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Owing to the environment, temperature, and so forth, photovoltaic power generation volume is always fluctuating and subsequently
impacts power grid planning and operation seriously. Therefore, it is of great importance to make accurate prediction of the power
generation of photovoltaic (PV) system in advance. In order to improve the prediction accuracy, in this paper, a novel particle
swarm optimization algorithm based multivariable grey theory model is proposed for short-term photovoltaic power generation
volume forecasting. It is highlighted that, by integrating particle swarm optimization algorithm, the prediction accuracy of grey
theory model is expected to be highly improved. In addition, large amounts of real data from two separate power stations in China
are being employed for model verification.The experimental results indicate that, compared with the conventional grey model, the
mean relative error in the proposed model has been reduced from 7.14% to 3.53%.The real practice demonstrates that the proposed
optimization model outperforms the conventional grey model from both theoretical and practical perspectives.

1. Introduction

With population growth, economic development, and nucle-
ar confidence crisis, many countries are changing the energy
structure and promoting the rapid development of renewable
energy. Among them, the solar energy is being largely
involved due to its highest sustainable development capa-
bility. However, photovoltaic power generation suffers from
apparent intermittence and volatility resulting from illumina-
tion intensity, temperature, and so forth, which would cause
alteration of both steady and transient characteristics of the
power system when merged with current power grid. In this
sense, the grid system planning, operation, and economic
analysis will be largely impacted. As such, it is of great help
to make accurate power output prediction of photovoltaic
power station with the aim of coordination of conventional
power and photovoltaic power, timely scheduling adjustment
and proper power grid operation mode arrangement in
advance. With the aid of prediction, on the one hand, the
adverse effects of merging with photovoltaic power will be

reduced, and the operational security and reliability of power
system will be increased. On the other hand, by involving
solar energy resource, the spinning reserve capacity and run-
ning cost of power system will be reduced as well as greater
economic and social benefits being achieved.

Currently, a number of models are being applied for
photovoltaic power generation prediction. In terms of pre-
diction theory and methodology, they can be classified into
three categories: neural network based model (NN) [1–4],
time series model [5–7], and time trend extrapolation model
[8]. Among these models, NN benefits from high prediction
accuracy; however, it suffers fromcomplexmodeling together
with high requirements of data samples, complicated train-
ing of models, and high cost. Time series model has less
computational load; however, its prediction accuracy is not
acceptable [5]. Markov model poses high requirement for
classification scope, which is largely experience dependent.
Generally speaking, the wider the scope, the simpler the
model and, hence, the less accurate the prediction result, and
vice versa [8].
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Grey model (GM) is being widely used in data prediction
due to lots of advantages. The main ones are that only few
samples are needed and consideration of their distribution
and variation trend is not necessary. In addition, the model
benefits from low computational complexity, high accuracy
of short-term prediction, easy checking, and so forth [9–
15]. He and Li [10] proposed an enhanced residual error
modifying GM(1, 1) model for power generation prediction
for 5.6 kW photovoltaic system. However, the factor that
the variation of daily power generation greatly depends on
the system itself, external environment, and so forth was
not considered in this model. Towards this issue, Zhong
et al. [15] derived a GM(1,𝑁) model and obtained a good
prediction result. It is reasonable to apply grey theory into
photovoltaic prediction, in terms of the feature of grey theory
and photovoltaic system. However, the existing model is not
adapted to the photovoltaic system in this paper because of
the difference of limited condition and photovoltaic data we
have obtained. Therefore, how to improve the grey theory
and make it applicable to the actual situation in this paper
and perform better in prediction is the focus of this paper. In
the further study, it is found that generation of background
value in grey theory is of great importance in data prediction.
Following up, Zhuang [16] verified that the prediction failed
in the case of using GM(1, 1) model with 𝜃 = 0.5 in
background value formula if power generation fluctuated
dramatically. Lin et al. [14] regenerated a novel background
value formula and proposed an optimized multivariable
grey model based on the formula. It is demonstrated that
the proposed model performed well in road displacement
prediction.

In this paper, an integrated particle swarm optimiza-
tion and multivariable grey theory model is applied for
ground value formula. It is expected that, by using this
method, the prediction accuracy will be largely improved.
Further, to verify the feasibility of the proposed model, large
amounts of real data from two separate power stations are
employed for verification. The experimental results demon-
strate the full functionality of the proposed mathematical
tool.

