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ABSTRACT

The full-physics adjoint of the Florida State University Global Spectral Model at resolution T42L12 is applied
to carry out parameter estimation using an initialized analysis dataset. The three parameters, that is, the biharmonic
horizontal diffusion coefficient, the ratio of the transfer coefficient of moisture to the transfer coefficient of
sensible heat, and the Asselin filter coefficient, as well as the initial condition, are optimally recovered from the
dataset using adjoint parameter estimation.

The fields at the end of the assimilation window starting from the retrieved optimal initial conditions and the
optimally identified parameter values successfully capture the main features of the analysis fields. A number of
experiments are conducted to assess the effect of carrying out 4D Var assimilation on both the initial conditions
and parameters, versus the effect of optimally estimating only the parameters. A positive impact on the ensuing
forecasts due to each optimally identified parameter value is observed, while the maximum benefit is obtained
from the combined effect of both parameter estimation and initial condition optimization. The results also show
that during the ensuing forecasts, the model tends to “‘lose’” the impact of the optimal initial condition first,
while the positive impact of the optimally identified parameter values persists beyond 72 h. Moreover, the authors

notice that their regional impacts are quite different.

1. Introduction

A numerical weather forecast model involves a num-
ber of parameters that are determined empirically. Some
of these parameters, which are very common in physical
parameterization schemes, contain information about
the flow’s properties and characteristics or originate
from the simplification of the physical parameteriza-
tions. Other parameters are introduced due to numerical
stability considerations. The values of the parameters
directly or indirectly impact upon the performance of
the model. Generally, the values of some parametersare
determined by trial and error; that is, there is no ob-
jective criterion to choose “‘ optimal’ values of the pa-
rameters. In this study, we will focus on the optimal
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estimation of several parameters that are known to im-
pact the performance of a numerical weather prediction
(NWP) model. Namely, we wish to identify the optimal
biharmonic horizontal diffusion coefficient «, the ratio
v of the transfer coefficient of moisture to the transfer
coefficient of sensible heat, and the Asselin filter co-
efficient e using adjoint parameter estimation and study
how such optimized parameters impact on the ensuing
model forecasts.

The parameter estimation procedure is aimed at
choosing an optimal parameter in an admissible param-
eter set, so that the model solutions corresponding to
this parameter fit the observations as a minimization
problem of an output-error criterion (Chavent 1974).
Research on adjoint parameter estimation has been car-
ried out using relatively simple models in the last 20
years, first on topics such as aquifer behavior under
transient and steady-state conditions in the field of hy-
drology (Carrera and Neumann 1986a—), bottom drag
coefficient identification in a tidal channel (Panchang
and O'Brien 1990), wind stress coefficient estimation
along with the estimation of the oceanic eddy viscosity
profile (Yu and O’ Brien 1991), and nudging coefficient
estimation in the National Meteorological Center [now
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known as the National Centers for Environmental Pre-
diction (NCEP)] adiabatic version of the spectral model
(Zou et al. 1992a), and others. The issue of the adjoint
parameter estimation was also addressed by LeDimet
and Navon (1988). Wergen (1992) recovered both the
initial conditions and a set of parameters from obser-
vations using a 1D shallow-water equation model. His
results showed that even with noisy observations, the
parameters were recovered to an acceptable degree of
accuracy. For a detailed survey of the state of the art
of parameter estimation in meteorology and oceanog-
raphy, see Navon (1998). However, very few numerical
experiments have been conducted using a sophisticated
full-physics model, and very little attention has been
paid to the impact of the parameter estimation on the
the model forecast although the performances of the
physical parameterization and/or numerical schemesare
also a main factor in determining the model forecast
skill. Recently, more and more effort has been focused
onimproving theinitial condition (Thépaut and Courtier
1991; Navon et a. 1992), and its important impact on
reducing the forecast error has been demonstrated. What
is the effect of the parameter estimation on the model
compared to that of the initial condition? In this study,
we intend to explore this question and expect that the
performances of the physical parameterization and/or
numerical schemes can be improved by tuning the pa-
rameters involved.

This paper is organized as follows: the model used
and the characteristics of the parametersto be optimally
identified are described in section 2. The methodol ogy
of adjoint parameter estimation is presented in section
3. The detailed parameter estimation procedure, along
with the minimization algorithm and the optimal pa
rameter values, are provided in section 4. Section 5
provides the description of the forecast experiments and
results using both the optimal initial condition and the
optimally identified parameter values. Section 6 de-
scribes the impact of the optimal parameters alone on
ensuing 24-h forecasts. The model’s ‘““memory” (in
terms of ensuing forecast period results) of the impact
of either the optimal initial condition or the optimal
parameter valuesis discussed in section 7. Finally, sum-
mary and future research are presented in section 8.

2. The model and characteristics of the
parameters

The full-physics Florida State University Global
Spectral Model (FSU GSM) (Krishnamurti and Dignon
1988) and its adjoint model are employed to recover
both the optimal initial condition and optimal parameter
values from the observations. The FSU GSM has been
successfully applied for numerical weather forecasts,
especially for the Tropics. The model isamultilevel (12
vertical levels) primitive equation model with o coor-
dinate. All variables are expanded horizontally in atrun-
cated series of spherical harmonic functions (at reso-
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lution T42) and the transform technique is applied,
which makes it possible and efficient to perform the
horizontal operators and to calculate the physical pro-
cesses in real space. The finite difference schemes in
the vertical and semi-implicit scheme for time integra-
tion are employed. The full physical packages include
orography, planetary boundary layer, dry adjustment,
large-scale precipitation, moist-convection, horizontal
diffusion, and radiation processes.

