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1. Introduction. Quasi-HNN groups have appeared in [3]. In this paper, we use the
results of [8] to obtain the structure theorem for the subgroups of quasi-HNN groups
and give some applications. We will use the terminology and notation of [3].

Let G be a group, and let I, J be two indexed sets. Let {A;:i €I}, {B;:i €I}, and
{Cj:j € J} be families of subgroups of G.

For each i € I, let ¢; : A; — B; be an onto isomorphism and for each j € J, let
o« : C; — C; be an automorphism such that 0(5 is an inner automorphism deter-
mined by c; € C; and c;j is fixed by «;. That is, «;(c;) = ¢; and (x;(c) = cjchT1 for all
Cc e CJ'.

The group G* with the presentation

G* = (G,ti,t; | 1elG, tiAit;' = B, t;Cit;' = Cj, t3=cj, i€l, j€]) (1.1)

is called a quasi-HNN group with base G and associated pairs (A;,B;) and (C;,Cj),
i eI, j €] of subgroups of G, where (G | relG) stands for any presentation of G,
tiA;t;! = B; stands for the set of relations t;w(a)t;! = w(¢i(a)), and tjCjtj_l =Cj
stands for the set of relations tjw(c)tj‘1 =w(«xj(c)), where w(a), w(pi(a)), w(c),
and w(«x;j(c)) are words in the generating symbols of the presentation of G of values
a, ¢i(a), c,and «;(c), respectively, where a runs over the generators of A; and c over
the generators of C;.

It is proved in [3] that G is embedded in G* (the imbedding theorem of quasi-HNN
groups), and every element g of G*, g # 1 can be written as a reduced word of G*.
That is, g = gotggltggz -t gn, where gs € G, es = x1, ks eIU ], for s = 1,...,n,
such that g contains no subword of the following forms:

(1) trat!, a € Aj, or

(2) t!'btr,, b € By, or

(3) tg.ct),c€Cje,6==+1,0r

(4) t;?, for some kg € J.

We note that if J = @, then G* = (G, t; | relG,tiAiti‘1 = B;,i € I) is an HNN group
with base G and associated pairs (A;, B;), i € I of subgroups of G.
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If I = @, then G* = (G, t; | relG, t;C;t;' = Cj, t5 =cj, j € J). In this case we call
G* a pure quasi-HNN group with base G and associated pairs of subgroups (C;,C;),
Jj € J of G. The notation of a tree product of groups as defined in [2] will be needed.

In this paper, we form the subgroup theorem for the quasi-HNN group G*, defined
above, by applying the subgroup theorem for groups acting on trees with inversions
obtained by [8]. In particular, if H is a subgroup of the quasi-HNN group G* defined
above, then H is itself a quasi-HNN group (with possibly trivial free part); its base is
a tree product 1 with vertices of the form xGx~! N H and amalgamated subgroups
either trivial or conjugate of the A; and C; intersected with H; moreover, every con-
jugate of G intersected with H is either trivial or is conjugate in H to a vertex of 7.

This paper is divided into seven sections. In Section 2, we introduce the concepts
of graphs and the actions of groups on graphs. In Section 3, we have a summary
of the structure of groups acting on trees with inversions. In Section 4, we have a
summary of the structure of the subgroup theorem of the groups acting on trees with
inversions. In Section 5, we associate a tree on which a quasi-HNN group acts and
then we form the subgroup theorem for quasi-HNN groups. In Section 6, we apply
the results of Section 5 to find the structures of the subgroups of HNN group. In
Section 7, we apply the results of Section 5 to find the structures of the subgroups of
pure quasi-HNN group.

2. Basic concepts. We begin by giving preliminary definitions. We denote by a graph
X apair of disjoint sets V(X) and E(X) with V(X) nonempty, together with a mapping
E(X) - V(X)xV(X),y — (o(y),t(v)),and amapping E(X) — E(X), y — , satisfying
the conditions that ¥ = y, and o(¥) = t(y), for all ¥ € E(X). The case ¥ = y is
possible for some y € E(X). For v € E(X), o(y), and t(y) are called the ends of v,
and ¥ is called the inverse of . If A is a set of edges of X, we define A to be the set
of inverses of the edges of A. Thatis, A = {3 : y € A}. For definitions of subgraphs,
trees, morphisms of graphs, and Aut(X), the set of all automorphisms of the graph X
which is a group under the composition of morphisms of graphs, see [5] or [9]. We say
that a group G acts on a graph X, if there is a group homomorphism ¢ : G — Aut(X). If
x € X (vertex or edge) and g € G, we write g(x) for (¢p(g))(x).If y e E(X) and g € G,
then g(o(»)) =0(g(»)), g(t(»)) =t(g(y)),and g(¥) = g(»). The case g(y) =¥ for
some g € G and some Yy € E(X) may occur. That is, G acts with inversions on X.