This paper is structured as follows. Section 2 discusses the
fundamental principle of multivariable grey theory model as
well as key issues of current model for forecasting. Section 3
describes the general forecasting procedure of using the pro-
posed optimization model. The real data from power station
and their prediction results by using both the proposedmodel
and the old model are discussed in Section 4. In Section 5,
conclusions are drawn.

2. The Multivariable Grey Theory Model with
Parameter Optimization

2.1. Overview of Multivariable Grey Theory Model. The fun-
damental principle of multivariable grey theory is described
as follows.

2.1.1. Accumulative Sequence Generation. Suppose 𝑥(0)
𝑖

=(𝑥(0)
𝑖
(1), 𝑥(0)
𝑖
(2), 𝑥(0)
𝑖
(3), . . . , 𝑥(0)

𝑖
(𝑛)), for 𝑖 = 1, 2, . . . , 𝑁, is

the sample sequence, where 𝑥(0)1 is predicting sequence and

𝑥(0)2 ⋅ ⋅ ⋅ 𝑥(0)𝑁 are correlative sequences. After the Accumulated
Generation Operation (AGO), the sequence is expressed as

𝑥(1)𝑖 = (𝑥(1)𝑖 (1) , 𝑥(1)𝑖 (2) , 𝑥(1)𝑖 (3) , . . . , 𝑥(1)𝑖 (𝑛)) ,
for 𝑖 = 1, 2, . . . , 𝑁, (1)

where

𝑥(1)𝑖 (𝑘) = 𝑘∑
𝑚=1

𝑥(0)𝑖 (𝑚) , for 𝑘 = 1, 2, . . . , 𝑛. (2)

2.1.2. Equation Establishment. TheAlbino equation of GM(1,𝑁)model is shown as follows:

𝑑𝑥(1)1𝑑𝑡 + 𝑎𝑥(1)1 = 𝑁∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 , (3)

where 𝑎 is a parameter.
The differential equation of GM(1,𝑁) is given by

𝑥(0)1 (𝑘) + 𝑎𝑧(1)1 (𝑘) = 𝑁∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 (𝑘) , (4)

where 𝑧(1)1 (𝑘) is the background value, which is generated
from 𝑥(1)1 (𝑘):

𝑧(1)1 (𝑘) = 𝜃𝑥(1)1 (𝑘 − 1) + (1 − 𝜃) 𝑥(1)1 (𝑘) . (5)

2.1.3. Parameter 𝑎Derivation. By using the Least Square (LS)
algorithm, the parameters 𝑎 in (4) can be obtained as

𝛼 = [𝑎 𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏𝑁]𝑇 = (𝐵𝑇𝐵)−1 𝐵𝑇𝑌, (6)

where

𝐵 = [[[[
[

−𝑧(1)1 (2) −𝑥(1)2 (2) ⋅ ⋅ ⋅ −𝑥(1)𝑁 (2)... ... d
...

−𝑧(1)1 (𝑛) −𝑥(1)2 (𝑛) ⋅ ⋅ ⋅ −𝑥(1)𝑁 (𝑛)
]]]]
]
,

𝑌 = [𝑥(0)1 (2) 𝑥(0)1 (3) ⋅ ⋅ ⋅ 𝑥(0)1 (𝑛)]𝑇 .
(7)

2.1.4. Prediction Formula Generation. The approximate time
response of GM(1,𝑁)model is given by

𝑥̂(1)1 (𝑘) = (𝑥(1)1 (0) − 1𝑎
𝑛∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 (𝑘)) 𝑒−𝑎(𝑘−1)

+ 1𝑎
𝑛∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 (𝑘) for 𝑘 = 0, 1, 2, . . . .
(8)

The original data sequence can be retrieved by Inverse
Accumulated Generation Operation (IAGO) when 𝑥(1)1 (0) =𝑥(0)1 (1):

𝑥̂(0)1 (𝑘) = 𝑥̂(1)1 (𝑘) − 𝑥̂(1)1 (𝑘 − 1) (𝑘 = 1, 2, 3, . . .) . (9)
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2.2. Problems of Multivariable GreyTheory Model. Assuming
the existing data sequence is denoted as 𝑥(1)1 (𝑘), 𝑘 = 1, 2,. . . , 𝑛, then, according to multivariable grey theory men-
tioned above, the background value of𝑥(1)1 (𝑘) can be obtained
by average operation between neighboring data:

𝑧(1)1 (𝑘) = 0.5𝑥(1)1 (𝑘 − 1) + 0.5𝑥(1)1 (𝑘) , (10)

where𝑥(1)1 (𝑘−1) is the last information and𝑥(1)1 (𝑘) is the latest
information.