The effort to establish a 4D variational (4D Var) data
assimilation system for the FSU GSM was initiated in
1993. The adjoint code of the dry-adiabatic version of
the FSU GSM was developed by Wang (1993). Later,
Tsuyuki (1996) incorporated moisture variables, the
smoothed parameterization of moist processes, horizon-
tal diffusion, and a simplified surface friction. We con-
tinued their efforts by incorporating radiation and plan-
etary boundary layer (including vertical diffusion) pro-
cesses into the 4D Var data assimilation system due to
theimportant rolesthey play in simulating variouslarge-
scale and mesoscale phenomena, especialy in tropical
weather systems, thus obtaining the full-physics adjoint
model (Zhu and Navon 1997). This effort renders the
adjoint model consistent with the nonlinear forecast
model. If the two models (the forward model and its
adjoint) are inconsistent, this may imply a negative im-
pact on the process of adjoint optimal parameter esti-
mation.

The horizontal diffusion term is usually incorporated
in anumerical weather prediction model to parameterize
the effects of motions on the unresolved scales and to
inhibit spectral blocking, that is, the growth of small
scales in the dynamic model variables due to the ac-
cumulation of energy at high wavenumbers. It is also
employed to eliminate the aliasing effect (Phillips 1959;
Hamming 1973). The presence of any dissipation, phys-
ical or computational, can attenuate the amplitude of
the short wavelengths very significantly; in this case,
the errors introduced by aliasing are minimal. Mac-
Vean's study (1983) showed that, without dissipation,
integrations exhibited grossly physically unrealistic fea-
tures after about several days even with very high mesh
resolution, indicating the crucial role played by the dis-
sipation in nonlinear baroclinic development. Consid-
erable effort has been made by various groups in tuning
the dissipation parameterizations in their general cir-
culation or forecast models. For instance, Phillips
(1956), Lilly (1965), Leith (1965), and Richard and Ger-
man (1965), among others, applied the eddy diffusion
termsin their numerical models; Navon (1969) included
the lateral viscosity in a two-level general circulation
model and carried out a 62-day integration, comparing
its impact to that of using the Matsuno dissipative
scheme. Kanamitsu et al. (1983, 1989) and Gordon and
Stern (1982) employed a biharmonic horizontal diffu-
sion in their experiments. Presently, the biharmonic hor-
izontal diffusion is used worldwide in NWP models due
to its better scale selectivity. Its limitation is the lack
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of a sound physical foundation. Some other horizontal
diffusion schemes are also used, such as the scheme
developed by Leith (1971) based on turbulence theory,
which is now implemented in the NCEP spectral model
(Kanamitsu et al. 1991).

The biharmonic horizontal diffusion «V# is used for
vorticity, divergence, dewpoint depression, and virtual
temperature in the FSU GSM to selectively control small-
scale noise without affecting large scales. The e-folding
diffusive decay time at total wavenumber n is given by

1 a*

(") kn2(n + 1)2’ )
where a is the radius of the earth. The physical signif-
icance of the diffusion coefficient « is not directly in-
tuitive. Its effect may be understood in terms of the
timescale T at the smallest spatial scale resolved. The
model dissipation should remove energy from the end
of the spectrum at arate sufficient to prevent a spurious
accumulation of energy there, while not affecting the
medium and large scales. In the Geophysical Fluid Dy-
namics Laboratory spectral model, the coefficients of
the eddy diffusion for V# are determined by trial and
error, using the quality of the medium-range 500-mb
geopotential height forecast as a criterion (Gorden and
Stern 1982). The value they used is1 X 10* m2 st or
2.5 X 10* m2 st for T30, that is, avalue of T of about
53 or 21 h [based on Eq. (1)]. The value used in FSU
Global Spectral Model T42 is6 X 10 m? s72, that is,
yielding a value of 7 corresponding to about 23 h.

In addition to the spatia diffusion, filters are also
commonly used in numerical models to remove high-
frequency noise that cannot be resolved at the given
model resolution. In the FSU GSM, a supplementary
time filter of the form

F(t) = F(t) + F(t — 1) — 2F(t) + F(t + 1)]

is used. The characteristics of this filter are described
in detail by Asselin (1972). With an adequately chosen
coefficient e, this filter damps the spurious computa-
tional frequencies and a significant part of the spectrum
of the external and internal gravity waves. The Rossby
motions of comparable horizontal dimensions are much
less affected due to their low frequency. This filter with
e = 0.25 removes or filters 2At waves and reduces the
amplitude of 4At waves by one-half, but has little effect
on longer-period waves; that is, it acts as a low-pass
filter in time. However, despite the advantage of im-
mediately suppressing the 2At wave, values of e less
than 0.25 are preferable since the stability condition
requires aprogressively smaller At as e increases. More-
over, repeated use of even aweak filter eventually damp-
ens the lower frequencies (Haltiner and Williams 1980).
Skamarock and Klemp (1992) discussed how the As-
selin filter affected stability for a nonhydrostatic model.
Robert (1966) used this filter in a general circulation
primitive equation spectral model with centered differ-
ences to control instability. The values he used are € =
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0.02 and At = 20 min. A number of experiments carried
out by Krishnamurti showed that e = 0.05 is the best
value for the Asselin filter for the model forecast. We
will carry out an optimal parameter estimation experi-
ment to obtain the optimal value of e in this study. The
lower bound of e is set to be zero, whileits upper bound
is set to be 0.1.