We have the following notations related to the action of the group G on the graph X:

(1) if x € X (vertex or edge), we define G(x) = {g(x) : g € G}, and this set is called
the orbit of X containing x;

(2) if x,y € X, we define G(x,y) = {g € G: g(x) = v} and G(x,x) = Gy, the
stabilizer of x. Thus G(x,y) # @ if and only if x and 7y are in the same G orbit.
It is clear that if v e V(X), y € E(X),and u € {o(y),t(y)}, then G(v,y) = I,
Gy =Gy, and Gy < Gy. If H < G and x € X, then itis clear that Hy = HN Gy;

(3) let X€ be the set of elements of X fixed by G. Thatis, X¢ = {x € X: G = G}.

3. The structure of groups acting on trees with inversions. In this section, we
summarize the presentation for groups of groups acting on trees with inversions
obtained by [5].
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DEFINITION 3.1. Let G be a group acting on a graph X, and T and Y be two subtrees
of X such that T < Y and X¢ = @. Then T is called a tree of representatives for the
action of G on X if T contains exactly one vertex from each G vertex orbit, and Y is
called a fundamental domain for the action G on X, if each edge of Y has at least
one end in T, and Y contains exactly one edge (say) v from each G edge orbit such
that G(77,y) = <, and exactly one pair x and X from each G-edge orbit such that
G(X,x) + @. It is clear that the properties of T and Y imply that if u and v are two
vertices of T such that G(u,v) = &, and if x and y are two edges of Y such that
G(x,y) =, thenu=vand x =y or x =Y.

Let Y be as above. Define the following subsets Yy, Y7, Y> of edges of Y as follows:

(1) Yo = E(T), the set of edges of T;

R 1={yeEY):0(y)eV(D), t(y) ¢ V(T), G¥,y) =D};

(3B) Yo={x€E(Y):0(x)eV(T), tix)¢V(T), G(X,x) = D}.

Itis clear that Yo = Yy, E(Y) =YpuY;UY>UY, UY>, and G acts with inversions on X
if and only if Y, + &.

For the rest of this section G will be a group acting on a graph X, T be a tree of
representatives for the action of the group G on X, and Y be a fundamental domain
for the action of G on X such that T € Y and X¢ = @.

We have the following definitions.

DEFINITION 3.2. For each vertex v of X, define v* to be the unique vertex of T
such that G(v,v*) # @. That is, v and v* are in the same G vertex orbit. It is clear
that if v is a vertex of T, then v* = v and in general, for any two vertices u and v of
X such that G(u,v) # &, we have u* = v*.

DEFINITION 3.3. For each edge y of YyuY; UY> define [y] to be an element of
G(t(y),(t(y))*). That is, [v] satisfies the condition [y ]((t(y))*) = t(y), to be cho-
sen as follows:

[¥]=1 if y €Yy, [¥]y)=y ifyeYa. (3.1)

Define [¥] to be the element

_ [¥y] ifyeYouYy,
- 3.2
o {[y]‘1 if y € 11, 32

[y]is called the value of the edge y.

