,
computed via Eq.32) (d) and Eq. 84) (e, f), with the geomet-
ric constraintsVp | J x B, Vp L J, andVp L B, respectively.
(9) Quality indices|é x 2|2 (for panel d) and - iz (for panels e and
f), with thick, thin, and dashed-dotted line, respectivefit) H*
velocity, averaged over spacecraft and over 24isThe work of
the pressure forceVx = —v-Vp, with Vp =V p+V p, corre-
sponding to the three estimates\of p. Same linestyles as for the

quality indices. Note the peak at 22:15 and the spikes associate

with low quality indices. (j) The power densityE - J, indicating

A noteworthy approach to characterize the geometry of the
Cluster tetrahedron was presentedRgbert et al(19981).

On the basis of the three eigenval@%? > Réﬁ} > R\(,gl) of

the volumetric tensor, they defined an intrinsic length scale
L, and the two shape parameters planafitand elongation

E; as follows:

P =1-RY/RG =1~ R k@, )
b= 1\ KGR =1 R RO o)

the energy conversion rate. The energy conversion reaches a neg-

ative peak at 22:15, simultaneous with the pealig, consistent
with a generator process.

Note that the tensdRyo = (1/5))_, rar; is related with the
position tensoR throughRo = (1/S)R, S =4 is the num-
ber of spacecraft in the configuration, ahdis a measure of
the inter-spacecraft distance.

Algebraic error formulas for four-point gradient estimates

with decreasing inter-spacecraft distance, and refer to the disare reviewed in Appendix B. To illustrate the key depen-

cussion inRobert et al(19983. We first focus on (a) and (b)

dencies, we consider the gradient of a scalar varigbhes-

that affect gradient estimation in the opposite sense: with desume the positional and measurement errors to be isotropic
creasing spacecraft separation, the gradient estimates tend &md mutually uncorrelated, and write the resulting covariance

get worse.
Various indicators such as the ratio |8f- B|/|V x B] in

magnetic field measurements, or tetrahedron geometric fac¥[Vgl8[Vgl') =

www.ann-geophys.net/27/3249/2009/

matrix in the following form:
|62+ 267K . (41)
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Pressure gradient and work, d/dt=0, CGR1 dP/dt and centributing terms, w=3, CGR1
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+© 1 dp/dt+v-Vp, and the contributing terms, wheip/an is esti-
- , mated based oW p || J x B (solid lines), respectively onggfd: =0

M3 (h) 3 (dashed lines). All the quantities are computeddice 3. (a) Time
E = derivative in the satellite framép/az. (b, c) Contributions taw-V p
from the spacecraft planey - V| p, and from the normal direction,
v-V| p=v,dp/on. (d) Totalv-Vp, the sum of (b) and (c)e) To-
tal dp/dt, the sum of (a) and (d). As required, when stationarity
'5'65”1m3ep 12 zet 22 is assumed - Vp = —adp/at (compare the dashed line in panel (d)
with panel a).
Fig. 8. Pressure gradients and the work of the pressure forces under
the stationarity assumptionpddr = 0. (a, b) Running average of ) ) o )
the pressure gradient parallel to the 3-spacecraft p|§ﬁ1p’ and the error formulas of various Spatlal derivatives. Its im-
pressure gradient normal to the 3-spacecraft pl&ing, for w = 3. portance was confirmed in the thorough analysis presented
(c, d) Same as (a, b), but fav = 7. (e) The normal component of by Chanteur(2000 who further studied the dependency on
the H™ velocity, proxy for the normal velocity/,, from Eq. 36), L;, P;, andE;. Using R-1=K, one finds that
equivalent to a quality index for the normal gradient. The thick

EJ —VWP
[pw/m®] [p#/m?]  [km/s]

and thin lines correspond to the estimates in the panels (b) and (d)Ltztrace(K) =1+ L
respectively. (f, g) Running average of the Hvelocity, averaged (1-EN?  (1-E)?(1-P)?
over spacecraft, fow =3 (f) andw =7 (g). (h, i) Wx andE - J, = AX(E,.P). (44)

with the same linestyles as in panel (8)x has a flat maximum of
<2 pW/n®, while E - J reaches a peak minimum ef4 pw/n® for The functionA, (E;, P,) is implicitly defined through the lat-
w =3 and a flat minimum of -2 pW/fhfor w=7. Unlike in the  ter equation. Chanteur(2000Q explained that the algebraic
panels (d), (e), and (f) of Fig. 6, the components of the normal gra-error formulas and the numerical approachRufbert et al.
dient are now negative (b, d), reflecting the fact that the stationarity(19983 yield consistent results. For further details the reader
assumption is not consistent with the geometric constraints. is referred to the original publications and Yogt et al.
(2008H.
If we combine the (isotropic) inaccuracies in positién)(

Here the geometry of the spacecraft tetrahedron enters onlgnd observablesg) into a single effective primary error vari-
through the reciprocal tensé. The trace of this error for- able defined through

mula gives the square magnitude error
92 2q ) ’ ) 51g=\/(8g)2+|Vg|2(8r)2, (45)
(18Vel) = [(ag) +IVel(r) ]trace(K) (42) then the root mean square error of the gradient magnitude
which demonstrates the meaning of the term can be expressed in the following convenient form
4 28 _ (48
traceK) = Y kq/? (43) (18Vel)y =7 "= ( , )At(Etth) (46)
a=1

-1/2
I 4 ot

as an error amplification factor due to the geometry of thewhere Lg = (Za:l'kﬁt|2) denotes a characteristic

spacecraft tetrahedron. The expressEg”k,ﬂ2 was iden-  length scale imposed by the set of tetrahedral reciprocal vec-

tified by Vogt and Paschman(l998 as a key factor in tors. Sincel, is a measure of spacecraft separation, the ratio
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. -1/2
8:g/L, can be understood as a reference value for the inacand the length scaleg = (22:1|qa|2) / .