The third parameter we consider is the ratio vy of the
transfer coefficient of moistureto the transfer coefficient
of sensible heat, which arises from the parameterization
of the surface fluxes in the boundary layer. Accurate
heat and moisture flux parameterizations are very im-
portant since the surface heat and moisture fluxes exert
a strong influence on the surface energy budget and
precipitation rate. Similarity theory has successfully
provided a framework for the description of the atmo-
sphere surface layer, the lowest 50 m or so of the bound-
ary layer where the Coriolis force can be ignored and
the fluxes can be assumed to be constant with height.
The flux profiles and other properties of the flow are
reasonably parameterized viathistheory. However, cer-
tain empirical parameters or constants evolving from
the theory need to be determined by experiments, for
instance, the von Karman constant and constants as-
sociated with the stability dependence of the flux-profile
formulations. In this study, however, our goal is not to
determine the parameter values from physical sound-
ness. We will instead aim to obtain an optimal value of
v for this particular model via a variational parameter
identification approach in order to improve the model
forecast skill. Dyer (1967) found that, over the range
of the ratio of height z to the Monin—Obukhov length
L (0.02 < |z/L| < 0.6) both the transfer coefficient of
sensible heat ¢, and the transfer coefficient of moisture
¢, varied approximately as |z/L|~*3; for [z/L| > 0.2, ¢,
isfound to vary as |z/L|~¥?, but insufficient data limited
the value of the corresponding analysis for ¢ . Since
reasonable agreement is found between the ¢, and ¢,
data, many numerical weather prediction models adopt
a simple relationship of the type ¢, = ¢; that is, y
= 1.0. Recently, Smith et al. (1996) reviewed the 25
years of progress on air—sea fluxes. Theory and obser-
vations indicate that the ratio should depend on the sur-
face characteristics. However, since the ratio is consid-
ered as a constant in the original FSU GSM and also
numerical experience with the model shows that the
model tends to produce larger precipitation, we will still
take the parameter as a constant and set its upper and
lower bounds to be 1.8 and 0.3, respectively, in this
study. Its optimal value will be estimated via numerical
fitting of the model to the observations. The specifi-
cation of the y value directly impacts the moisture flux.
We expect to improve the performance of its corre-
sponding physical process by tuning this parameter.

3. The methodology of parameter estimation

In this study, we aim to perform optimal parameter
estimation via a variational approach, that is, to obtain
an optimal value «° of the parameter vector « such that
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Je°) < @) Ua,

where J is a cost function that measures the discrepancy
between the observations and the corresponding model
forecast variables. Hence, the optimal parameter can be
retrieved by fitting the model forecast fields to the ob-
servations.

Given constrained parameters whose values vary be-
tween certain bounds, for instance, when the parameter
o, satisfies «; [ [, b], where a and b denote the lower
and upper bounds, respectively, the cost function for
parameter estimation may assume the following form:

JX, a) = %fm (W(X — X93), (X — X°s)) dt

+ ATg(a), ()

where A is the penalty coefficient vector, W is the di-
agonal weighting matrix defined as in Navon et al.
(1992), () denotes spatial integration, X represents the
state variable vector, X" the observation vector, and t,
and t, denote the assimilation window. The second term
consists of a penalty function. The value of A is deter-
mined such that the penalty term is of the same order
of magnitude as the other terms in the cost function,
and g(«) is defined as

%(ai — by ifa=h
O(a) = 0 ifa, < a <b (©)]
[Q(ai —a)? ifg=a,

where g(«;) is a function only of the violated con-
straints. The first derivative of this function is

HI‘ —b if oy =h
a9, .
— =100 ifa<aq<h 4
da; U .
o —a if g =a.

Another type of penalty effective in transforming a
constrained optimization problem into an unconstrained
one is the barrier method, which imposes a penalty for
reaching the bound of an inequality constraint. Typi-
cally, alogarithmic barrier function is of the form

IX, @) = % J ’ (W(X — Xo), (X — X)) it

— wu' log(h(a)), ®)

where u isthe barrier coefficient and h is the constraint
function. The barrier methods are strictly feasible meth-
ods; that is, the iterates lie in the interior of the feasible
region and create a*‘ barrier”” to keep iterates away from
boundaries of the feasible region (Nash and Sofer 1996).

There are two different purposes for the inclusion of
the second term in Egs. (2) or (5). Oneisto ensure that
the retrieved parameter lies within the prescribed
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bounds. A penalty term of the form in Eq. (2) or a
logarithm of the box constraints asin Eq. (5) is efficient
to achieve this. The other purpose is to increase the
convexity of the cost function by adding apositivevalue
A to the Hessian matrix, thereby increasing its positive
definiteness.

Suppose that the forward model isperfect andisgiven
in the form

axX

i F(X, a, t). (6)

Its corresponding tangent linear model is defined as

36X _ [IF(X, e, 1) 5X + oF(X, a, 1) 5 7
o aX ey CE )

Then the adjoint model can be expressed in the form

P (0F(X, @, 1)
ot aX

where P represents the adjoint variables. The gradients
of the cost function with respect to the initial condition
and the parameter « are, respectively,

Vx,J = P(0) ©)

= [(oF\
- [z
o |\da

The adjoint model is of the same form as that where
only the initial condition is considered as the control
variable. Hence, the problem of parameter estimation
via the adjoint method does not result in an additional
computational effort when the number of parametersto
be estimated is small. We may expect that the parameter
estimation process will provide us with both optimally
determined parameters and initial condition simulta-
neously. The gradient of the cost function with respect
to both the initial condition and parameters is written as

V= (V,J, VI (11)

) P =W(X — X%), (8)

dt + AT

B o)
o

da

4. Parameter estimation procedure and results

In this study, the FSU Global Spectral Model and its
full-physics adjoint model are employed to optimally
identify the aforementioned three parameters separately
along with initial condition retrieval. An arbitrary ini-
tialized European Centre for Medium-Range Weather
Forecasts (ECMWF) analysis dataset is used in our
study. A 6-h assimilation window is used, that is, from
0000 to 0600 UTC 3 September 1996. The initialized
ECMWF analysis data at the beginning and end of the
assimilation window are taken as the observations dur-
ing the 6-h assimilation window period.

The parameter estimation procedure is carried out as
follows.

1) Take the 6-h forecast starting from the initialized
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Fic. 1. The divergence fields at 200 mb at 0000 UTC 3 Sep 1996: (a) the observation, (b) the
initial guess. The contour interval is 5.0 X 10-¢ s~*. Dashed values are negative.

analysisat 1800 UTC 2 September 1996 astheinitial
guess of the initial condition. Given a positive def-
initeinitial approximation to the inverse Hessian ma-
trix H, (generally taken as the identity matrix 1), we
integrate the full-physics FSU GSM 6 h and then
calculate the cost function using Eq. (2). The initia
guess of «, the penalty coefficient value A, and the
upper and lower bounds where the parameters may
vary are specified here.