DEFINITION 3.4. For each edge y of Y define —y to be the edge —y = [y]~'(y) if
¥ €Y, otherwise —y = y. Itis clear that t(-y) = (t(y))* and G_y < G(1(y))*-

DEFINITION 3.5. By a reduced word w of G we mean an expression of the form
w=go-Y1-g1-Y2-g2----- Yn-Gn,n=0,y;, € E(Y), fori=1,2,...,n such that
(1) go € Gio(yy))*;
(2) gi € Gy, fori=1,2,...,n;
3) (t(yi))* =(o(yir1)*, fori=1,2,...,.n-1;
(4) w contains no expression of the form y; -giyi‘l ifgie G_y, and G(y;,¥;) = 9,
ory;-gi-yiif gi € Gy, and G(y;,y;) # &.
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If w = go, then w is called a trivial word of G. If (o(y1))* = (t(yy))* then w is called
a closed word of G.
The value of w denoted [w] is defined to be the element

[(wl=go[ylgi[y2]g2---[ynlgn of G. (3.3)

Before we state the main result of this section, we have the following notations: let

veV(T),meYy y Yy, and x € Ys, then

(1) (G, | relG,) stands for any presentation of G,;

(2) G = G4, stands for the set of relations w(g) = w’(g), where w(g) and w'(g)
are words in the generating symbols of Goun) and Gian), respectively of value
g, and g is in the set of the generators of G;

(3) ¥ [¥1'Gyly]1-y~! = G, stands for the set of relations: yw ([y]1 ' g[y )y~ =
w(g), where w([y] 'g[y]) and w(g) are words in the generating symbols of
G(t(y))* and Go(y))* of values [v]'g[y] and g, respectively, where g is in the
set of the generators of G,;

(4) x -Gy -x"1! = Gy stands for the set of relations: xw(g)x~' = w’(g), where
w(g) and w'(g) are words in the generating symbols of G, () of values g and
[x]glx]~1, respectively, where g is in the set of the generators of Gy;

(5) x2 = [x]? stands for the of relation x? = w([x]?) where w([x]?) is a word in
the set of the generators of Gy.

THEOREM 3.6. Let G, X, T,Y, Yy, Y1, and Y, be as above. Then the following are
equivalent:
(i) X is tree;
(ii) G is generated by the generators of G, and by the elements [y] and [x] and G
has the presentation

G:<Gv,y,x|rele, Gm = Gm, y'[y]ile[y] '_’)’71 =Gy,

(3.4)
X-Gy-x7' =Gy, x2 = [x]?)

via the map G, — G,, y — [v], and x — [x] wherev e V(T), m €Yy, y € Yy,
and x € Ys;

(iii) every element of G is the value of a closed and reduced word of G. Moreover,
if w is a nontrivial closed and reduced word of G, then [w] is not the identity
element of G.

PROOF. (i) implies (ii) follows from [5, Theorem 5.1].
(ii) implies (iii) follows from [6, Corollary 1].
(iii) implies (i) follows from [7, Corollary 3.6]. O

4. Structure theorem for subgroups of groups acting on trees with inversions.
In this section, we summarize the methods for obtaining generators and presentation
for subgroups of groups acting on trees with inversions obtained by [8, Theorem 3,
page 28].In [4, Theorem 2.5, page 91] generators and presentation for a subgroup B of
a given group A with given generators and presentation is obtained by a method called
the Reidemeister-Schreier methods. In view of such methods we have the following
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remarks related to subgroups of groups acting on trees with inversions: let G be a
group acting on a tree X, v be a vertex of X, z be an edge of X and, H be a subgroup
of G, then

(1) the generators and presentation for the vertex stabilizer G, of v under G are
arbitrary;

(2) the generators for the edge stabilizer G, of z under G are arbitrary;

(3) the generators and presentation for G are those of Theorem 3.6(ii);

(4) the generators and presentation for the vertex stabilizer H, = Hn G, of v
under H are those obtained by the Reidemeister-Schreier methods from the
generators and presentation for G;

(5) the generators for the edge stabilizer H, = Hn G, of z under H are those
obtained by the Reidemeister-Schreier methods from the generators of G;;

(6) the generators and presentation for H are given in Theorem 4.4.

Now we proceed to obtain the generators and presentation for subgroups of groups

acting on trees with inversions as follows.

Let G, X, T, Y, Yy, Y1, and Y> be as above such that X is a tree, and H be a subgroup

of G. We have the following definitions.

DEFINITION 4.1. (1) For each g € G and ¥ € Yy U Y] UY>, define Dﬂ to be any
double coset representative system for G,y mod(Ge,) N g 'Hg,G,) containing 1
but otherwise arbitrary.