The coefficients of 𝑥(1)1 are the weights on old and new
information. Note that the sum of the two coefficients will
always be zero; the larger the value of one side is, the more
important it is and the smaller the value of the other side is,
and vice versa. It can be seen from (10) that 𝑧(1)1 (𝑘) is generated
under the condition of equal weight between old and new
information. Generally speaking, with the lack of the old
and new information’s reliability, it is more likely to choose
equal weights. However, accurate prediction can hardly be
expected in this case [8]. From GM(1, 1), the parameter 𝜃 in
background value can be derived:

𝜃 = 1𝑎 + 11 − 𝑒𝑎 . (11)

It can be seen that the limit of 𝜃 is 0.5 when 𝑎 is approach-
ing zero, while it deviates by 0.5 when the absolute value of 𝑎
is large. Bringing (8) to (9), we can obtain

𝑥̂(0)1 (𝑘 + 1) = 𝑏𝑒−𝑎𝑘 − 𝑐𝑒−𝑎(𝑘−1)
+ 1𝑎
𝑛∑
𝑖=2

𝑏𝑖 (𝑥(1)𝑖 (𝑘 + 1) − 𝑥(1)𝑖 (𝑘)) , (12)

where 𝑏 = 𝑥(1)1 (0) − (1/𝑎)∑𝑛𝑖=2 𝑏𝑖𝑥(1)𝑖 (𝑘 + 1), 𝑐 = 𝑥(1)1 (0) −(1/𝑎)∑𝑛𝑖=2 𝑏𝑖𝑥(1)𝑖 (𝑘); when bringing (12) and (5) into (4), we
can get

𝜃 = 1𝑎 + 𝑏𝑒−𝑎𝑘
𝑥(0)1 (𝑘 + 1) . (13)

According to (8),

1𝑎
𝑛∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 (𝑘 + 1) = 𝑥̂
(1)
1 (𝑘 + 1) − 𝑥(1)1 (0) 𝑒−𝑎𝑘1 − 𝑒−𝑎𝑘 . (14)

Then, bringing (14) into (13), the following equation is made:

𝜃 = 1𝑎 +
(𝑥(1)1 (0) − 𝑥(1)1 (𝑘 + 1)) 𝑒−𝑎𝑘
𝑥(0)1 (𝑘 + 1) (1 − 𝑒−𝑎𝑘) . (15)

It is well understood that both 𝑘 and (𝑥(1)1 (0) − 𝑥(1)1 (𝑘 +1))/𝑥(0)1 (𝑘 + 1) are constants when the sample sequence is
determined. In addition, we can tell that parameter 𝑎 in (4)
is parameter 𝜃 dependent in (3).

By integrating (1) in the interval of (𝑘−1, 𝑘), we can obtain
∫𝑘
𝑘−1

𝑑𝑥(1)1𝑑𝑡 𝑑𝑡 + ∫
𝑘

𝑘−1

𝑎𝑥(1)1 𝑑𝑡 = ∫𝑘
𝑘−1

𝑁∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 𝑑𝑡. (16)

Since the term ∑𝑁𝑖=2 𝑏𝑖𝑥(1)𝑖 (𝑘) at the right side of (16) can be
served as the grey constants, (16) can be rewritten as

𝑥(1)1 (𝑘) − 𝑥(1)1 (𝑘 − 1) + 𝑎∫𝑘
𝑘−1

𝑥(1)1 𝑑𝑡 = 𝑁∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 , (17)

𝑥(0)1 (𝑘) + 𝑎∫𝑘
𝑘−1

𝑥(1)1 𝑑𝑡 = 𝑁∑
𝑖=2

𝑏𝑖𝑥(1)𝑖 . (18)

Combining (18) and (2), we can obtain

𝑧(1)1 (𝑘) = ∫𝑘
𝑘−1

𝑥(1)1 𝑑𝑡. (19)

So, the real background value equals the integration of𝑥(1)1 in the interval of (𝑘 − 1, 𝑘), derived from (19). And the
background value in the simple model was generated from
the neighboring average. We should not just let 𝜃 be equal to
0.5, which is the huge limitation in the simple multivariable
grey theory model. At the same time, since 𝑥(1)1 is an ascend-
ing sequence, the value of 𝜃 is always between 0 and 1.