Integrate the full-physics adjoint model of the FSU
GSM backward in time with null initial condition to
obtain the gradient of J with respect to the control
variable Y = (X,, @)T,

go = 9(Y) = (Vy J V,I)T,
and the search direction
do = —Hogo.

Generally, physical processes involve many on—off
switches that may introduce discontinuities in the
parameterization schemes. In the full-physicsadjoint
model of the FSU GSM, since we hope to keep the
original parameterization characteristics unchanged
as much as possible, only the discontinuities that
most impact the tangent linear approximation and
the convergence of the minimization algorithm are
considered for removal by using smooth function and
cubic spline interpolation (Zhu and Navon 1997).
Fork =0,1, 2, ..., mnimize J(Y, + B,d,) with
respect to 8 = O to obtain Y, as

Yier = Y + By,

where B, is a positive scalar, the step size being
obtained by aline search so as to satisfy a sufficient
rate of decrease (see Gill et al. 1981).

4) Compute the new gradient and search direction, re-
spectively,

Oi1 = VI(Viin) decr = —Hi10uia-

5) Check whether the solution converges. If the con-
vergence criterion

Gkl = € Max(L, [| Y. [l)

issatisfied, where €' is a user-supplied small number,
then the algorithm terminates with Y, ., as the op-
timal solution; otherwise go back to step 3.

The 6-h forecast from the initialized analysis at 1800
UTC 2 September 1996, which servesastheinitial guess
of theinitial condition, shows important underestimates
of the tropical divergence field, particularly in the Pa-
cific (Fig. 1).

The minimization procedure is terminated after 60
iterations. Although the convergence rate is expected to
be much slower than that of the adiabatic version, due
to the high nonlinearity of the model including the full
physical processes, a sufficient decreasein the cost func-
tion and its gradient for each experiment is achieved
after 60 iterations. At the end of the minimization pro-
cedure, both the optimal initial condition and optimal
value of the parameter are recovered.

The initial guess (estimated value) of the horizontal
diffusion coefficient « is taken to be 6 X 10 as used
routinely in the FSU GSM T42L 12. The penalty param-
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Fic. 2. The variation of the cost function and the gradient norm
with respect to the iteration number when both the optimal initial
condition and the biharmonic horizontal diffusion coefficient x are
retrieved.

eter A, for this parameter is taken to be 1.0 X 10-*2.
The upper and lower bounds where « varies are taken
to be 3.0 X 10, that is, five times the value used in
the original forecast model, and 2.0 X 10%°, respectively.
Thevariations of the cost function and the gradient norm
with respect to the number of iterations are presented
in Fig. 2. We see that the cost function decreases from
an initial value of 3643 to 575.3, that is, it decreasesto
about 15.8% of its original value, while the norm of the
gradient value decreases to 23.6% of its original value.
Figure 3 displays the evolution of the horizontal dif-
fusion coefficient during the minimization procedure.
This coefficient experiences a rapid increase until the
35th iteration, reaching its peak at the 44th iteration,
then experiences a slight decrease. The optimal value
obtained for the horizontal diffusion coefficient is
1.1124 X 10%. This value is almost twice the value
used in the original forecast model. We also notice that
the optimal parameter value is not very sensitive to the
value of A, as long as the penalty term is of the same
order of magnitude as the other terms in the cost func-
tion.
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Fic. 3. The evolution of the horizontal diffusion coefficient.

The issue of the sensitivity of the optimal parameters
values to the values of the penalty coefficients deserves
some attention. Research work by Craven and Wahba
(1979) and by Lewis and Grayson (1972) has shown
strong dependence of the analysis results on the spec-
ification of the penalty coefficients.

In our casethe optimal parameter values are not found
to be very sensitive to the value of the penalty coeffi-
cient as long as the penalty parameter attains a certain
threshold value.

To understand why this happens, one should consider
the basics of the penalty technique as a method to solve
a sequence of unconstrained optimization problems
whose solution is usually infeasible to the original con-
strained problem. A penalty for violation of the con-
straints is incurred and as this penalty is increased, the
iterates are forced toward the feasible region.

The experience of Zou et al. (1992b, 1993) in apply-
ing a penalty method for controlling gravity oscillations
in variational data assimilation shows that the effect of
the penalty parameter is ineffective until it attains a
threshold value. Thereafter it is effectivein constraining
the minimizers toward the feasible region and filtering
the gravity waves. Increasing the penalty parameters by
an order of magnitude or more over the threshold value
does not change this effect, but slows down the mini-
mization due to the ill-conditioning of the related Hes-
sian of the cost functional (see Nash and Sofer 1996;
Gill et al. 1981; Fletcher 1987).

A higher sensitivity of minimization results to the
value of the penalty parameter istypical for caseswhen,
from the start, the iterates are rather far from thefeasible
region and reaching the effective threshold value re-
quires several iterations.

In the present case we are from the starting point very
near to the feasible region, hence the perceived lack of
sensitivity of the optimal parameter values to the values
of the penalty coefficients when these attain their thresh-
old value. When we increase the penalty parameters
further (i.e., by an order of magnitude or more), there
is no perceived change except for a serious slowdown
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TABLE 1. Experiments designed to assess the impact of optimal parameter estimation.
Expt Initial condition Parameter value Integration (h)
C1l Initial guess Estimated value 6
Cc2 Initial guess Optimal value 6
o1 Optimal initial condition Estimated value 6
02 Optimal initial condition Optimal value 6
03 Optimal initial condition Estimated value 24
04 Optimal initial condition Optimal value 24

in the rate of convergence of the minimization due to
the aforementioned ill-conditioning.