(2) For each v € V(T), let D, be a double coset representative system for
Gmod(H,G,) satisfying the condition that if g € D, and

g=golylagily219z - [ynlgn, (4.1)

where go - Y191 Y292+ Yn-gn is a closed and reduced word of G, then
goly1911y2192 - - [¥i] €D(o(yy, )%, and gi e Dy}, where f; = go[v1191[y21g2 - - - [Vi].
For more details see [8, page 23].

(3) For each y € Yy U Y; UY>, define D> to be the set DY = {de:d € Dy(y), € €
D4, de[y] & Dit(y)*},and define D,, tobe the set D,, = {de:d € Doy, e € D$, de[y]
€ Dy}

DEFINITION 4.2. The collection of double coset representative {D,}, and the as-
sociated collections {D”}, and {D, } defined above will be called a cress for Gmod H.
For the existence of a cress for G mod H we refer the readers to [8, page 23].

PROPOSITION 4.3. Foreachy € YouY,UY> and g € DY there exist unique elements

gV €D+, glyl € DI anda, € [v171G, [v] such that g[v1(gly1g[yiay) !
€ H.

PROOF. See [8, page 28]. O

Note that Hng[y1g[y1Gygly] lg[y]f1 is a subgroup of HNgGo(,hg ™'

Before we proceed to state the main result of this section, we introduce the following
convention on notation on the generators and defining relations of H:

(A) For any vertex v of T, (HNndG,d™ ! | rel(HNndG,d™ 1)) is the presentation of
the subgroup HNdG,d ! of G, obtained by the Reidemeister-Schreier methods.
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(B) For any y € YoUY] UY>, the relations

where g

g)- (Hﬂg[y]g[y]Gyg[y]_lg[y] (g0 =HNgGrg,  @2)

€ DY are similar to the relations of G as in Theorem 3.6(ii).

The main result of this section is the following theorem. For the proof see [8, The-

orem 3].

THEOREM 4.4. Let G be a group acting on a tree X, and let T be a tree of repre-
sentatives for the action of the group G on X and Y be a fundamental domain for the
action of G on X such that T < Y and X¢ = @. Let H be a subgroup of G, and {D,},
{D?}, and {D.} be a cress for GmodH, forallu € V(T),and all z € YouU Y, UY>. Then

we have

the following:

(I) H is generated by the following:

(1)
)
3)
4)
(5)

(ID H

the generators of the subgroups H N dG,d~" of G,, where v € V(T) and
deD,;

the elements g(ggam)~', where m € Yy and g € D™;

the elements g[y1(gly1glylay)~', where y € Y, and g € D?;

the elements g[x1(glx]1glxlax)~t, where x € Y» and g € DX such that H N
[x1G g~ ' = @;

the elements g[x1g~', where x € Y» and g € DX such that HNg[x1Gxg~! #
a.

has the presentation (P | R), where P is the set of generating symbols of the

following forms:

(1)
(@)
(3)
(4)

the generating symbols of the subgroups HNdG,d ' of G, whered € D,;
the edges g(m), where m € Yy and g € D™;

the edges g(y), where y € Y1 and g € DY;

the edges g(x), where x € Y» and g € DX such that HNng[x1Gxg~" + @.

(IIT) R is the set of relations of the following forms:

(1)
(2)
(3)
(4)
(5)
(6)

(7)

(8)

)

the relations, rel(H N dG,d ') of the subgroups HdG,d™' of G,, where
deDy;

the relations HNgGpmg ' =HNgGmg ™', wherem € Yo and g € Dyy,;

the relations HNgG, g~ =HngG,g~t, where y € Yy and g € D,,;

the relations HNgGxg—' = HNngGyxg~!', where x € Y, and g € D, such that
Hnglx1Gxg™' + @;

the relations g(m) - (HNGgGmg g 1) - (g(m))~L = HN gGmg ™", where
me Yy and g € D™;

the relations g(v) - (H 0 g[¥19[¥1Gygly] g1 ) - (de(y)~' = Hn
9G,g~', where y €Y, and g € DY;

the relations g(x) - (H n gIx]g[x1Gxglx] glx] ) - (g(x)! = Hn
9Gxg~', where x € Y, and g € DX such that HNg[x1Gxg~! + @;

the relations g(x) - (HNgGxg ') - (g(x)) "' =HngGyxg~', wherex € Y, and
g €D* suchthat HNng[x1Gxg™' + @;

the relations (g(x))? = g[x1°g~', where x € Y» and g € DX such that Hn
glx1Gxg™' = @.
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DEFINITION 4.5. A group is called quasi free group if it is a free product of a free
group and a number of cyclic groups of order 2.