curacy in gradiept estimation which is further amplified by Accuracy of the normal componefithe gradient estimate
the shape functiom, (£, P;). Note that for planarity val- j, the direction normal to the spacecraft plane is constructed
ues close to one, the f;mcnom, is well approximated as 4t only from measurements but also from additional dynam-
Ar=(1-E)A=P)7 ical or geometric constraints. If these conditions are not sat-
isfied, the quality of the normal gradient estimate will be af-
fected. Appendix C makes this statement quantitative in the

To assess the quality of three-point gradient estimates, wéo!lowing sense. The unit vectérused in the geometric con-

have to consider both the planar component and the norStraints is assumed to deviate from the ideal cheéicgthat

mal component. Due to the formal similarity of the gradi- fulfills the _constralnt _exactly)_ by an a~ng=}_eThe re_s_ultlng_m-

ent estimator based on tetrahedral reciprocal vectors with th@ccuracy in the gradient estimaie= V¢ is quantified using

estimator for the planar component in the three—spacecraﬁwo error measures, namely, the relative error in magnitude

case, the quality of the latter is assessed using the same B GG

proach as for the four-point estimation scheme. Details are—= = e (55)

explained in Appendix B. The quality of the normal gradient

estimate is mainly affected by the geometric or dynamicaland the directional mismatch

constraint of interest, see Appendix C. In this subsection we GxG

summarize the most important findings. SINA = |——
Accuracy of the planar componentf the measurement

errors anq the pqsitional inag:curacies are mutually uUncorrey here A > 0 is the angle between the true gradient and the
lated and isotropic, the covariance of the planar gradient VeCastimator, ands = V¢ denotes the true gradient. The error

tor of a scalar variablg is given by analysis aims at the susceptibility of the gradient estimate
to small errors £ <« 1), so the formulas are expanded, and
only the leading order im is kept. The angler between the
normal directiom and the true gradier = Vg turns out to
be of key importance in the discussion.
<|(ng‘2> _ [(8g)2+ |Vpg|2(8r)2] traceQ) . (48) If the constraingé||G is applied, and is varied only in the
plane spanned b andn, then the magnitude estimate is
Primary inaccuracies in spacecraft positions and measurenost susceptible to errors @if y is small. Hencee x it|
ments are thus amplified by the factor may serve as an error indicator, see also the analysis exam-
ples in Sect4. The directional estimate turns out to be more
robust. In fact, to lowest order i the directional mismatch
does not depend on the valuejofat all. For the same con-
straint but variations of in the direction perpendicular to the
where in analogy to the four-spacecraft case an intrinsigplane spanned bg andi, the error formulas are quadratic
scaleL,, the (planar) elongatioi,, and the shape func- in ¢ which means that the gradient estimate is less affected
tion A, (E ) of the three-spacecraft configuration are definedpy this class of uncertainties &
through For the second conditiodL G, the unit vecto@ may be
freely varied in the plane perpendicular@without affect-
RM, (50) ing the geometric constraint at all, and the gradient estimate
1 \/m (51) is_ perfectly robust. With resp_ect to unc_ertaintie:fécih the
’ direction parallel taG, the gradient magnitude estimate turns
_ (52) out to be very susceptible jf is small but the gradient direc-
(1-E,)? tion may still be determined rather reliably. For this kind of
@ @ 3 _ ] _ geometric constra}int also the prientationéoj/ith rgspect to
Here R™™ > R'” > R™ =0 are the eigenvalues of the (Sin- he normal directiom comes into play: uncertainties

L. _ 3 t Y . A . .
gular) position tensoR =3 ,_;rqr,. For the root mean e amplified strongly ié L 4. This motivates the use of the
square error of the planar gradient magnitude we obtain o, 67| as an error indicator in this case.

5.2 Accuracy of three-point gradient estimation

(56)

(51V,8181V 81" = [ (69)2+ V82611 Q. (47)

and for the square magnitude error we obtain

2
A2(E,)
2
LP

3
traceQ) =) _lgal*= (49)
a=1

Lp
E

P
A% = L%traceQ) =1+
p— =p -

2 8,8 5,8 If the stationarity assumption is used as a constraint, the
V{|8Vpe]) = Ta= (L_) Ap(Ep) (53)  uncertainty in the proper choice of the veloclyis associ-
¢ b ated with a residual rate of change in the co-moving reference
with the combined measurement/positional inaccuracy system which in turn can be understood as an effective error
of the time derivative in the spacecraft frame. This error is
Spg = \/((Sg)2+ |V,,g|2(8r)2 , (54) amplified through the term/ZJ, to yield the uncertainty in
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the normal derivative. Hence the gradient estimate should be
interpreted with care if the plasma frame velocity vedtor

is close to the three-spacecraft plane. This behavior was il-
lustrated in the analysis of the Cluster magnetic field data in
Sect4.1

5.3 Implementation of the three-point gradient
estimator

To implement and use the three-point gradient estimation
scheme, we recommend to proceed as follows. The proce-
dure is given for the gradient vect8tg of a scalar observ-
able but applies also to the gradient mafvi¥ of a vector

field v. (d)

(a) Compute the planar gradient estimate.
From the spacecraft position vectars, compute the
normal vectorn (Eq. 13), the three planar reciprocal
vectorsq, (EQ.12), and then, using the measurements

J. Vogt et al.: Three-spacecraft data analysis

solar wind, se&netter et al. 2004, one may also im-
pose that the magnetic field gradient is perpendicular
to the ambient magnetic field. In the Earth’s magne-
totail under slow-flow conditions, the inertial terms in
the magnetohydrodynamic equation of motion are rel-
atively small, and pressure gradient estimates can be
obtained from the magnetohydrostatic conditions as de-
scribed in Sect4.2 To test the validity of the station-
arity assumption, one may transform the data into the
plasma frame of reference (e.¢damrin et al, 2008

and check if the temporal rate of change in that frame is
small.