Similar variations of the cost function and the gra-
dient norm with respect to the iteration number are ob-
tained when the ratio y and the Asselin filter coefficient
€ are retrieved from the observations, respectively. The
initial guess (estimated value) of the Asselin filter co-
efficient e is set to be 0.05, which is the value used in
the original forecast model. The upper and lower bounds
for the variation of this parameter are taken as 0.1 and
0.0, respectively, and the penalty parameter A, for this
parameter is set to be 1.0 X 108. The optimal € value
obtained is 0.0487, which is very close to the initial
guess, which meansthat either theinitial guessisafairly
good guess or the model is not very sensitive to the
parameter. Further study with the initial guess away
from 0.05 still yields the same result, which indicates
that the initial guess is fairly good. The initia guess
(estimated value) of theratio vy of the transfer coefficient
of moisture to the transfer coefficient of sensible heat
isinitialy set to be 1.0, which is the value used in the
original FSU GSM T42L12. The penalty parameter A,
for y is set to be 2.0 X 10°%, while the upper and lower
bounds where y may vary are taken to be 1.8 and 0.3,
respectively. The optimal parameter estimation for y
yields avalue of 0.4974, which isonly half of theinitial
guess value, due to numerical fitting of the model to
the observations. We should be aware that the optimal
value retrieved here includes the possibility of the com-
pensating for errors in the physical parameterization
schemes of the forecast model. It does not represent the
true physical value; it is only the optimal value for this
particular model for improving the model forecast.

5. Forecast experiments using both the retrieved
initial condition and parameters

a. Assessing the combined impact of the optimal
initial condition and parameter estimation

Three experiments are carried out to integrate the
model for 6 h in order to obtain the analysis fields at
the end of the assimilation window for the biharmonic
horizontal diffusion coefficient k, namely, 1) a control
experiment (i.e., experiment C1 in Table 1), which is
integrated from the initial guess fields, that is, 6-h fore-
cast from the 1800 UTC 2 September 1996 analysis,
and uses the estimated parameter k = 6 X 10%°; 2) the
optimal experiment (i.e., experiment O2 in Table 1), so

called since we are using both the optimal initial con-
dition and the optimal parameter value «; and 3) asim-
ulation experiment using the estimated parameter x =
6 X 10, where the model is integrated from the ini-
tialized 0000 UTC 3 September 1996 analysis to serve
as the best simulation without using variational data
assimilation. The differences between the control ex-
periment and the optimal experiment reflect the com-
bined impact of the optimal initial condition and the
optimal biharmonic horizontal diffusion coefficient pa-
rameter value.

The rms errors of the fields at the end of the assim-
ilation window are calculated for the aforementioned
experiments and are provided in Fig. 4. The results ob-
tained show that the optimal experiment yields the best
results throughout al of the vertical levels, especialy
for the divergence field. The rms errors of the logarithm
of the surface pressure are 0.140E—2, 0.939E—3, and
0.517E—3 for the control experiment, the simulation
experiment, and the optimal experiment, respectively.

Figure 5 presents the divergence analysisfields at 200
mb for the aforementioned experiments and the obser-
vation at the end of the assimilation, that is, 0600 UTC
3 September 1996. Only the optimal experiment suc-
cessfully provides a high quality analysis, capturing the
main features of the divergence field; both the control
experiment and the simulation experiment fail to sim-
ulate the strong divergence field corresponding to a
heavy precipitation event over Indonesia and overesti-
mate the divergence field to the west of Africa. The
control experiment also overestimates the divergence
field over northern Africa and underestimates the di-
vergence field around 35°S, 20°W, while the simulation
experiment overestimates the divergencefield to the east
of Australia

The difference fields of the specific humidity at 500
mb and of the temperature at 850 mb between theresults
of the aforementioned experiments and the observation
field at the end of the assimilation are displayed in Figs.
6 and 7. The improvement obtained from the optimal
experiment over the results obtained from the other ex-
periments is obvious, particularly over areas with large
Eerrors.

Figure 8 displays the rms errors of the meteorological
variables for the 24-h forecast control experiment and
optimal experiment (i.e., experiment O4 in Table 1) for
the biharmonic horizontal diffusion coefficient k. The
use of both the optimal initial condition and the param-
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Fic. 4. The rms errors of the vorticity, divergence, virtual temperature, and dewpoint depression
at the end of the assimilation window: solid line, the control experiment; dashed line, the simulation

experiment; dotted line, the optimal experiment.

eter value improves the 24-h forecast fields; however,
compared with Fig. 4, the differences between the con-
trol experiment and the optimal experiment decrease as
the forecast period increases.

Similar results are also obtained for the other two
parameters.

b. Assessing the impact of optimal parameter
estimation

In the previous sections, we recovered three pairs of
the optimal initial conditions and optimal values of sev-

eral model parameters, and discussed their combined
impact on the model forecast. An important question
remains to be clarified: how much of the improvement
obtained is directly attributable to the optimal initial
condition, and how much of it originates from the op-
timal values of the identified parameters. In order to
provide a closer look at this issue, three additional ex-
periments are performed to compare with the above-
mentioned 6-h forecast control experiment (referred to
as C1) and the optimal experiment (referred to as O2)
as well as with the 24-h forecast optimal experiment
(referred to as O4) for k. The additional experiments
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Fic. 5. The divergencefields at 200 mb at the end of the assimilation window: (a) the observation,
(b) the control experiment, (c) the simulation experiment, and (d) the optimal experiment, re-
spectively. The contour interval is 8.0 X 106 s

are experiment C2, in which the initial guess of the
initial condition and the optimally identified parameter
value are used, experiment O1, in which the optimal
initial condition and estimated parameter value are used,
and experiment O3, in which the optimal initial con-
dition and estimated parameter value are used (Table 1).