It is observed that when the time gap is small and data
sequence keeps flat, conventional multivariable grey theory
model is feasible to some extent. However, when the data
changes fast and dramatically, this model may cause a large
error [12]. In this paper, a kind of particle swarm algorithm
was used for background value optimization. It is expected
that, via this way, the better recovered results can be obtained
and less error can be made.

2.3. The Particle Swarm Optimization. Particle swarm opti-
mization (PSO) was first proposed by Kennedy and Eberhart
in 1995 [17]. It is a kind of swarm intelligence algorithm and is
beingwidely used in various disciplines as well as engineering
area due to its simple structure, fast convergence, and robust-
ness [18, 19]. The algorithm is described as follows.

Suppose there are 𝑚 particles in 𝐷-dimensional space;
first, randomly select the initial velocity 𝑉𝑖 = (𝑉𝑖1, 𝑉𝑖2, . . . ,𝑉𝑖𝐷) and position 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝐷) of each particle.
Then, update these two parameters by iteration that involves
local extreme value 𝑃𝑏𝑒𝑠𝑡 = (𝑃𝑏𝑒𝑠𝑡1, 𝑃𝑏𝑒𝑠𝑡2, . . . , 𝑃𝑏𝑒𝑠𝑡𝐷)
and global extreme value 𝐺𝑏𝑒𝑠𝑡 = (𝐺𝑏𝑒𝑠𝑡1, 𝐺𝑏𝑒𝑠𝑡2, . . . ,𝐺𝑏𝑒𝑠𝑡𝐷). Finally, the velocity𝑉𝑖𝑑(𝑘+1) and position𝑋𝑖𝑑(𝑘+1)
of the (𝑘 + 1)th time can be given by

𝑉𝑖𝑑 (𝑘 + 1) = 𝑤𝑉𝑖𝑑 (𝑘) + 𝑐1𝑟1 (𝑃𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖𝑑 (𝑘))
+ 𝑐2𝑟2 (𝐺𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖𝑑 (𝑘))

𝑋𝑖𝑑 (𝑘 + 1) = 𝑉𝑖𝑑 (𝑘 + 1) + 𝑋𝑖𝑑 (𝑘) ,
(20)

where 𝑤 is the inertia weight factor, 𝑐1 and 𝑐2 are the training
coefficients, and 𝑟1 and 𝑟2 are randomnumbers between 0 and
1.

3. The Optimization Model
Based Algorithm Design

There are a number of factors that impact daily photovoltaic
power generation volume. They are usually classified into
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two categories: systematic factors and external factors. The
former include efficiency of transformation between solar
energy and battery and inclination of battery panel and power
capacity, while the latter consist of air temperature, solar
radiation intensity, weather, evaporation, and so forth. The
impact of systematic factors has been considered in historic
power generation already and thus can be omitted in the
following prediction in this paper, while the external factors
such as solar radiation intensity and air temperature are the
main concerns for daily power generation volume [20, 21],
which is of high priority in our modeling. Owing to the
existence of historical data in our system database, in this
paper, two parameters, that is, solar radiation intensity and
air temperature, are being used as correlative inputs into
portfolio model for prediction of daily photovoltaic power
generation.

According to correlation analysis as well as fundamentals
of multivariable grey model and PSO algorithm, the proce-
dure of the proposed algorithm is described as follows:

(a) Extract all the historic power generation volume,
air temperature (average for day time), and illumi-
nation intensity from archive (the data of power
generation volume comes from the inverter; solar
radiation intensity and air temperature come from
environmental monitor).

(b) Generate sample matrix and accumulative sequence
subsequently.

(c) Set parameters of PSO, including training factors,
weight, lower and upper bounds of position and
velocity, number of initial particles, and maximum
number of iterations.