Compute the normal gradient estimat&he selected
constraint is numerically evaluated, and the estimate for
the normal derivativeg/dn is multiplied with the nor-
mal unit vectom to yield the normal gradient estimate

Va98.

dy, the planar gradient estima‘t%,,g (Eq.21). (e) Check the quality of the normal gradient estimatée

(b) Check the quality of the planar gradient estimate.
Combine the uncertainties in measuremesy) (and
spacecraft positiors¢) into a single effective error vari-
ables,g (Eqg.54), and multiply with the inverse length
scaIeLél = J/tracgQ) to yield a proxy for the error
in the planar gradient estimate. Of course, the error
should only be a fraction of the actual estimétgg.
Alternatively, one may take the eigenvalues of the po-
sition tensor to compute the planar elongati®p and
the intrinsic scalel, of the three-spacecraft configu-

ration, and assess the quality of the planar gradient es-(f)

timate through Eq.53). Note that this kind of quality
check is valid for the idealized case of isotropic and mu-
tually uncorrelated errors in measurement and position.
If more information is available (full covariance matri-
ces), a more detailed error analysis may be carried out
following the approach discussed in Appendix B.

(c) Select the constraint to be used in normal gradient esti-
mation. This step requires careful consideration of the
specific physical situation of interest. General recipes
are difficult to formulate. The geometric and dynami-
cal constraints given in Se@.2 are prototypes for al-
gebraic or differential equations reflecting some kind of
redundancy in the data that can be exploited to construct
a normal gradient estimate. If possible, the result should
be checked for internal consistency, see below.

Examplesin the vicinity of quasi-planar discontinuities
such as the magnetopause, the boundary normal is ex-
pected to be aligned with large-scale gradients. Prox-
ies for the boundary normal vector can be the minimum
variance direction of the magnetic field, or the maxi-
mum variance direction of the electric field, s8en-
nerup and Scheibl€1998. In the vicinity of tangen-

tial discontinuities (seemingly the dominant type in the

Ann. Geophys., 27, 3243273 2009

(9)

accuracy and the significance of the normal gradient es-
timate depends on the quality of the planar gradient es-
timate, and on how exactly the imposed constraints are
fulfilled. The normal gradient estimate should be taken
with care if the denominators in the respective condition
for the estimate of the normal derivatigg/dn is small,

i.e., the normal spe€d/, | in the case of the stationarity
assumption, the tern@ x i| in the case of the geomet-
ric conditione| Vg, or the termje - r| if the condition

¢ 1 Vgisimposed.

Combine normal and planar components to obtain the
full gradient. Here we simply add/,¢ andV, g to de-
termine the full gradient estimatég.

Perform consistency checkisike the four-point equiv-
alent, the planar gradient estimation scheme exploits
only the linear variation in the data which implies that
the gradient is implicitly assumed to be homogeneous
over the spatial extent of the spacecraft array. Thus for
internal consistency of the method, the results should
not vary too much over an equivalent temporal range,
i.e., the time interval required by the spacecraft to cover
the spatial extent. This consistency check is particu-
larly useful for the geometric constraints that in prin-
ciple allow for a point-wise (in time) reconstruction of
the normal gradient component. Furthermore, the con-
dition ¢||Vg may be checkead posteriorias the esti-
mation scheme minimizes thé x Vg|? but it does not
enforceVg to be parallel te@. This is different from the
conditione 1. Vg that is satisfied by construction. In the
case of the stationarity assumption, the time derivative
is computed from an averaged valgig.(). With the
reconstructed gradient, the model allows to predict also
the observables at the three spacecraft which may then
be compared with the actual measurements.
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5.4 Comparison with other gradient estimation stationarity assumption in our three-point methéthmrin

schemes et al. (2008 do not prescribe the velocit§y of this special
coordinate system but determine it as part of an iterative op-

Unconstrained linear gradient estimation schemes using sitimization procedure. Another important variable optimized

multaneous measurements from four spacecraft are expectéd the process is an intrinsic physical scal (vhich enters a

to yield the same results because the number of observationgeight function in the least squares estimator, and effectively

matches exactly the number of unknowns (in the scalar casgnakes the method sensitive to structures that are smaller than

three components of the gradient vector and a constant), safe inter-spacecraft separation scale. The key control param-

also Vogt et al. (20081. The curlometer approactid(n-  eter of the GALS scheme is the lengthof the time interval

lop et al, 1988, the unconstrained least squares estima-(the so-called coherence time), so the method requires little

tor presented bydarvey (1998, and the reciprocal vector user input. Since GALS is formulated so far only for the

method Chanteur1998 fall into this class of analysis tech- case of four spacecraft, a direct comparison with our planar

niques. A comparison of the latter with the planar part of reciprocal vector scheme is not yet possible.

our three-spacecraft method was implicitly given already in

Sects.5.1 and5.2 Here we highlight only the role of the

geometric error amplification factors that are related by 6 Wave vector and boundary parameter estimation

Just like their tetrahedral counterparts, the planar reciprocal
vectors presented in Se2tallow to carry out not only spatial
gradient estimation but they also facilitate wave and bound-
see statement A10 in Appendix A. If in the four-point esti- ary analysis. Below we briefly sketch how to construct wave
mation scheme the term tra@€) is too large due to planarity vector and boundary parameter estimators from three-point
valuesP; that are close to one, and the resulting gradient esdata. Details of the analysis schemes are beyond the scope of
timate turns out to be useless, the value of tt@emay still this first three-spacecraft data analysis paper, and will be left
be moderate enough to allow for a meaningful analysis. Therfor future work.

one may eliminate the measurement that corresponds to the

longest of the reciprocal vectakg, and apply the three-point 6.1 Wave surveyor technique for three-spacecraft data
method to the remaining observations.

