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ABSTRACT. An extension is given for the inverse to Holder’s inequality obtained recently

by Zhuang.
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Recently Zhuang [1] proved the following inverse of the arithmetico-geometric inequality.
THEOREM A. Let0<a<z<A4,0<b<y<B, 1/p+1/¢g=1,p>1; then
Alp+b +B
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the sign of equality in (1) and (2) holds if and only if either (z,y) = (a, B) or (z,y) = (A, b).

Moreover, if a > B, then

4P+ Blq gz, Yy _AlP+blg 4
a/Bils T Y S;+;S Alrpile * Fy'e, (3)

the sign of equality on the right-hand side of (3) holds if and only if (z,y) = (A4,b), and the
sign of equality on the left-hand side of (3) holds if and only if (z,y) = (a, B). The sign of
inequality in (3) is reversed if b > A.

This enables us to formulate the following theorem.

THEOREM 1. Suppose z,y,a,b, A, B,p,q are as in Theorem A and «, 3 > 0. Then
az®? + fy? < max(C, D)zy, (4)
where
C = (aAP + B)/(Ab), D = (aa® + BB%)/(aB). (5)

Equality occurs if and only if either (z,y) = (a,B) or (z,y) = (A,b). Moreover, if apa? >
BqBY, then

Czy < az” + By* < Dazy, (6)
with equality on the right-hand side if and only if (z,y) = (A, b) and on the left if and only if
(z,y) = (a, B). The inequalities in (6) are reversed if apAP < Bqb’.


https://core.ac.uk/display/194242526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

206 J. PECARIC AND C. E. M. PEARCE

PROOF. Inequalities (4) and (6) follow from (1) and (3) under the substitutions
z — apz”, y— By, a — apa®, b— Bgb', A — apA®. B — pqB°.

REMARK. Theorem 1 gives (1) and (2) together, (1) resulting from the substitutions a = 1/p,
z — z1/?, A = AY? a — a"/? and corresponding relations for 3,y etc. with ¢ in place of p,
while (2) results from similar substitutions with a =1 = .

The following result now gives an extension of the inverse to Holder’s inequality obtained
in [1]. We suppose that all the integrals involved exist.

THEOREM 2. Let the functions f, g satisfy 0 < a < f(z) < A, 0 < b < g(z) £ B for
almost all £ € X with respect to a measure p. Suppose a, 8,p,q,C, D are as in Theorem 1.

Then .
(), an)” ([ o)™ < (@) e(80) ™ max(C, D) [ fqan (7)

and equality holds if and only if
p(E1 U F1) = p(X)

and
__ (apA? — Bqb%)u(X)
HE) = Colae —a) + Ba(B B0
where
E = {z€X:f(z) =qa,9(z) = B},
R = {z€X:f(s)=Ag(z)=b).
Moreover, if apa? > BqB9, then
1/p 1/q
(o ) ™ ([ %) ™ < (ap) 280D [ poan, ®)
with equality only if (f,g) = (a, B) a.e. on X and apa? = B¢B, and if apAP < Bqb?, then
1/p 1/q 1
(forraw) " ([ o)™ < ten (80 C | s, )

with equality only if (f,g) = (A,b) a.e. on X and apA? = Bgbs.
PROOF. The first statement was proved in [1). A simple proof of the remainder of the
theorem was given for the case a = 1/p, # = 1/q in [2]. We give a similar simple proof for the

general case.

max(C, D) /X fodu /X max(C, D) fg dy

v
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(ap)'/?(pq)"/? (/A f”dﬂ)”p (/A 9"du)l/q ,

by the arithmetico-geometric inequality.
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The equality conditions result from those in Theorem 1 and the arithmetico-geometric
inequality.

Similarly we can prove (8). Using the second inequality in (6) we have

D[ fodu = [ Dfgdy

v

[ (af? + 8¢%)du

~(op) [ Prdu+ < (Ba) [ g

(ero(pa) ([ i) ([ )"

v

Relation (9) follows similarly.

REMARK. The simplest cases of (8) and (9) occur for @ = 1/p, § = 1/q. Then we have

that if a? > BY, then
(/ fra )W(/ " )Uq(D/f d
[ fran [ g'du) <Dy [ fodu

(i)™ (f o) < [ o

(e +1B7) /(aB),
(247 + 1b) /(Ab).

and if A? < b7, then

where

D,

Gy

i

REFERENCES

1. ZHUANG, YA-DONG. On inverses of the Holder inequality, J. Math. Anal. Applic.,
161 (1991), 566-575.

2. MOND, B. and PECARIC, J.E. Remark on a recent converse of Holder’s inequality,
J. Math. Anal. Applic., 181 (1994), 280-281.




Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




