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ABSTRACT
Many bacterial effector proteins that are delivered to host cells during infection
are enzymes targeting host cell signalling. Recently, Legionella pneumophila effector
Lpg1137 was experimentally characterised as a serine protease that cleaves human
syntaxin 17. We present strong bioinformatic evidence that Lpg1137 is a homologue
of mitochondrial carrier proteins and is not related to known serine proteases. We
also discuss how this finding can be reconciled with the apparently contradictory
experimental results.
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INTRODUCTION
Legionella pneumophila is an intracellular pathogen that causes a deadly respiratory
infection called Legionnaire’s disease. It typically infects amoebae, but can also enter
human alveolar macrophages and proliferate within so-called Legionella-containing
vacuoles (LCV) that are derived from the endoplasmic reticulum (Eisenreich & Heuner,
2016). To evade cellular defenses, for example to prevent the fusion of LCV with lysozymes,
L. pneumophila and related species produce large repertoires of effectors that rewire
host cell signalling (Burstein et al., 2016; Isaac & Isberg, 2014). A typical L. pneumophila
strain produces approximately 300 different effectors that target processes as diverse as
transcription and translation (Rolando & Buchrieser, 2014), and lipid (Viner et al., 2012),
ubiquitin (Zhou & Zhu, 2015) and kinase signalling (Haenssler & Isberg, 2011).Many, if not
the majority of bacterial effectors are distant homologues (Alto & Orth, 2012) or mimics
of eukaryotic proteins (Shi et al., 2016).

The majority of Legionella effectors are experimentally uncharacterised, and a large
fraction also remain unannotated despite large-scale bioinformatic endeavours. Such
uncharacterised proteins evading function and structure prediction by automated
bioinformatic pipelines can still be in many cases characterised in silico by careful
application of diverse computational methods (Pawlowski, 2008). Effectors often turn out
to be remote homologues of eukaryotic proteins, some harbouring well-known signalling
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domains, such as kinases (Dong et al., 2016) or proteases (Liu et al., 2017). Among the
Legionella enzyme effectors, there are many cysteine proteases and metalloproteases, but
very few serine proteases to date (Burstein et al., 2016).

Human Syntaxin 17 (Stx17) is a SNARE (soluble N-ethylmaleimide-sensitive factor
attachment protein (SNAP) receptor) that localizes to endoplasmic reticulum (ER)-
mitochondria contact sites. It performs diverse functions such as promoting mitochondrial
fission and regulating ER Ca2+ homeostasis (Arasaki et al., 2015). Recently, it was reported
that Stx17 is cleaved upon L. pneumophila infection, and that the cleavage depends on
the presence of one of the multitude of as yet uncharacterised L. pneumophila effectors,
Lpg1137(Arasaki et al., 2017). Further, this event ‘‘shuts down’’ communication between
the ER and mitochondria.

Here, after an in-depth bioinformatic investigation, and unexpectedly for us, we
can present strong bioinformatic evidence that Lpg1137 is actually a homologue of
mitochondrial carrier proteins and is not related to known serine proteases.

METHODS
In order to explore possible distant sequence similarities of Lpg1137 to proteins of known
structures, three established structural bioinformatic tools were used: FFAS03 (Jaroszewski
et al., 2011), HHpred (Hildebrand et al., 2009) and Phyre2 (Bennett-Lovsey et al., 2008)
with standard parameters and significance thresholds. The Phyre2 server was also used
to build the three-dimensional structure model that was later visualized using Chimera
software (Yang et al., 2012).

The multiple sequence alignment of mitochondrial carriers (MCs) and Lpg1137
homologues was built using the Muscle program (Edgar, 2004), and the sequence logos
were created using the WebLogo server(Crooks et al., 2004).