Instead of using at each time step individually a single The problem of wave vector identification from multi-
set of four-spacecraft dat®le Keyser et al(2007) based spacecraft data has been studied by several groupsvave
their method on a sequence of multi-point observations thatelescopentroduced byDunlop et al.(1988 and Neubauer
do not need to be synchronized (see dlsoKeyser 2008. and Glassmeigl990 was based on a linear filter bank for-
Their least squares estimator can be characterized as an imulation. Thek-filtering techniqueconstructed by Pingon
verse modeling effort that allows for rigorous error control. and co-workers (e.gRincon and Lefeuvrel991 1992 by
Measurement errors are specified on input, and they are usumeans of a minimization principle is based on an estimator
ally assumed to vary isotropically with distance from a point for the spatio-temporal power spectrubiw, k). The two
in space-time, but can in principle be also anisotropic. Theapproaches can be combined, and the two terms are now of-
method was demonstrated for the four-point case but the apien used interchangeablihcon and Motschmanri998
proach is far more general, and can be applied also to threevlotschmann et al1998 Pingon and Glassmeig2008. On
spacecraft observations. Constraints can be taken into athe basis of the-filtering/wave telescope techniqu€pn-
count, and are their use is recommended in particular if astantinescu et a{2007) constructed a wave detection scheme
spatial direction turns out to be ill-resolved. In summary, theusing spherical waves instead of plane waves to identify not
estimator ofDe Keyser et al(2007) offers most of the com-  only wave vectors but also the location of the wave source. A
ponents of our three-point method in a flexible and powerfuldifferent class of multi-point wave analysis methods can be
framework. The three-spacecraft approach introduced in theharacterized aphase differencing technique®rojections
present paper, however, should be easier to implement andf the wave vectok onto the spacecraft separation vectors
to use in practice than the mathematically more complex in-are estimated from phase differences of the signal measured
verse modeling apparatus, and thus may be better suited fdsetween the corresponding pairs of sensors (&8alikhin
routine analyses. Furthermore, the planar reciprocal vectoand Gedalin1993 Dudok de Wit et al.1995 Walker et al,
formalism allows more explicit control of the decomposition 2004). Still another wave vector estimation scheme \tlage
into planar and normal components. surveyor techniquewas suggested recently bipgt et al.

The GALS approach presented blamrin et al.(2008 (20083, and can be characterized as a direct method that
also takes a sequence of measurements as input. The cruci@dbes not require any peak search like the other categories
ingredient of the method is the choice of a special frame ofof analysis techniques. It makes use of the eigenstructure of
reference where the measurements are stationary. Unlike thihe cross spectral density matrix (e.§amson et al.199Q

4
traceQ) = trace(K) — Y (it -kq)? (57)
a=1
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Santolk et al, 2003, and is applicable to wave fields where  Following up on the least-squares approach to boundary
at a particular frequency a single wave mode dominates. Foparameter estimation explained in S&tplanar reciprocal
further details on the different categories of multi-point wave vectors allow to construct an estimator for the planar compo-
analysis techniques, s@ncon and Glassmei¢2008, Hor- nentm , of the slowness vector =§/U from the boundary
bury and Osmaf2008, andVogt et al.(20083. crossing times, through

The methodological framework introduced in Setial- m _Z (ta —10) (60)
lows to construct a three-point variant of the wave sur-"" " £ Jolla =10 -
veyor technique because the algebra presentatbgyet al.
(20083 translates directly to our case. Of course, only the
planar componerk,, of the full wave vectotk is accessible

This information can be combined with other boundary anal-
ysis techniques in a variety of ways. E.g., if the bound-

but otherwise the estimation scheme remains the same. I1A7Y normal unit vectos is constrained by means of single-
particular, dot products of the wave vectowith the space- spacecraft MVA results to be parallel or perpendicular to a

craft position vectors-, are not affected because the posi- 9V€N Unit vectore, we can proceed as in Sest2 to obtain
tion vectors are planar vectors, thiassry =k, -ro. Since m, =m-n, i.e., the slowness vectorAcorAnponent perpendicu-
the spacecraft geometry enters the steering veotioy (for lar to the spgcecraft plang. I_n the cdske when the_bound-
scalar data) or the steering matkixk) (for vector data) only ~ &7y normal is known to lie in the plane perpendicular to a
through such dot products, all components of the estimatofVen vectore, we find
for the amplitude (polarization) vectar=a(w) are accessi- é-m

ble from three-point measurements, see Egs. (34) and (35) it'» =~ 3+~

the paper ol/ogt et al.(20083.

To determine the normal componént=k - of the wave
vector k, however, additonal information is required, as in
the case of spatial gradient estimation. If the observable is ~ (é-m)(é-n)
the magnetic field vectoB, we may take advantage of the " "~ |6 x a2
conditionV - B which implies thak -a = O for the pair of vec-
torsk(w) anda(w) at the angular frequeney. The missing
normal component of the wave vector can then be compute

(61)

When the boundary normadlis known to be parallel to the
vectore, then

(62)

The full slowness vector can then be constructednas
gtp +myn, and the boundary velocity = 1/|m|.

from
7 Summary and outlook
k= — @ (58)
" i-a This paper introduced the set of planar reciprocal vectors as

a generic and convenient tool to extract the information con-
tained in three-point measurements. As the minimum norm
solutions of a least-squares problem, planar reciprocal vec-
tors yield robust and efficient estimators of model parameters

at each angular frequenay of interest. Another option
would be the curl-free constraint that applies, e.g., to elec
trostatic wave modesV x E = 0. Here we obtain

k= |k, xal (59) in the spacecraft plane. Additional information, e.g., in the
e lay| form of geometric constraints or physical assumptions, has
to be provided to estimate the out-of-plane component of the
6.2 Boundary analysis using crossing times model parameter vector.