We have the following corollaries of Theorem 4.4.
COROLLARY 4.6. IfHNG, = {1} for allv € V(X), then H is a quasi free group.

COROLLARY 4.7. IfHNG, = {1} for all y € E(X), then H is a free product of a
quasi-HNN group and the intersections of H with G, for allv € V(T).

COROLLARY 4.8. If H is a nontrivial free product, then H is either infinite cyclic
group, a finite cyclic group of order 2, or H is contained in G, for some v € V(X).

COROLLARY 4.9. IfH is a normal subgroup of G such that H NG, is quasi free group
forallv e V(X),and HNG, = {1} for all y € E(X), then H is a quasi free group.

COROLLARY 4.10. IfH has the property that D* = @, forallz € You Y, UY>, then H
is a tree product of the subgroups HNdG,d ' of G, wherev € V(T) and d € D, with
amalgamation subgroups HNgGmg™', m € Yo, g € D, HNgG,g~t, vy €Y1, 9 €D,,
and HNgGyxg™', x €Y2, g € Dy suchthat HNng[x]1Gxg™' + @.

5. Subgroups of quasi-HNN groups. In this section, we construct a tree on which
a quasi-HNN group acts with inversions, and then we formulate its subgroups.
The following lemma is essential for the proof of the main theorem of the paper.

LEMMA 5.1. A group is a quasi-HNN group if and only if there is a tree on which the
group acts with inversion and is transitive on the set of vertices. Moreover, the stabilizer
of any vertex is conjugate to the base and the stabilizer of any edge is conjugate to an
associate subgroup of the base.

PROOF. Let G be a group acting with inversions on a tree X such that G is transitive
on V(X). Let T be a tree of representatives, and Y be a fundamental domain for the
action of G on X such that T < Y. Since G is transitive on V (X), therefore T consists
of exactly one vertex v (say) without edges. So Yy, = &. Since G acts with inversions
on X, therefore Y, + @. Then by Theorem 3.6, G has the presentation

G= (Gv,y,xlrele, J"D’]*le[y] '3’71 =Gy, X'Gx'X71 = Gy, x%= [X]Z) (5.1)

via the map G, — Gy, ¥ — [y], and x — [x] where v € V(T), y € Y}, and x € Y.
Then G is a quasi-HNN group of base G,, and associated isomorphic pairs
([¥17'Gy[v1,G,) of subgroups of G, via the isomorphism ¢, : [¥]'G, [¥] — G, de-
fined by ¢, ([v1'gly]) =g, forall g € G, and all y € Y; such that o(y) = v, and as-
sociated isomorphic pairs (G, Gy ) of subgroups of G, via the mapping &y : Gx — Gy
defined by o, (g) = [x]1g[x]7!, for all g € G, and all x € Y, such that o(x) = v. Let
Jx = [x]2.Ttis clear that o is an automorphism of Gy, and o is inner automorphism
of G determined by g, and o ([x]?) = [x]°.

Conversely, let G* be the quasi-HNN group

G* = (G,ti,t; | 1elG, tiAit; ' = B, t;Cit; = Cj, t;=cj, i€l, jeJ)  (5.2)

of base G, and associated pairs (A;,B;), and (C;,Cj), i €I, j € J of subgroups of G.
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Now, we construct a tree X on which G* acts on X with inversions such that G* is
transitive on V(X), and call it the standard tree associated with the quasi-HNN group.
In this construction, define

V(X)={g9G:g€G*}, (5.3)

and define

E(X)={(gBi,t;):g€G*, iel}u{(gAit;'):geG* iecl}

) (5.4)
u{(gCj tj) g €G*, jeJ}.
The terminals of the edges are defined as follows:
0(gBi,ti) =0(gAit;') =0(gCj t)) = gG,
(5.5)

t(gBiti) = gt:G,  t(gAut;') =gt;'G,  t(gCjt;) = gt;G.
The inverses of the edges are defined as follows:
(9Bi,ti) = (gtiAit7!),  (gAunt;') = (gt7'Bi,ti),  (gCjt;) = (gt;Cjt;). (5.6)

From above X is a graph. G* acts on X as follows: let g" € G*. Then for any vertex
gG of X we have g’ (gG) = g'gG, and for any edge (gB;,t;), or (gA;,t; 1), or (gCj,t;)
of X, we have

g'(gBiti) = (g'gBiti), g (gAit;") = (9'gAut"), 9" (9Cjity) = (9'9Cjit;).