For visual clustering of sequences, the CLANS algorithm (Frickey & Lupas, 2004)
was applied to a set of representative sequences of MC pseudorepeats. The set was
obtained by submitting three aligned MC pseudorepeats from the lncP protein (Refseq ID:
WP_02722450, motifs defined by the Pfam database family Mito_carr, PF00153) (Finn et
al., 2016) to two iterations of Jackhmmer search on the Uniprot database and by clustering
with CD-HIT at a 35% sequence identity threshold (Huang et al., 2010). Then, the set was
augmented by a set of homologues of Lpg1137 obtained from a Jackhmmer search (Finn,
Clements & Eddy, 2011). CLANS was run with standard parameters using BLOSUM45
substitution matrix. For the graph, similarity relations with BLAST HSPs up to E-values of
1 were considered in order to visualize even distant similarities.

RESULTS AND DISCUSSION
Initially, the report by Arasaki and co-workers (Arasaki et al., 2017) of a novel effector
serine protease prompted us to undertake sequence exploration with the expectation of
finding more similar effector proteases. In a recent bioinformatic exploration of Legionella
effectors, Lpg1137 homologues were found in 16 out of 41 species studied, making it a
relatively widespread effector (Burstein et al., 2016). Although a Blast sequence search did
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Table 1 Top structure predictions for Lpg1137.

Bioinformatic tool for
structure prediction

Top hit: PDB code, name Statistical significance
for top hit

Region of Lpg1137
aligned to the hit

Sequence identity
in the alignment

FFAS03 2lck, Mitochondrial uncoupling protein 2
[Mus musculus]

Z -score=−45.6 32−294 11%

HHpred 1okc, ADP, ATP carrier protein [Bos taurus] E-value= 9.9e−35 25−290 12%
Phyre2 4c9q, mitochondrial adp/atp carrier isoform

32 [yeast]
Confidence= 89.3 33−294 14%

not yield any obvious Lpg1137 homologues outside the Legionella and Fluoribacter genera,
to our surprise, three independent bioinformatic tools for remote sequence similarity
recognition (FFAS03, Phyre2, HHpred) indicated statistically significant similarity of
Lpg1137 to mitochondrial carrier proteins (MCs, also known in mammals as solute carrier
family 25, SLC25; see Table 1). The broad region of sequence similarity between Lpg1137
and the carrier proteins suggests it is likely that Lpg1137 forms a standard MC structure
with a pseudo-threefold symmetry with six transmembrane helices (Nury et al., 2006;
Pebay-Peyroula et al., 2003). The three sequence repeats, albeit not obvious to the eye, are
visible upon inspection of an HHpred alignment to a MC structure (see Fig. 1). Sequence
logos of the repeats in homologues of Lpg1137, compared to sequence logo of the eukaryotic
mitochondrial carriers (See Figs. 2A, 2B respectively) support the structural similarity by
highlighting the conservation of structurally important Pro and Gly residues (e.g., Pro at
positions 15 and 239 in the logos or the YxG motif at positions 45–47). These prolines
and glycines are among the most conserved residues among the MC proteins (Wohlrab,
2005). Since the logos were created from an unbiased common sequence alignment of the
Lpg1137 homologues and the eukaryotic mitochondrial carriers, the conservation of these
residues is noteworthy.