To assess the impact of the optimal parameter esti-

mation, we use the differences between the rms errors
at al vertical levels for vorticity, divergence, virtual
temperature, and dewpoint depression fields. The dif-
ference between experiments C1 and C2 reflects the
impact of the optimal parameter values on the forecast
when the optimal initial condition is not used, while the
differences between experiments O1 and O2, and be-



1506

MONTHLY WEATHER REVIEW

VoLumE 127

FiG. 6. The difference fields of specific humidity at 500 mb between the results of the following
three experiments and the observation at the end of the assimilation window: (a) the control
experiment, (b) the simulation experiment, and (c) the optimal experiment. The contour interval
is0.5 X 102 g/g.

tween experiments O3 and O4, reflect the impacts of
the optimal parameter value on the forecast when the
optimal initial condition is applied for the 6-h and 24-h
forecasts, respectively. If the difference is negative, it
means that the rms error of the experiment, in which
the optimally identified parameter value is used, is
smaller than the rms error of the experiment in which
the estimated parameter value is used. The differences
of the rms errors of the vorticity, divergence, virtual
temperature, and the dewpoint depression at the end of
the forecast between the experiment pairs C2 and Cl1,
02 and O1, and O4 and O3 are shown in Fig. 9. For
the pair C2 and C1, the rms differences are negative
except for the dewpoint depression at the lowest two
levels. This indicates a relatively small (compared to
the differences of the rms errors between C1 and O2)
but positive impact of the optimal parameter value on
the model simulation. Experiment O1 is comparable to

02 in terms of rms error, with the impact of the optimal
initial condition dominating that of the optimal param-
eter value at the end of the assimilation window. This
is very reasonable, since in the first few hours of the
forecast, the optimal initial condition may reconstruct
the dynamic structure while the optimal biharmonic hor-
izontal diffusion coefficient value can only adjust it.
However, the lower-level divergence fields are largely
improved in all of the pairs of experiments when the
optimal parameter value k is used. As the length of the
forecast period increases, the impact of the optimal pa-
rameter value on the model forecast becomes more pro-
nounced for the pair O3 and O4. Compared with Fig.
8, this result implies the known fact that the effect of
the optimal initial condition decays as the forecast pe-
riod becomes longer.

An additional experiment is conducted with the fixed
initial condition 0000 UTC 3 September 1996 and where
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Fic. 7. The difference fields of temperature at 850 mb between the results of the following three
experiments and the observation at the end of the assimilation window: (&) the control experiment,
(b) the simulation experiment, and (c) the optimal experiment. The contour interval is 1 K.

the parameter « is considered as the sole control vari-
able. An identical cost function and initial parameter
value to those used before are employed. The cost func-
tion reaches a constant value while the norm of gradient
decreases by three orders of magnitudein fiveiterations.
The optimal biharmonic horizontal diffusion coefficient
value obtained is 1.1946 X 10, which is very close
to that obtained when we recovered both the optimal
initial condition and the optimal parameter value. A
similar positive impact is observed when comparing the
forecasts using the estimated parameter value and the
optimal parameter value, respectively.

Similar experiments (related to the experiments de-
tailed in Table 1) are also conducted separately for the
parameters € and vy. Since the optimal value of Asselin
filter coefficient € is very close to its estimated value,
the impact of this parameter on the ensuing forecastsis
marginal. A positive impact of the optimal ratio y on
the forecasts is also observed while the impact of the

optimal initial condition isfound to be dominant during
the first several hours of the forecast.

6. Impact of the optimal parameters alone on
ensuing 24-h forecasts

A number of 24-h forecast experiments beginning
from the 0000 UTC 3 September 1996 analysis are per-
formed in order to examine the impact of each parameter
separately as well as the combined impact of all three
parameters on the ensuing forecast fields. The experi-
ments are (a) experiment with the estimated parameters,
that is, k = 6.0 X 10, e = 0.05, and y = 1.0; (b)
experiment with the estimated e and -y but the optimally
retrieved k value; (c) experiment with the estimated e
and « but the optimally retrieved y; and (d) experiment
using optimally retrieved k, €, and y simultaneously.
Since the optimal value of eisvery closeto itsestimated
value, the impact of this parameter is rather marginal.
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Fic. 8. The rms errors of the vorticity, divergence, virtual temperature, and dewpoint depression
at the end of the 24-h forecast: solid line, the control experiment; dotted line, the optimal experiment.

The rms errors of the vorticity, divergence, dewpoint
depression, and the virtual temperature fields at all ver-
tical levelsare calculated for the above experimentswith
respect to the analysis at 0000 UTC 4 September 1996.
Figure 10 displays the differences of the rms errors be-
tween experiments b and a, ¢ and a, d and a, which
indicate the impacts of optimal values of «, y, and their
combined impact, respectively. Negative values of the
rms differences indicate that the rms errors are less than
those of experiment a with the estimated parameter val-
ues; that is, the optimal parameter value has a positive
impact on the forecast.

The results show that the optimal horizontal diffusion
coefficient « impacts mainly the vorticity and diver-

gencefields, and also has apositiveimpact on the virtual
temperature and dewpoint depression at upper and mid-
dle levels but a negative impact at lower levels. On the
contrary, in experiment ¢ when only the optimal value
of y isemployed, the vorticity and divergencefieldsare
only slightly improved, but the middle and lower levels
of the virtual temperature and the lower levels of the
dewpoint depression experience a large improvement.
The effect of +y is mainly confined to the lower levels
of the model. The best forecasts are obtained by ex-
periment d, in which all the optimal parameters values
of k and € as well as y are used simultaneously. In this
sense, experiment d combines all of the advantages of
experiments b and c.
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7. A study of the model’s ““memory”’ of impact of
optimal initial condition and identified
parameter values

So far, we have studied either the combined impact
of both the optimal initial conditions and the optimal
parameter values or the impact of only the optimally
identified parameter values on the ensuing forecast. In
this section, we discuss the persistence (memory) of the
combined impact of the above-mentioned three opti-
mally identified parameter values as well as the optimal
initial condition obtained by variational data assimila-
tion on the ensuing forecast.

Three sets of experiments are carried out by inte-

grating the model for 24, 48, and 72 h, respectively,
from 0000 UTC 3 September 1996. The first set of
experiments (C1, C2, and C3) are control experiments
that are integrated from the initial guess of the initial
condition (i.e., the 6-h forecast from 1800 UTC 2 Sep-
tember 1996) using the estimated parameter values. The
second set of optimal parameter experiments (P1, P2,
and P3) start from the initial guess of the initial con-
dition using the optimally identified values of the above-
mentioned three parameters. The third set of optimal
initial condition experiments (11, 12, and 13) are inte-
grated from the variationally derived optimal initial con-
dition using estimated parameter values (Table 2).
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TABLE 2. Experiments carried out by integrating the model for 24, 48, and 72 h from 0000 UTC 3 Sep 1996, respectively.