Our approach to the analysis of three-spacecraft data al-
Plasma boundaries such as discontinuities and shocks can bewvs to address major problem classes such as spatial gra-
characterized by a set of parameters including orientationdient estimation, wave identification, and boundary analysis.
velocity, curvature, and thickness. Depending on the physi-The gradient estimation problem was chosen to demonstrate
cal question of interest, a variety of methods exist to estimatehe practical applicability of the new method. Our three-
subsets of the boundary parameters. The celebrated minpoint technique and the reference four-point method perform
mum variance analysis (MVA)Sonnerup and CahjllL967, equally well in the reconstruction of the in-plane component
Sonnerup and Scheihld998 is a single spacecraft tech- of the gradient vector. The quality of the out-of-plane com-
nique that takes advantage of conservation laws to estimatponent estimate depends on the type of additional informa-
the boundary normal. The discontinuity analyzer (DBu- tion that is provided. For the events considered here, the out-
lop et al, 1988 Dunlop and Woodwardl998 combines the of-plane component of the gradient could be reasonably well
MVA results of several spacecraft to analyze boundary mo-reconstructed if the proper constraint was used. The accuracy
tion and surface topology. A crossing time approach wasof the new method and other practical aspects were discussed
presented byHarvey (1998. For a recent summary of the in some detail.
various techniques that have been applied in the context of This study brought us from four-point measurements to the
the Cluster mission, se&onnerup et al2008. three-spacecraft analysis case where the missing information
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was compensated by one additional condition. If we go one On the other hand, if we take a vectorthat solveRw =
step further and combine two conditions, we may be able td0, then also
address the case of two-spacecraft configurations. However,

the balance between the actual measurements and the ing— "Ry — w' Z"a";rz w
posed constraints would be moved towards the constraints,

o

which makes the analysis more susceptible to uncertainties ot T2

in the constraints. Another avenue could be more interest- ;w TaloW Zﬂjlw ol (A4)
ing, namely, taking measurements from three spacecraft and o .

combining the planar reciprocal vector formalism with the Which can be satisfied only if

GALS scheme lamrin et al, 20098: if in addition to the wiry=w-ry,=0 (A5)

stationarity assumption a geometric constraint is taken into

account, one should be able to exploit the resulting redunfor « =1,2,3. This implies that all position vectors, must
dancy in the data and resolve structures on scales that atee perpendicular to the vecter. If the S =3 spacecraft are
smaller than the inter-spacecraft separation. This and othenot collinear, the position vectors span the pl&hehus we
possible extensions of the planar reciprocal vector approackan also conclude that vectors in the nullspAtef R are
(like the implementation of a three-spacecraft wave surveyomormal vectors.

technique, see Sed) are planned for the future. . ] o
A2. A planar solutior of Eq. A1) is the minimum

norm solution.
Appendix A
This is evident from statement Al. In detailvife P is a
Algebra of planar reciprocal vectors given particular solution, then any other solutws v can
be expressed in the form= v+ w wherew # 0 is a normal
We now formally justify the statements and identities given vector. Sincev is also a planar vector, the (Euclidean) norm
in Sect.2, and include the algebra of planar reciprocal vectorsof u satisfies
for future reference. Although the results could be derived 2 2 2
more directly from general principles of inverse theory, we [#1” = [VI"+[w|® > v (A6)
gave preference to a basic linear algebra approach for reasong,q hencév| < |u|.
of completeness and internal consistency.
The number of spacecraft &= 3, we presume that they A3. The normal vector =r12 x r13 can alter-
are not collinear, and we use a mesocentric coordinate frame.  natively be written in the forms = r3 x ro1,
The planar subspace spanned by the three spacecraft position n=r3;xr3p, andn=r1xro+roxrz+rzxri.
vectors is denoted bR. In this context, vectora are called
normalif they are perpendicular to the spacecraft plane, i.e., The skew-symmetry of the cross-product implies that
w L P. A vectorv is calledplanar if it is located in that
plane:v € P. We are concerned with equations of the type

Ru=b (A1)

n=ripxri3= (rz—ri1) x(rs—ri)
=ropXr3—ryXr1—ri1xXr3—rixri
=roXr3+rixro+ryxry. (A7)

that are to be solved far. Hereb € P is a given data vector,

: " The cross-productsys x ro3 andr3; x r3» can be evaluated
andR is the position tensor of the spacecraft array. b 1523 X I'21 317732

in the same way and also yield the latter expression.

Al. The nullspacgd/ of the position tensadR is the

subspace of normal vectors. In shaft,L A, A4. The planar reciprocal vectorg, satisfy

Y .4« =0 and alsog!, - r,p = 84p — 8, for all
To demonstrate the statement, we note that if all spacecraft @8,y €{1,2,3}.
are located in one plarfe, then also the mesocenter that co-

incides with the origin of our coordinate system, and so are Adding all three planar reciprocal vectors gives

the three position vectons;,r»,r3. Hence for any normal _n ~0 A8

vectorw L P we obtain Xa:q“ BT (raat+raitri) =0. (A8)

rfw=r, - w=0, =123, (A2) The second relation can be rewritten as

and this implies qo-(rp—r))=q"(rg—ry)=080p —Say - (A9)

Rw = Z"ar&w =0. (A3) We simply check this identity by going through the different
¢ possibilities for the triple of indice&x, 8,y). For any given

Therefore, normal vectors are in the nullspac®of «a, both sides of the equation are zer@giE y. If a =8 £y,
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then the right-hand sid&s — 8., = 1, and also the left-hand because, L 7, and also
side

1 1 (l—ﬁﬁt)ﬁ=ﬁ—ﬁ(ﬁ.ﬁ>=o. (A15)
Qo Tya = ﬁ(n XTyp) Tyg= ﬁn “(Fyu Xryq)