(5.7)

The action of G* on the vertices of X is transitive because for any two vertices aG

and bG of X we have ba~!(aG) = bG. That is, the element ba~! of G* maps the vertex

aG to the vertex bG. Then there is exactly one G vertex orbit. We take T = {G} to be

the tree of representatives for the action of G* on X. G* acts on X with inversions
because the element t; € G* maps the edge (Cj,t;) to its inverse (Cj,t;). That is,

ti(Cj,ty) = (t;Cj,t5) = (Cjr L) (5.8)

Let A;, Bi, and y; stand for the edges (B;,t;), (Ai,ti’l), and (Cj,t;), respectively.
Then

o(Ad)) =0(Bi) =oly;) =G, t(Ay)=t;G, t(Bi)=t;'G, t(y;)=t;G, 5.9)
Ai = (LALtY),  Bi=(t"Buti), ¥, = (t;Chty). '

From above, we see that A; and A;, and f; and Bi are in different G* edge orbits, while
y;j and y; are in the same G* edge orbit. Moreover, any edge of X is of the form g(A;),
g(Ay), or g(y;) for some g € G*.
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Let Y be the subgraph of X consisting of the edges A;, B;, and y;, and their terminals
and inverses foralli € Tand all j € J. Thus, V(Y) = {G,tiG,ti’lG,tjG iiel, je J}and
E(Y) = {Ai,Bi,yj,Ai, B, ¥ s i €1, j € J}. 1tis clear that T is a tree of representatives
for the action G* on X, and Y is a fundamental domain for the action of G* on X and
T <Y.Moreover, Yo =0, Y = {A;:iel},and Yo = {y;:ie J}.

From above, it is easy to verify that the stabilizer of the vertex v, where v = G
is G} = G and the stabilizers of the edges A;, B;, and y; are G;\k.- = B, Gg‘i = A;, and
G;‘j = Cj, respectively. This implies that the stabilizer of any vertex is conjugate to
the base G and the stabilizer of any edge is conjugate to an associate subgroup Aj;,
B;, or Cj of the base G. The values of the edges A;, B;, and y; are [A;] =t;, [Bi] = ti’l,
and [y;] = tj, respectively. By Theorem 3.6, the presentation of G* and the action of
G* on X implies that X is a tree.

This completes the proof. a

REMARK 5.2. The tree X, constructed above, will be called the standard tree of the
quasi-HNN group G*.

In view of Lemma 5.1 and Definition 4.2 the following concepts is clear.
Let H be a subgroup of the quasi-HNN group

G* = (G,ti,t; | relG, tiAit; ' = B, t;Cit;' = Cj, t5 =cj, i€l, j€J) (5.10)

of base G and associated pairs (A;,B;), and (C;j,C;), i €1, j € J of subgroups of G.

We have the following concepts:

(1) for each i €I, j € J, and d € G, let D{ and D% be double coset representa-
tive system for Gmod(Gnd~'Hd,B;), and Gmod(Gnd~'Hd,Cj), respectively
containing 1, but otherwise arbitrary;

(2) let D be a double coset representative system for G* mod(H, D) satisfying the
condition that if g = got;} g1t;2g2- - - t;"gn € D, then w, € D and g; € D;”,
where

wS:got,f'lglt,fggg---t,‘ij_ fors=1,...,1n; (5.11)

(3) foreachseluJ,letDS=1{de:deD,e eDﬁ‘, dety € D}, and Ds = {de:d € D,
e € D¢, det; € D};

(4) foreachselu]J,and g € D, let gts €D be the representative of gt, in D, and
E eD? ' be the representative of gt in DY tf; o

(5) foreachic I, and g € D,let k; be an element of A; such that gt;(gt; gtik;)~' €
H;

(6) for each j € J,and g € D/, let k; be an element of C; such that gt (g_tjg:tjkj)’l
€ H.