Expt Initial condition Parameter values Length of forecast (h)
C1 Initial guess Estimated values 24
Cc2 Initial guess Estimated values 48
C3 Initial guess Estimated values 72
P1 Initial guess Optimal values 24
P2 Initial guess Optimal values 48
P3 Initial guess Optimal values 72
11 Optimal initial condition Estimated values 24
12 Optimal initial condition Estimated values 48
13 Optimal initial condition Estimated values 72
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Fic. 11. The percent differences of the rmserrors of the ensuing forecast fieldsvorticity, divergence,
virtual temperature, and the dewpoint depression between when the optimally identified parameter
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The rms errors of vorticity, divergence, virtual tem-
perature, and dewpoint depression fields are calculated
for each experiment, then the percentages of the dif-
ferences of the rms errors between C1 and P1, C2 and
P2, C3 and P3, C1 and I1, C2 and 12, and C3 and 13
are computed. The percentages of the decrease of rms
errors due to the use of the three optimally identified
parameter values are displayed in Fig. 11. The results
show that all of the experiments using optimally iden-
tified parameter values exhibit smaller rms errors than
those using estimated parameter values through all of
the vertical levels except for the virtual temperature at

the top vertical level of the model; that is, the combined
impact of the three identified parameter values still per-
sists for the 72-h forecast, and probably even further
beyond. The largest improvement in the 24-h forecast
occurs at the low levels of the dewpoint depression field
where the rms error decreases by up to 17%. The overall
forecast rms errorsfurther decreasefor the 48-h forecast.
Theimpacts of the optimally identified parameter values
on the vorticity field and on the middle levels of the
divergence, virtual temperature fieldsaswell asthe low-
er levels of the dewpoint depression field decay for the
72-h forecast compared to the results obtained with op-
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Fic. 12. The percent differences of the rms errors of the ensuing forecast fields vorticity, divergence,
virtual temperature, and the dewpoint depression between when the optimal initial condition is used
and when the initial guess of initial condition is used: solid line, 24-h forecast; long, short dashed
line, 48-h forecast; dot—dot—dashed line, 72-h forecast.

timal parameters for the corresponding 48-h forecast;
however, the rms errors still decrease by up to 10%
compared to the experiment where estimated parameters
are used for the same 72-h forecast.

The percentages of the decrease in rms errors for
vorticity, divergence, virtual temperature, and dewpoint
depression fields by using optimal initial condition are
presented in Fig. 12. A very clear trend is observed,
namely, the impact of the optimal initial condition de-
cays astheforecast time increases, especially theimpact
on the divergence field decays very rapidly. Thisisin
agreement with the results obtained in section 4. The

improvement of the forecast (in terms of rms errors)
due to the combined impact of the three optimally iden-
tified parameter values exceeds that obtained due to the
impact of the optimal initial condition in the ensuing
72-h forecast. Even for the 24-h forecast, the impact of
the three optimal parameter values on the lower level
of the dewpoint depression is larger than that of the
optimal initial condition. The model tendstofirst *‘lose”
the impact of the optimal initial condition in the ensuing
forecast, while the impact of using optimal parameters
on the above-mentioned forecast fieldslingers even after
72 h.
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Fic. 13. The histogram of vorticity rms errors for the optimal
parameter experiments (black bar) and optimal initial condition ex-
periments (gray bar).

Figures 13 and 14 show how the rms errors of vor-
ticity and dewpoint depression evolve with forecast
time, respectively, in which black bars are for the op-
timal parameter experiments (P1, P2, and P3) and gray
bars are for the optimal initial condition experiments
(11, 12, and 13). The results indicate that the errors of
the optimal initial condition experiment become larger
than those of the optimal parameter experiment at 72-h
forecast.

We would also like to point out that the mechanisms
of the impacts resulting from optimal initial condition
and from the optima parameter values are quite dif-
ferent. The impact of the optimally identified parameter
values is effective throughout the entire integration pe-
riod via the corresponding physical parameterization or
numerical schemes, while the impact of the optimal ini-
tial condition obtained via variational data assimilation
is to enhance the model forecast skill by reducing the
errors in the initial condition, which might lead to a
poor forecast. Therefore, their impacts are quite differ-
ent. Figure 15 displays the difference fields between
experiments C1, P1, and the analysis for specific hu-
midity at 850 mb, respectively, whilethe differencefield
of specific humidity at 850 mb between experiments C1
and P1 is displayed in Fig. 16. Comparing Figs. 15a
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Fic. 14. The histogram of dewpoint depression rms errors for the
optimal parameter experiments (black bar) and optimal initial con-
dition experiments (gray bar).

and 15b, we notice that they have almost the same pat-
tern, except that the positive differences between the
forecast and the analysis become smaller while the neg-
ative differences between the forecast and the analysis
become larger over most of the forecast area in exper-
iment P1 when the optimally identified parameter values
are used. That is to say, the use of the optimally iden-
tified parameter values tends to produce a smaller spe-
cific humidity forecast over most of the global domain,
since the optimal ratio of the transfer coefficient of the
moisture to the transfer coefficient of the sensible heat
isonly about half of its estimated value. Larger specific
humidity forecasts in experiment P1 than those in ex-
periment C1 are observed in only a few regions, such
as central South America, which might have been
caused by the impact of the optimal biharmonic hori-
zontal diffusion coefficient or by interactions between
the impacts of the three optimal parameter values. In
this case, the improvement due to the use of the opti-
mally identified parameter values is observed mainly
over the overestimated areas with respect to the analysis
(in experiment C1), which spread over the land. Figure
17 displaysthe difference fields of the specific humidity
at 500 mb between experiments C1, 11, and the analysis,
respectively. Experiment 11 in which the optimal initial
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Fic. 15. The difference fields between experiments (to be enu-
merated below) and the analysis for the specific humidity at 850 mb
as follows: (&) the control experiment C1, (b) expt P1. The contour
interval is 0.3 X 102 g/g.

condition is used, however, does not exhibit such fea-
tures as mentioned above, rather the improvement is
obtained both in underestimated and overestimated areas
compared with the result of experiment C1, especially
over areas of large errors.