(d) Obtain the Fitness Function of PSO, which is given by
deviation between fitted values and real values of the
sample sequence:

fitness = 𝑠∑
𝑖=2

(∑𝑠𝑖=2
󵄨󵄨󵄨󵄨󵄨(𝑥̂(0)1 (𝑖) − 𝑥(0)1 (𝑖)) /𝑥(0)1 (𝑖)󵄨󵄨󵄨󵄨󵄨𝑠 − 1

− 󵄨󵄨󵄨󵄨󵄨(𝑥̂(0)1 (𝑖) − 𝑥(0)1 (𝑖)) /𝑥(0)1 (𝑖)󵄨󵄨󵄨󵄨󵄨)
2

.
(21)

(e) Initialize the position and velocity of each particle as
well as its local extreme and global extreme and then
calculate the level of fitness of each particle.

(f) Update local extreme and global extreme of each
particle according to its level of fitness.

(g) Iterate and update particle’s position and velocity
based on (12) and (13) every loop.

(h) Iteration continues until the number of iterations
exceeds the max number. Then, the particle position𝜃 can be obtained in terms of global extreme.

(i) The prediction is achieved by inputting 𝜃 tomultivari-
able grey model.

Load sample
data

Grey model

Calculate fitness
function values

Update particles

Yes

No

Optimal particle

Grey model

Forecast data

Particles
initializing

Set the parameters
of PSO

Generate the
AGO sequence

i < maxgen

Figure 1: The flowchart of the optimization model.

The detailed flowchart of the proposedmodel is shown in
Figure 1.

In the conventional grey theory model, 𝜃 is set to a fixed
value such as 0.5. However, in the optimization model, the
sample sequence is iterated through the PSO algorithm until
the global optimal solution is found, and then 𝜃 is put into the
multivariable grey theory for subsequent predictions. Com-
pared with pure grey theory, the background value obtained
by PSO algorithm is more reasonable and also shows a better
prediction effect in actual prediction.

4. Forecasting Results and Discussions

To validate the proposed prediction model, in this paper, the
real data samples from number 4 inverter (SG100KTL, made
by Sungrow Power Supply Co., Ltd.) in Wuhan International
Exhibition Center from July 25 to Oct. 12 were employed.The
daily power generation volume forecasting was made from 8
days’ datum starting from July 25. The experimental results
from both the proposed model and the old model are shown
in Figure 2.

Figure 2 shows the forecasting error by using the pro-
posed model, the old model, and comparison between the
two. Several conclusions can be drawn from these figures.
Firstly, from Figures 2(a) and 2(b), it is observed that
bothmodels demonstrate their functionalities from variation
trend perspective, especially in September. Secondly, from
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Figure 2: The forecasting results by using (a) the proposed model, (b) old model, and (c) comparison of the percent error between two
models.

time series aspect, it is calculated that the Mean Absolute
Percentage Error (MAPE) and Root Mean Square Error
(RMSE) during Aug. 2 and Oct. 11 are 5.2352% and 28.83
(kW⋅h), respectively, which are far less than those of the old
model. In addition, from Figure 2(c), it is easily seen from
prediction errors of two single dates, that is, Aug. 23 and
Sep. 23, that the proposed model yields 18.17% and 13.95%
individually, while the prediction errors of the old model
are 44.87% and 33.63%. The reason of the invalidity of the
old model in this case is that 𝜃 is always equal to 0.5 in
(5), which, however, may not fit in some harsh scenarios.
The proposed model calculates the value of 𝜃 adaptively
according to historic records, and thus it is able to improve

the prediction accuracy.TheKey Parameter Indicators (KPIs)
of two weeks mentioned above are listed in Tables 1 and 2.

From Tables 1 and 2, it can be seen that the regenerating
data from the proposed model is far more accurate than
that from the old model in most scenarios. In few cases,
however, the old model behaves better. The reason is that the
proposed model took actions on the whole samples rather
than every individual data, which results in that few data may
not be covered by optimizationmodel. Further, it is calculated
that the Mean Absolute Percentage Errors of data recovering
from Tables 1 and 2 are 5.83% and 1.14%, respectively, via the
proposedmodel, which aremuch smaller than those from the
old model, that is, 9.57% and 3.91%.
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Figure 3:The forecast results of the optimizationmodel (a) and ordinary model (b) and the comparison of the percent error (c) in April 2015.

Table 1: Analysis of forecasting results on August 23.