1 Furthermore,

n
wherep is chosen such thdty, y, 1) becomes a cyclic per- (anr;>qﬂ = anra -q8
mutation of(1,2,3). The casex =y # 8 is demonstrated a o

in a similar way. Finally, if all three indices are different, = an[gaﬁ_(l/g)]
the right-hand side is zero because both terms vanish indi- o
V|duaIIy,.and the left-hand side is zero.because thgns =qp _(1/3)2%
perpendicular te g, = —r, g by construction. P

A5. The planar reciprocal vectorg, satisfy =45 (AL6)

QuTp="38up— 3 foralla,pe{l,23]). and also

The symmetry of the dot product implies that this relation | _pat B .n . AL7

can be rewritten as ( —nn )qﬂ =qp—nn-q95=49p (AL7)
qirg=qy-rp= r}}qa =8up — 1 ) (Al11) becauser L gg. The second half of the identity (involving

) o 3 ) ) the central part and the right-hand side) is demonstrated in a
Since we are working in a mesocentric coordinate frame, wesimilar manner by letting the tensors operateiand the set
may subtract the mesocentgsc =0 from rg on the left- {(ral.

hand side of the equation to yield Note that by taking the trace of the operators involved in

airg =g (rp—rmo identity A7 one further finds tha}_, g« ~fgt= 2. Since the

skew-symmetric part of the operatbr nnr' vanishes, one

1 1 _
- (:_g Zrﬂ -3 Zry) can also conclude that , g, x ro =0.
14 Y

1 . A8. The product of the position tensBrand the
=3 an(’ﬁ —Ty) so-called planar reciprocal tensa® = Zﬁqﬂq;

L v L is given byRQ = QR =1 —an'.
=32 (op—0uy) =dup—3 . (A12) o

y This is demonstrated by means of the statements A7 and

A5 as follows:

RQ = ror. q qJr
This result is shown by means of statement A5: (; “ “) (; Pl

1 _ Pt
7 7 3 op

A6. The planar reciprocal vectqy,, is the mini-
mum norm solution of the equatiéty, =r.

+
1 = rg [801/3 - (1/3)]q
=ra—§Zr/3=ra. (A13) ;: g
p T
Since the solution vectay, is planar by construction, it is = Zraq; —(1/3) (Zrﬂf) (Zqﬂ)
also the minimum norm solution according to statement A2. o o 8
. . T A
A7. The planar reciprocal vectorg, satisfy = roqp=I—ni'. (A18)
Youdert, =1—nn'=Y",rqq.,. @
In order to demonstrate the identity involving the left-hand The identityQR = | —iiz' is shown in the same way.
side and the central part of the equation, we let the tensors
operate om and the se{q,} which taken together form a A9. If the three spacecraft are part of a tetrahe-
basis of the three-dimensional space. We obtain dral configuration, the planar reciprocal vectors
q. are related to the tetrahedral reciprocal vectors
(anrfx)ﬁ=2qara-ﬁ=0 (A14) I;{ta”tt]roughqaznx(ka x n) fora €{1,2,3}, and
o o 4l|n.
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The relationk4||n is evident from the definitions df; and for « € {1,2,3}, and thus
n. The first relation is now shown far=1, the casea =2 3
anda = 3 are obtained by cyclic permutation of the indices. Q= Z t
Since azlqaq"‘
PPN A A 3
ko xn = (kyxn)(n-n)—n[(kyxn) n] =5 [ka—Gi-k )ﬁ][kt —(h-k )ﬁt]
- o o o
= [Ax (k1xi)]xn (A19) = “
3
(note thata x (b x ¢) = b(a-c) — c(a - b) for arbitrary triples _ Z {kakt —(h-ky) [ﬁkt +kaﬁt]
of vectorsa, b, ¢) and both sides of the relation to be proven = * *
are planar vectors, it is sufficient to demonstrate that (k)% At}
n-ky)°nn
gixn=kyixn. (A20) 3
=K —kqkly— ) (A-ky)| k!, + ko it
After multiplication with 4ta ;(n @) [" o THalt ]
3
V =r21-(razaxraa) =(ra1xrz3) rzs _I_Z(ﬁ,ka)Zﬁﬁt_ (A26)
= —(ragxra1)-raa=-n-rpq, (A21) a=1

we are left with the relation

(n-r24)(q1xn)=(razxro4) xn

Noting that the trace of a dyagb' is the scalar product of
the two vectors, i.e., tra¢eb') = a'b=a-b, it is straightfor-

(A22) ward to form the traces of the matrices on both sides of the
equation:

that will be shown now. The right-hand side can be rear-

ranged to yield

—[nx (rozaxrog)] = —[ra3(n-rog) —roa(n-roa)]

= —r23(n-ra) .

The left-hand side can be reduced to the same result:

1
‘len=—W[”X("X"23)]

1 2

=—-— [rzslnl —n(rzs-n)]
|n|

= —r23

which completes the proof.

A10. If the three-spacecraft array with planar re-

3
trace(Q) = traceK) — [ka|* =2 (A -ka)?

a=1

A23 3
(A23) +3 (0 ko)
a=1

3
= traceK) — [kal° = ) (A -ko)® . (A27)
a=1
Sinceka||i, we havelka|? = (i - k4)? and thus
(A24)

4
trace(Q) =trace(K) — Y (i -kq)? . (A28)

a=1

Appendix B

ciprocal vectorsq,, is part of a tetrahedral con-

figuration with tetrahedral reciprocal vectork,,

then

3 4 4
D 1gul? =) kol =D (A ka)?
a=1

a=1 a=1

or, equivalently,

4
trace(Q) =trace(K) — Y (i -kq)?.
a=1

To prove this statement, we begin with A9:

go=nx (kg xn)=ky— (R-ky)n

www.ann-geophys.net/27/3249/2009/

Accuracy of planar gradient estimation

Using planar reciprocal vectoig,, the planar components
of the spatial gradients of a scalar observapbbnd a vector
field V can be estimated through