It is also known that forecasts starting from the var-
iationally derived optimal initial conditions are not as
good as the forecasts starting from the latest available
analysis (Pu et a. 1997). However, we compare the
forecasts starting from 0600 UTC 3 September 1996
analysis (the latest available analysisin this study) using
both the estimated values of the above-mentioned three
parameters and the previously optimally identified pa-
rameter values, respectively. Similar improvements as
shown in Fig. 11 are observed. The optimally identified
values of the biharmonic horizontal diffusion coefficient
and the ratio of the transfer coefficient of the moisture
to the transfer coefficient of the sensible heat actually
improve the performance of the corresponding physical
parameterization and/or numerical schemes, so that their
impacts on the model forecast persist under similar
|large-scale atmospheric environment.

Finally, we present the anomaly correlation results
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FiG. 16. The differencefield of specific humidity at 850 mb between
expt C1 in which the estimated parameter values are used and expt
P1 in which the optimally identified parameter values are used. The
contour interval is 0.8 X 102 g/g.

for the specific humidity forecasts at 850 mb for the
control experiments, optimal parameter experiments,
and optimal initial condition experiments as well as the
experiments using both optimal initial conditions and
optimally identified parameter values. These anomaly

(b)

Fic. 17. The difference fields between experiments (to be enu-
merated below) and the analysis for the specific humidity at 500 mb
as follows: () the control experiment C1, (b) expt 11. The contour
interval is 0.8 X 102 g/g.
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Fic. 18. Anomaly correlation of the specific humidity forecasts at
850 mb for the control experiments (solid line), optimal parameter
experiments (dot—dot—dashed line), optimal initial condition experi-
ments (dotted line), and the experiments using both the optimal initial
condition and optimally identified parameter values (dashed line):
(top) tropical belt, (bottom) Northern Hemisphere.

correlations are measured both for the tropical belt [de-
fined here to be 40°S-40°N where physical initialization
is usually carried out (Krishnamurti 1991)] and for the
Northern Hemisphere (Fig. 18). The specific humidity
field, which is mainly distributed in the lower tropo-
sphere, is very important in the tropical system. Com-
paring Figs. 18a and 18b, we see that the anomaly cor-
relation for the Northern Hemisphere is consistently
higher than that for the tropical belt for the entire 5-day
integration period. The results of optimal initial con-
dition experiments appear to be more skillful than the
optimal parameter experimentsfor thefirst 24-h forecast
in the tropical belt and for the first 48-h forecasts in
Northern Hemisphere, respectively. However, later in
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the forecast (i.e., for the period 48-120 h), the optimal
parameter experiments yield better skill results than the
optimal initial condition experiments both inthetropical
belt and Northern Hemisphere. The experiments using
the optimal initial condition and optimally identified
parameter values simultaneously have the highest anom-
aly correlations, where for the 120-h forecast the anom-
aly correlation increases from 65.1% in the control ex-
periment to 70.7% for the tropical belt and from 72.5%
in the control experiment to 77.8% for the Northern
Hemisphere.

8. Summary and future research

In this study, we recovered both optimal initial con-
ditions and optimal values of the biharmonic horizontal
diffusion coefficient, the Asselin filter coefficient, and
the ratio of the transfer coefficient of moisture to the
transfer coefficient of sensible heat using the full-phys-
ics adjoint of the FSU Global Spectral Model. The re-
sults obtained are very encouraging. The fields at the
end of the assimilation window starting from the re-
trieved optimal initial condition and the optimal param-
eter values successfully capture the main features of the
analysis fields. Although the impact of optimal initial
conditions dominates that of the optimal parameter val-
ues at early stages of the forecast, a positive impact due
to each optimally estimated parameter valueisobserved.
The ensuing 24-h forecast experiments in which only
the optimal parameter values are used further indicate
the positive impact of using optimal parameter values.
The biharmonic horizontal diffusion coefficient im-
proves vorticity and divergence fields as well as the
upper levels of virtual temperature and of dewpoint de-
pression fields, while the ratio of the transfer coefficient
of moisture to the transfer coefficient of sensible heat
has a large positive impact on the lower levels of the
model, especially those of the virtual temperature and
the dewpoint depression fields. By combining the three
optimal parameter values, we obtain the best forecast
results. Further studies of ensuing forecasts using the
optimally identified parameter values and the optimal
initial conditions, respectively, show that the model
tends to first lose the impact of the optimal initial con-
dition while theimpact of optimally identified parameter
values persists beyond 72 h. The optimally identified
values of the biharmonic horizontal diffusion coefficient
and the ratio of the transfer coefficient of the moisture
to the transfer coefficient of the sensible heat improve
the performance of the corresponding physical param-
eterization schemes. The experiments using the optimal
initial condition and optimally identified parameter val-
ues simultaneously yield the best performance. How-
ever, we should be aware that these results are obtained
for a single case study. Further studies should be con-
ducted for different initial conditions in order to draw
a general conclusion.

In this study, the nonlinear forecast model is assumed
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to be perfect, that is, it is used as a strong constraint.
Further studies should be conducted to takeinto account
the model forecast error; that is, the forecast model is
regarded as a weak constraint, and its effect on the re-
trieved initial conditions and optimal parameter values
should be examined.

The parameters studied in this paper are assumed to
be constant in both time and space. In future research,
we should address the issue of retrieving values of «
and vy that vary both in space and time. In particular,
we would like to focus on the values of vy for different
stages of atropical system and for different regions, and
study their impact on the forecasts, especialy on the
precipitation field. Moreover, for a parameter estimation
to be properly specified, the parameter’s seasonal var-
iation should also be taken into account. The issue of
the period of validity of optimally estimated parameters
and the frequency with which they should be refreshed
in an operational model would necessitate further stud-
ies. Another question that deserves further study is the
issue of the feedbacks between the effects of various
optimally identified parameters.
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