DEFINITION 5.3. The collection of double coset representative {D}, and the as-
sociated collections {Df}, {D%}, and {D;} defined above will be called a cress for
G*modH.

The main result of this section is the following theorem.
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THEOREM 5.4. Let H be a subgroup of the quasi-HNN group
G* = (G,ti,t; | 1elG, tiAit;' = B, t;Cit;' = Cj, t5=cj, i€l, j€]) (5.12)

with base G and associated pairs (A;,B;), and (Cj,C;),i €1, j € J of subgroups of G.
Let {D}, {D;’l}, {Ds}, and {Ds}, s € IU ], be a cress for G*modH.
Then, we have the following:
(I) H is generated by the following:
(1) the generators of the subgroup Hn dGd=' of G, for all d € D;
(2) the elements gt;(gt;gtik;)~', whereiel and g € D';
(3) the elements gtj(gt;gtik;)~", where j€J, g€ D/, and Hngt;Cig™' = @;
(4) the elements gtjg=', where j € J, g€ D/, and Hngt;Cjg™' + @.
(II) H has the presentation (P | R), where P is the set of generating symbols of the
following forms:
(1) the generating symbols of the subgroup HNdGd ! of G, for alld € D;
(2) the symbols g(A;), wherei €I and g € D';
(3) the symbols g(A;), where j € J and g € D/.
(IIl) R is the set of relations of the following forms:
(1) the relations rel(HNdGd ') of the subgroup HndGd ! of G, for alld € D;
(2) the relations HNngA;g~' = HngB;g™', whereic I and g € D;;
(3) the relations HngCjg~' =HngC;g~!, where j € J and g € Dj;
(4) the relations g(A,) - (H N gEighiAgl; gk ) - (@A) = H gBig™,
whereic I and g € D;
(5) the relations g(y;) - (H mgitjg:tjng:tj_lgitfl) (gyp)) ' =Hng(Cpg,
where j € J and g € D/ such that Hngt;C;g~' = @;
(6) the relations g(y;j) - (HngCijg™) - (g(yj)~t =Hng(Cj)g™t, where j €]
and g € D’ such that Hngt;C;g~' + @;
(7) the relations (g(y;))?> = gcjg~", where j € J and g € D’ such that H N
gtiCig™t = Q.

PROOF. Let X be the standard tree constructed in Lemma 5.1 on which G* acts.
Then T = {G}, Yo=O, Y1 ={A;:iel}l,and Yo = {y;:i € J}. Let v = G. Then D = Dy,
Di=D% DJ =D D;=D,,and D;j = Dy,.Since Yo = @, therefore X does not contain
the edges m of Theorem 4.4. Therefore H is generated by the generators of the forms
(I)(1), (3), (4), and (5) of Theorem 4.4. Similarly H has the presentation of generating
symbols (II)(1), (3), and (4), and relations (II)(1), (6), (7), (8), and (9) of Theorem 4.4.

This completes the proof. a

We have the following corollaries of Theorem 5.4.

COROLLARY 5.5. Any subgroup H of G* having trivial intersection with each con-
jugate of the base G is a quasi free.

COROLLARY 5.6. Any subgroup H of G* having trivial intersection with the conju-
gates of B; and C;j is the free product of a quasi free group and the intersection of H
with certain conjugates of G.
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COROLLARY 5.7. IfH is a normal subgroup of G*, HNngGg~! is a quasi free group,
HngAig ' ={1},and HngCjg ' = {1} foralli€1, j€ J, and g € G*, then H is
quasi free.

COROLLARY 5.8. If H has the property that D° = &, for all s € I U J, then H is
a tree product of the subgroups HndGd=' of G, for all d € D with amalgamation
subgroups HNgAig—', HNngBig™', wherei<cl, g € D;,and HngC;g~!, where j € J
and g € D;.

6. Subgroups of HNN groups. This section is an application of Theorem 5.4. First
we start by finding the structures of subgroups of HNN groups. For different methods
of finding the structures of subgroups of HNN groups we refer the readers to [1].

By taking J = @ of Theorem 5.4, we have the following theorem and corollaries.