Date Real value (kW⋅h) Ordinary model Optimization model
Recovered value (kW⋅h) Percent error (%) Recovered value (kW⋅h) Percent error (%)

Sample data

8.15 520 520 0 520 0
8.16 554 457.99 17.33 527.63 4.76
8.17 506 566.16 11.89 512.51 1.28
8.18 493 527.17 6.93 508.11 3.06
8.19 443 443.45 0.10 402.98 9.03
8.20 420 425.27 1.25 387.56 7.72
8.21 518 454.49 12.26 443.20 14.44
8.22 332 389.29 17.26 330.28 0.52

Forecasting data 8.23 263 381.01 44.87 310.80 18.17
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Figure 4:The forecast results of the optimization model (a) and ordinary model (b) and the comparison of the percent error (c) in May 2015.

Table 2: Analysis of forecasting results on September 23.

Date Real value (kW⋅h) Ordinary model Optimization model
Recovered value (kW⋅h) Percent error (%) Recovered value (kW⋅h) Percent error (%)

Sample data

9.15 539 539 0 539 0
9.16 535 455.31 14.89 522.15 2.40
9.17 558 596.68 6.93 558.37 0.07
9.18 586 594.22 1.40 583.68 0.39
9.19 546 550.63 0.84 552.39 1.17
9.20 506 509.53 0.70 514.81 1.74
9.21 507 512.50 1.08 517.88 2.15
9.22 473 465.98 1.48 472.72 0.06

Forecasting data 9.23 123 81.65 33.62 105.84 13.95
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Figure 5:The forecast results of the optimization model (a) and ordinary model (b) and the comparison of the percent error (c) in June 2015.

In addition, the source data from number 117 inverter
(SG630KTL, made by Sungrow Power Supply Co., Ltd.) in
Bao Ya power station (located in Dezhou, Shandong prov-
ince) was also employed for daily power generation volume
prediction. The results are shown in Figures 3, 4, and 5.

It is unreasonable to use the proposed model for contin-
uous long-term prediction, since the solar radiation intensity
and average temperature from April 3 to 6 and from May
2 to 7 cannot be obtained from our database. As such, we
divided three months into three time slots and tried to make
prediction within each. For April, May, and June, we started
fromApril 7, May 8, and June 1 individually and extracted the
data samples of the following eight days to make prediction
of the power generation volume of the ninth day.

It is observed from Figures 3 and 4 that when the pho-
tovoltaic power generation volume kept stable, for example,
in April and May, the prediction accuracy of the old model
stayed in a relatively high level. However, therewere still some
days when the power generation volume varies greatly; in this
case, the oldmodelwas invalid and an accurate prediction can
only be achieved by the proposedmodel. FromFigure 5, it can
be seen that, due to the large fluctuation of power generation
in June, the prediction errors from both new and old models
are larger than those in April and May. In addition, however,
the maximum error of the proposed model is 14.37% and
that of the conventional model is 37.32%.Thus, the prediction
effect of the optimization model is much better than the
original one.
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Table 3: Prediction performance of the optimization and ordinary model from April to June 2015.

April May June
Optimization model Ordinary model Optimization model Ordinary model Optimization model Ordinary model

MRE (%) 7.71 23.41 12.53 16.07 12.89 35.84
ARE (%) 3.53 7.14 3.86 4.35 5.53 7.10
RMSE (kW⋅h) 123.58 200.34 148.86 155.34 206.75 210.37

Table 3 presents the power generation prediction per-
formance during April to June 2015 from both novel model
and conventional model in terms of Maximum Percent Error
(MPE), Mean Absolute Percentage Error (MAPE), and Root
Mean Square Error (RMSE), respectively. It is obvious that the
proposedmodel outperforms the oldmodel from all the three
perspectives. In addition, the MRE during the three months
is merely 12.89%, which is highly acceptable according to
practical requirements.

5. Conclusions

The experimental results and analysis indicate that though
the conventional multivariable grey theory model is feasible
for photovoltaic power generation, however, its error rate
increases when the generation fluctuates dramatically. In this
paper, the proposed PSO algorithm is applied for background
value optimization and its accuracy is well verified. Thus,
the proposed model can be better applied to the short-
term photovoltaic power generation forecasting in the PV
system. The optimization model proposed in this paper is
optimized for the whole sample data, which greatly improves
the prediction accuracy. However, how to effectively improve
the prediction precision of each data will be the focus of
further research.
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