The finding of Lpg1137 similarity to mitochondrial carriers raises the obvious question:
how can this be rationalized, given the convincing experimental data by Arasaki et al.?
Actually, what these authors have shown is that the presence of the L. pneumophila Lpg1137
protein in transfected HeLa cells resulted in the cleavage of host syntaxin 17 (Stx17).
They have also demonstrated that this cleavage is not observed when Ser68 of Lpg1137
(hypothesized to be the catalytic residue) is mutated to alanine or when a serine protease
inhibitor is applied. However, the following scenario could be at play. Lpg1137, likely
located in the mitochondrial inner membrane as reported by Arasaki et al. may activate an
undisclosed serine protease, either directly, e.g., by physical interaction, or indirectly, e.g.,
by providing a required concentration of a small molecule it may be transporting, e.g., ATP.
Allosteric activation of proteases is a known mechanism, described for cysteine proteases
and serine proteases alike, and it may involve binding small molecules, dimerization, or
binding of an accessory protein (Arutyunova et al., 2014; De Regt et al., 2015; Lupardus et
al., 2008; Zuhlsdorf et al., 2015). Such amode of activation would explain the dependence of
Stx17 cleavage on the presence of Lpg1137 and on serine protease inhibitors. Alternatively,
interaction with Lpg1137 may make syntaxin 17 prone to cleavage. The cleavage might be
executed by an endogenous host protease or by an effector protease. However, experiments,
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Figure 1 Protein sequence alignment between Lpg1137 (top, marked as Q5ZWE8) and bovine ADP,
ATP carrier protein (bottom, marked as d1okca) obtained from the HHpred server. Predicted (ss_pred)
and actual (ss_dssp) secondary structures shown: H-alpha helix, E-extended (beta strand), C-coil. Green
triangles denote approximate borders of the three sequence repeats.

not bioinformatic predictions, should provide the definitive answer as to the functional
identity of the Lpg1137 proteins.

Assuming the mitochondrial carrier prediction is correct, our bioinformatic analysis
does not allow at this stage the prediction of detailed molecular function for Lpg1137. The
known mitochondrial carriers exhibit great functional variability by transporting many
diverse solutes (Palmieri & Monne, 2016). The sequence features of Lpg1137 and close
homologs in the functionally important regions, e.g., the MC selectivity filter (Nury et al.,
2006), do not permit it to be ascribed with confidence to any of the carrier subfamilies.
Also, we cannot exclude that Lpg1137 might be a ‘‘pseudo-carrier’’, a carrier-like molecule
lacking carrier activity.

Identification of Lpg1137’s similarity to MCs allows the building of a model of its
three-dimensional structure. Given the model, the special role of Ser68 can be addressed.
In the structure model (see Fig. 3), this residue is located exposed in a loop region inside
the mitochondrial matrix (or other organelle in whose membrane Lpg1137 might locate).
Of note, S68 is not conserved among Lpg1137 close homologs, as would have been
expected were it the catalytic residue (see Fig. 2). Thus, Ser68 might be mediating Lpg1137
interactions with other molecules or with Stx17 itself, which may be of importance for the
downstream cleavage of Stx17.
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Figure 2 Sequence logos created from a combinedMuscle alignment for Lpg1137 homologues (A) and human SLCmitochondrial carriers
(B). Ser68 in Lpg1137 is located in column 125 of the sequence logo (red arrow). The Weblogo server was used (Crooks et al., 2004). The following
residues are also shown in the structure model (Fig. 3): P15, G47, G175, P239 (numbering indicating positions in the sequence logo).

Based on our data, it appears less likely that Lpg1137 is itself a serine protease, as
advocated by Arasaki et al. This would signify a very unique evolutionary appearance of
a catalytic function on a carrier-like protein. Such a scenario appears to be supported
by one experiment (Arasaki et al., 2017) (see Fig. 3E in the Arasaki et al. paper) which is
interpreted as showing protease activity of recombinant Lpg1137. The Western blot does
not show the appearance of lower molecular mass species of the cleaved protein. Also, this
result is shown without replication and is not quantitative.