THEOREM 6.1. Let H be a subgroup of the HNN group,
G* = (G,t; | relG, t;Ait;' =B;, i €1), 6.1)

with base G and associated pairs (A;,B;), i € I subgroups of G.
Let {D}, {Df}, {D'}, and {D;}, i €1, be a cress for G* mod H.
Then, we have the following:
(I) H is generated by the following:
(1) the generators of the subgroups HNndGd~! of G, for all d € D;
(2) the elements gt;(gt; gtiki)~\, whereie I and g € D'.
(II) H has the presentation (P | R), where P is the set of generating symbols of the
following forms:
(1) the generating symbols of the subgroups HNdGd ! of G, for alld € D;
(2) the symbols g(A;), whereic I and g € D.
(Il) R is the set of relations of the following forms:
(1) the relationsrel(HNdGd ') of the subgroups HNndGd "' of G, for alld € D;
(2) the relations HNngA;g~' = HngB;g~', whereicI and g € D;;
(3) the relations g(A;) - (H QEEALIEAE%) (g(A)) '=HngB;g !, where
iclandg € D'

COROLLARY 6.2. Any subgroup of G* having trivial intersection with each conjugate
of the base is free.

COROLLARY 6.3. Any subgroup H of G* having trivial intersection with the conju-

gates of B; is the free product of a free group and the intersection of H with certain
conjugates of G.

COROLLARY 6.4. If H is a normal subgroup of G*, HngGg~! is a free group, and
HngAig ' ={1}, foralliel and g € G*, then H is free.

COROLLARY 6.5. If H has the property that D' = @, for all i € I, then H is a tree
product of the subgroups HndGd ! of G, for all d € D with amalgamation subgroups
HngAig ' and HngB;g~', whereiel and g € D;.
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7. Subgroups of pure quasi-HNN groups. This section is an application of Theorem
5.4. First, we start by finding the structures of subgroups of the pure quasi-HNN
groups.

By taking I = @ in Theorem 5.4, we have the following theorem and corollaries.

THEOREM 7.1. Let H be a subgroup of the pure quasi-HNN group,
G* = (G,tj|1elG, t;Cit;' =Cj, ti =cj, j€ J), (7.1)

with base G and associated pairs (C;,Cj), j € J of subgroups of G.
Let {D}, {Dj.l}, {D’}, and {D,}, j € J, be a cress for G* mod H.
Then, we have the following:
(I) H is generated by the following:
(1) the generators of the subgroups HNndGd ™! of G, for all d € D;
(2) the elementsgtj(fgg:qkj)*l where j€J,ge D/, and Hngt;Cjg ™' = O;
(3) the elements gt;g=', where j € J,g € D/, and Hngt;Cig™' + @.
(II) H has the presentation (P | R), where P is the set of generating symbols of the
following forms:
(1) the generating symbols of the subgroups HNdGd ! of G, for alld € D;
(2) the symbols g(A;), where j € J and g € D/.
(Il) R is the set of relations of the following forms:
(1) the relationsrel(HNdGd 1) of the subgroups HNdGd ! of G, for alld € D;
(2) the relations HngCjg~' =HngC;g~!, where j€ J and g € Dj;
(3) the relations g(y;) - (H n gt;gt;Cigt; 1g—tj*l) - (g(yj) ' =HngCig,
where j € J and g € D/ such that Hngt;Cig™' = @;
(4) the relations g(y;)- (HNngCijg™') - (g(yj)) "' =HngCjg~', where j € ] and
g € DJ such that Hngt;Cig~" + @;
(5) the relations (g(y;))?> = gcjg~", where j € J and g € D’ such that H n
gtiCig™t = Q.

We have the following corollaries of Theorem 7.1.

COROLLARY 7.2. Any subgroup of G* having trivial intersection with each conjugate
of the base G is quasi free.

COROLLARY 7.3. Any subgroup H of G* having trivial intersection with the conju-
gates of C; is the free product of a quasi free group and the intersection of H with
certain conjugates of G.

COROLLARY 7.4. IfH is a normal subgroup of G*, HNngGg~! is a quasi free group,
and HngC;g~' = {1} forall j € J and all g € G*, then H is quasi free.

COROLLARY 7.5. If H has the property that D/ = @, for all j € J, then H is a tree
product of the subgroups HNdGd~'of G, for all d € D with amalgamation subgroups
HngCjg=! where jeJand g € D;.
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