Vog=Vpg = quga (B1)

o

V,V=V,V = anvg. (B2)
o

The estimators are of the same functional form as in the four-
point case studied in detail by several authors in the first
volume of the ISSI Scientific Report seriddaschmann and
Daly, 1998. Algebraic accuracy analyses were carried out
(A25) by Chanteur(1998 2000, Chanteur and Harve{1 998, and
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also byVogt and Paschman(1998. Many of their error es-  gradient of a vector field’ is given in the same publication
timates translate directly to the three-spacecraft case considEq. 14.30):

ered here as they are based on the list of algebraic relation- 4 4

ships for reciprocal vectors that are valid in both the tetrahe-<5Gij3Gmn) = ZZ((g Va,i8 Vg mka, jkp.n

dral and the planar case. We expect, e.g., the inverse length a=15=1

scale + (ka, jkg.n) Va,ikp.m) (B9)
(note thatG;; is an estimator o8 V; /dx;).

Lél_ (B3) To study the dependency of physical and geometric er-

rors on the shape parameters (elongation and planarity) of
the Cluster tetrahedroGhanteu(2000 assumed mutually

to play a key role in the error analysis of three-point gradientyncorrelated spacecraft position vectors and measurements,
estimates because the corresponding four-point expression and the errors to be isotropic. More precisely, for the covari-
ance matrices he wrote

(8r,8rt) = 8,,(8r)2 and (B10)
(8Va8VY) = 8ap(8V)? (B11)

allows to write down handy formulas for directionally aver- wheresr andsV denote the inaccuracies in position and field
aged errors of various spatial derivatives in the presence ofneasurements, anids as vyell aS,(SW are Kronepker delta
isotropic and uncorrelated measurements inaccuradoe ( symbols. These assumptions yield the following error for-
and Paschmani998 Chanteur200Q Vogt et al, 2008H). mula

One key step in the error estimation process, however, re48G;;j$Gun) = [(8V)28,m+VV V V(1) ] in, (Bl12)
quires special attention and careful interpretation. We adopt See Eq. (11) irChanteur(2000. Here the geometry of the

the approach taken b€hanteur(1998 Sects. 14.3.1 and
. . : spacecraft tetrahedron enters only through the reciprocal ten-
14.3.2) who based part of his analysis on the equation . i
sorK. To illustrate the fundamental dependencies, we may

(B4)

¢ ¢ reduce the complexity by considering the gradient estimator

Z(‘Ska’a "’ka‘sra) =0 (BS) G~ vy of a scalar variable, so Gij — G, and we can
“ write the covariance of the gradient vector as follows:
which is the (linear) variation of
(inean (319g131Vg 1) = [ 59)2+ V262K (B13)
Zkarfx =1 =const. (B6) The trace of this error formula gives the square magnitude
error

The right-hand side of the corresponding expression in thqug|2) = [(8g)2+ |Vg|2(8r)2] tracgK) (B14)

planar case, namely,
where the term

- ARt 4
anr Zr"‘q“ - ®7) traceK) = Y _ |kq | (B15)
a=1

is constant only if the vectat, or, equivalently, the orien- is g function of the spacecraft array geometry, and can be
tation of the three-spacecraft plane does not change in thgnderstood as an amplification factor for the primary errors
variational process. So for the sake of simplicity, and to beqye to positional and measurement inaccuracies. For further
able to make direct use of the results obtained for the fourdetails the reader is referredYogt and Paschman(1999;
point case, we adopt the idealized but somewhat unrealischanteu(2000); Vogt et al.(2008H.
tic assumption that the three spacecraft position vectors vary Armed with the arsenal of error formulas for tetrahedral
only in the plane perpendicular to the vecfor configurations, we now approach the three-point gradient es-

Using Eq. BS) and the algebra of reciprocal vectors, timation case. The correspondence of algebraic relations

Chanteu(1998 derived the following general expression for syggests the following replacement scheme
the covariance matrix of reciprocal vectors:

ke = qq , (B16)
8r)°l — (8r An') B17
(8o SKY) ZZ(kt (61,87t kﬁ) B8) 1= @) ( ) (B17)
n=lv= 4 3
Y- (B18)
see Eq. (14.26) ilChanteur(1998. The covariance tensor a=1 o=l
(8Gij8Gpy) of the linear estimatoG =)k, V}x for the VvV, = V,V; (B19)
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in the four-point error formulas to find the corresponding ex- where the positional inaccuracies and the measurement er-
pressions for the planar case. Assuming mutually uncorrefors have been combined into a single error variable:

lated and isotropic errors in spacecraft positions and mea-
surements, the error formula for the covariance of the planag , g = \/(5g)2 +1Vpgl2(8r)?.

gradient vector of a scalar variabjaeads

(5(V,2)8(V,9)) = | (692 +1V,876r)2] Q. (B20)
and for the square magnitude error we obtain
(|5Vp8®) =[60)+ IV 826 |racaQ) . (B2D)

Hence in the three-point gradient estimation case, the arra

geometry amplifies the primary inaccuracies in spacecra
positions and measurements through the factor

3
tracaQ) =) _Iqal*. (B22)
a=1

In a similar way as traaq&) can be written in terms of the

(B27)

Appendix C

Accuracy of normal gradient estimation

The component of a spatial gradient in the direction nor-

fYwal to the three-spacecraft plane cannot be estimated directly

rom measurements within that plane. Additional informa-
tion in the form of dynamical or geometric constraints must
be considered. Such conditions are never satisfied exactly.
In the following we focus on geometric constraints, and
study how the estimation quality depends on small deviations
from ideal geometries. I& denotes the true gradient agd

the estimator, we evaluate the relative error in magnitude

shape parameters and an intrinsic scale of the four-spacecraft

array Chanteur2000, we may express the trace of the pla-
nar reciprocal tensdp as a function of an intrinsic scale and
the (planar) elongatiof, of the three-spacecraft configura-
tion. In analogy with the concept of planarity and elonga-
tion in the tetrahedral casR@bert et al.19980), we take the
eigenvalueR® > R@ > R® =0 of the (singular) position
tensorR = zgzlrarg of the three-spacecraft configuration
to define

E,=1- /R@/RD |

and use the largest eigenval®éb to identify an intrinsic
scale

LPZ‘/R(l) .