The sequence motif G-L-S-G-G around Ser68 in Lpg1137 is described by Arasaki et al.
as the occurrence of a generic motif G-X-S-X-[GA] which bears superficial similarity to
the partial catalytic signature of a serine protease active site. However, the rest of the classic
serine protease catalytic triad (Ser-His-Asp) is not mentioned by those authors nor was it
detected by us (Arasaki et al., 2017). According to the Merops database, serine proteases
can be grouped in 12 clans divided into 36 families (Rawlings, Barrett & Finn, 2016). In one
of the best studied families, trypsin, the active site serine is located in a conserved motif,
G-[DNE]-S-G-[GS]-[PAST]. PrositeScan analysis (Gattiker, Gasteiger & Bairoch, 2002)
indicates that the generic motif G-X-S-X-[GA] is non-specific and is very often found in
randomised sequence databases (1,496 matches on a sample of 5,000 Swiss-Prot shuffled
sequences). Thus, a motif that occurs in every third random sequence is unlikely to be a
sign of a functional site. The precise motif surrounding Ser68 in Lpg1137 (G-L-S-G-G)
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Figure 3 Three-dimensional structure model for Lpg1137. The three pseudorepeats indicated by color:
green (1st), cyan (2nd) and dark blue (3rd). Serine 68 shown. Also, selected conserved residues shown:
P48 (15), G78 (47), G166 (175), P217 (239), numbering in parentheses indicates positions in the sequence
logo. Model obtained from the Phyre2 server using Protein Data Bank structure 4c9q (chain B) as tem-
plate. Intermembrane space is on the top, mitochondrial matrix—on the bottom.

can be found in 1,235 sequences from the SwissProt database. However, only two of these
are annotated as serine proteases. Therefore, the lack of recognizable His and Asp active
site motifs and the poor specificity of the Ser68 motif make the similarity of Lpg1137 to
known serine proteases doubtful.

When CLANS, the sequence similarity-based clustering algorithm, is applied to the set
of Lpg1137 homologues and a representative set of MC repeats (see Fig. 4), it is obvious
that the three sequence repeats of Lpg1137 are very distant from each other and from the
rest of MC repeats. Indeed, in this analysis, all the eukaryotic MC repeats group in a single
central cluster, while Lpg1137 repeats are located in distant outlier clusters.

Recently, another mitochondrial carrier L. pneumophila effector has been studied,
lncP/LLO_1924 (Dolezal et al., 2012). This effector is somewhat less widespread in
Legionellas than Lpg1137, and is found in 7 out of 41 genomes studied in the recent
Burstein paper (Burstein et al., 2016). However, the lncP protein is only remotely similar to
Lpg1137 (9% sequence identity in a FFAS03 sequence alignment with a significant Zscore
equaling −41, see also Fig. 4). The role of lncP in infection is not clear; however, lncP can
catalyze ATP efflux from mitochondria in infected cells (Dolezal et al., 2012).

Bacterial homologues of eukaryotic mitochondrial carriers are found in a handful of
bacterial strains, usually infectious ones, including a few Chlamydiales, Rickettsiales and
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Figure 4 CLANS graph visualizing PSI-BLAST-detected sequence similarities between repeats of mi-
tochondrial carrier proteins (Pfam: Mito_carr). The points represent sequences, and distances reflect
the sequence dissimilarities. Black: eukaryotic repeats; red: viral repeats (Pfam); orange: bacterial repeats
(Pfam); green: Lpg1137 homologues, 1st repeats; cyan: Lpg1137 homologues, 2nd repeats; dark blue:
Lpg1137 homologues, 3rd repeats, magenta: L. pneumophilaMC effector lncP (Dolezal et al., 2012).
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Legionellales (Pfam family Mito_carr, PF00153). These proteins have been hypothesized to
be the results of horizontal gene transfer from eukaryotes and to be involved in infection
(Dolezal et al., 2012). Lpg1137 is only a very distant homologue of those annotated bacterial
MC proteins and the eukaryotic MC proteins (see Fig. 4) with the middle sequence repeat
being most divergent.

CONCLUSION
We present strong bioinformatic evidence that Lpg1137 is a mitochondrial carrier-like
protein, a very distant homologue of SLC25 carriers. Nevertheless, current bioinformatic
study does not constitute a proof that Lpg1137 is not a protease. What we present is
strong evidence that Lpg1137 is not a homologue of known proteases, but rather a distant
homologue of mitochondrial carriers. Building on the results of Arasaki et al., future
experimental studies should include the solving of the three-dimensional structure of the
protein and should cast light on its detailed function: be it proteolysis, small molecule
transport across mitochondrial or other membrane, modulation of the activity of other
MC proteins by oligomerization, or be it yet another role.
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