Note thatRobert et al(19981 based their definitions on the

(B23)

(B24)

G _G-G

= C1
G G (C1)
(G =|G|, G =|G|) and the directional mismatch
. GxG
sina = | 22X~ (C2)
GG

where A > 0 is the angle between the true gradient and the
estimator. The geometric constraints of interestedi@ and

¢ 1 G. The deviation from ideal geometry is quantified by
the angles between the error-free unit vectay that fulfills

the constraints exactly, and the unit vecéahat is actually
used in the analysis:

Coss =Cos/(e,e,) =é-é, . (C3)

eigenvalues of the volumetric tensor which differs from the The deviations from the ideal geometry considered here are

position tensor by a constant factor, and ti®4® =0 im-
plies 1-/R®/R@ =1, so the concept of planarity cannot
be applied here. Witll. , and E,, defined that way, the non-
zero eigenvalues of the position tensor &€ = ij and
R® =L2(1—E,)? Since in the three-spacecraft plafe
the producRQ is the identity operation, the non-zero eigen-
values ofQ are Y =1/R® =12 and 0@ =1/R? =
L,%(1—E,)~2 We finally write the trace of the planar re-
ciprocal tensor in terms of the parametérsandE ), as fol-

lows:
#( )
1+ .

12
Ly

1

—0oW @ _
traceQ) = 0 + 0® = A5

(B25)

assumed to be smal:« 1.
True gradient and estimator are decomposed into planar
and normal components:
G=G,+G,=G,+G,n,
G=G,+G,=G,+G,h .

(C4)
(C5)
Since in this section we are concerned with the quality of the

normal gradient estimate, we assume that the planar compo-
nent of the gradient is known exactly:

For the mean square error of the planar gradient magnitude

we obtain

1
(1-E))?

(8p8)?
2
L[’

(|6V,8[) = (B26)

()
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G,=G,, (C6)
and write the normal component in the form
Gn = Gn(1+ V) (C7)

wherev quantifies the relative deviation of the normal gradi-
ent estimator from its true value. Itis straightforward to show
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that to lowest order i < 1, the relative error in magnitude thusv = ¢-(siny cosy) 1. With G,/ G = cosy andG,/G =

and the directional mismatch are given by siny we get
8G G2 8G G2 co
°“ En ) I (C19)
G G2 G G2 siny
. GGy , G,G
SINA =~ V=GZ |- (C9)  sinA~|v gzn =c. (C20)

Here and in the following the symbok=" indicates that  The magnitude estimate is most susceptible to erroésifin
higher-order contributions in or ¢ are neglected. y is small, i.e., if the true gradient is close to the normal
The coordinate system is chosen such that the true gradienfirection. To lowest order i, the magnitude estimate is
points into thez-direction, and the normal unit vectdris in - rather robust if the gradient is close to the three-spacecraft

the (x, z)-plane: plane, and the directional mismatch does not depend an
o all.
G =0z, (C10) Case (b) yields
i =sinyx+cosyz. (C11)
- 1 1
- 2
The angle betwee6 andr is y. The components of the true Gn =Gy (1_8 [5 + sirty D (C21)

gradient are
which givesy = —¢2[1/241/sirfy], and

G,=n-G=Gcosy , (C12)
G, = G,ii=Gcosysiny & +Gcosyz , (C13) 3G ~ —e2c02y [}+ .1 ] ’ (C22)
G, = G—G,=—Gsinycosy &+ Gsiy3 . (C14) 2 sirfy

siny 1 } . (C23)

The geometric constraii|G is studied first which means SINA =~ g?cosy [T +m
that the normal gradient estimator is given by
R o The expansions ia both lack the linear order which means
G = € Gp)en) (c15)  the corresponding estimates are more robust with respect to
|& x 7|2 uncertainties of the vectérin the direction perpendicular to
the plane spanned iy anda.

We cE)nS|der two types @fvariations around the exact vector Now we study the second type of geometric constraint,

€o=2 namely,e 1. G where the normal gradient estimator is given
(a) The unit vecto varies only in the £, z)-plane: by
~ -G
¢ =sine£ +cose? , (C16) Gn=——=" (C24)
i.e., in the plane spanned 6y anda. As before we distinguish two types éfvariations around
the exact vector which now resides somewhere in the)¢
(b) The unit vectoe varies only in the {, z)-plane: plane:
é=siney+cosz, (C17) €o=COoSpX +singy . (C25)
o o . Here¢ is the angle betweef, and thex-axis.
i.e., in the direction perpendicular to the plane spanned
by G andn. (c) The unit vecto varies only in the X, y)-plane:
We have to evaluate the scalar produets, arld ¢ as 6 =cotp+6)R+SiNG+6)7 (C26)
well as the square modulus of the cross prodect nn]< in
terms of the anglesandy, then expand the resulting expres- e inthe ol dicular @
sions ine « 1 and neglect terms of higher than the leading I.€., Inhe plane perpendicular .
order. .Smce the calculations are stra|ghtf_orward, details €aN(4) The unit vectoi varies only in the:-direction:
be omitted, and only the end results are given.
For case (a) we obtain € =C0SCOSHX +COESING y+Sinez . (c27)
Gn =G <1+ siny COS)/) =Gn(1+4v) (C18) i.e., in the direction parallel t6.
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