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We extend the structure theorem for the subgroups of the class of HNN groups to a new
class of groups called quasi-HNN groups. The main technique used is the subgroup theo-
rem for groups acting on trees with inversions.
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1. Introduction. Quasi-HNN groups have appeared in [3]. In this paper, we use the

results of [8] to obtain the structure theorem for the subgroups of quasi-HNN groups

and give some applications. We will use the terminology and notation of [3].

Let G be a group, and let I, J be two indexed sets. Let {Ai : i ∈ I}, {Bi : i ∈ I}, and

{Cj : j ∈ J} be families of subgroups of G.

For each i ∈ I, let φi : Ai → Bi be an onto isomorphism and for each j ∈ J, let

αj : Cj → Cj be an automorphism such that α2
j is an inner automorphism deter-

mined by cj ∈ Cj and cj is fixed by αj . That is, αj(cj)= cj and α2
j (c)= cjcc−1

j for all

c ∈ Cj .
The group G∗ with the presentation

G∗ = 〈G,ti,tj | relG, tiAit−1
i = Bi, tjCjt−1

j = Cj, t2
j = cj, i∈ I, j ∈ J

〉
(1.1)

is called a quasi-HNN group with base G and associated pairs (Ai,Bi) and (Cj,Cj),
i ∈ I, j ∈ J of subgroups of G, where 〈G | relG〉 stands for any presentation of G,

tiAit−1
i = Bi stands for the set of relations tiw(a)t−1

i =w(φi(a)), and tjCjt−1
j = Cj

stands for the set of relations tjw(c)t−1
j =w(αj(c)), where w(a), w(φi(a)), w(c),

and w(αj(c)) are words in the generating symbols of the presentation of G of values

a,φi(a), c, and αj(c), respectively, where a runs over the generators of Ai and c over

the generators of Cj .
It is proved in [3] that G is embedded in G∗ (the imbedding theorem of quasi-HNN

groups), and every element g of G∗, g ≠ 1 can be written as a reduced word of G∗.

That is, g = gote1
k1
g1t

e2
k2
g2 ···tenkngn, where gs ∈ G, es = ±1, ks ∈ I∪J, for s = 1, . . . ,n,

such that g contains no subword of the following forms:

(1) tksat
−1
ks , a∈Ai, or

(2) t−1
ks btks , b ∈ Bi, or

(3) teks ct
δ
ks , c ∈ Cj , e,δ=±1, or

(4) t±2
ks , for some ks ∈ J.

We note that if J = ∅, then G∗ = 〈G,ti | relG,tiAit−1
i = Bi,i ∈ I〉 is an HNN group

with base G and associated pairs (Ai,Bi), i∈ I of subgroups of G.
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If I =∅, then G∗ = 〈G, tj | relG, tjCjt−1
j = Cj, t2

j = cj, j ∈ J〉. In this case we call

G∗ a pure quasi-HNN group with base G and associated pairs of subgroups (Cj,Cj),
j ∈ J of G. The notation of a tree product of groups as defined in [2] will be needed.

In this paper, we form the subgroup theorem for the quasi-HNN group G∗, defined

above, by applying the subgroup theorem for groups acting on trees with inversions

obtained by [8]. In particular, if H is a subgroup of the quasi-HNN group G∗ defined

above, then H is itself a quasi-HNN group (with possibly trivial free part); its base is

a tree product π with vertices of the form xGx−1∩H and amalgamated subgroups

either trivial or conjugate of the Ai and Cj intersected with H; moreover, every con-

jugate of G intersected with H is either trivial or is conjugate in H to a vertex of π .

This paper is divided into seven sections. In Section 2, we introduce the concepts

of graphs and the actions of groups on graphs. In Section 3, we have a summary

of the structure of groups acting on trees with inversions. In Section 4, we have a

summary of the structure of the subgroup theorem of the groups acting on trees with

inversions. In Section 5, we associate a tree on which a quasi-HNN group acts and

then we form the subgroup theorem for quasi-HNN groups. In Section 6, we apply

the results of Section 5 to find the structures of the subgroups of HNN group. In

Section 7, we apply the results of Section 5 to find the structures of the subgroups of

pure quasi-HNN group.

2. Basic concepts. We begin by giving preliminary definitions. We denote by a graph

X a pair of disjoint sets V(X) and E(X)with V(X) nonempty, together with a mapping

E(X)→ V(X)×V(X),y → (o(y),t(y)), and a mapping E(X)→ E(X),y →y , satisfying

the conditions that y = y , and o(y) = t(y), for all y ∈ E(X). The case y = y is

possible for some y ∈ E(X). For y ∈ E(X), o(y), and t(y) are called the ends of y ,

and y is called the inverse of y . If A is a set of edges of X, we define A to be the set

of inverses of the edges of A. That is, A = {y : y ∈ A}. For definitions of subgraphs,

trees, morphisms of graphs, and Aut(X), the set of all automorphisms of the graph X
which is a group under the composition of morphisms of graphs, see [5] or [9]. We say

that a groupG acts on a graph X, if there is a group homomorphismφ :G→Aut(X). If

x ∈X (vertex or edge) and g ∈G, we write g(x) for (φ(g))(x). If y ∈ E(X) and g ∈G,

then g(o(y))= o(g(y)), g(t(y))= t(g(y)), and g(y)= g(y). The case g(y)=y for

some g ∈G and some y ∈ E(X) may occur. That is, G acts with inversions on X.

We have the following notations related to the action of the groupG on the graph X:

(1) if x ∈X (vertex or edge), we define G(x)= {g(x) : g ∈G}, and this set is called

the orbit of X containing x;

(2) if x,y ∈ X, we define G(x,y) = {g ∈ G : g(x) = y} and G(x,x) = Gx , the

stabilizer of x. Thus G(x,y)≠∅ if and only if x and y are in the same G orbit.

It is clear that if v ∈ V(X), y ∈ E(X), and u∈ {o(y),t(y)}, then G(v,y)=∅,

Gy =Gy , and Gy ≤Gu. If H ≤G and x ∈X, then it is clear that Hx =H∩Gx ;

(3) let XG be the set of elements of X fixed by G. That is, XG = {x ∈X :G =Gx}.

3. The structure of groups acting on trees with inversions. In this section, we

summarize the presentation for groups of groups acting on trees with inversions

obtained by [5].
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Definition 3.1. LetG be a group acting on a graphX, and T and Y be two subtrees

of X such that T ⊆ Y and XG = ∅. Then T is called a tree of representatives for the

action of G on X if T contains exactly one vertex from each G vertex orbit, and Y is

called a fundamental domain for the action G on X, if each edge of Y has at least

one end in T , and Y contains exactly one edge (say) y from each G edge orbit such

that G(y,y) = ∅, and exactly one pair x and x from each G-edge orbit such that

G(x,x) ≠∅. It is clear that the properties of T and Y imply that if u and v are two

vertices of T such that G(u,v) ≠ ∅, and if x and y are two edges of Y such that

G(x,y)≠∅, then u= v and x =y or x =y .

Let Y be as above. Define the following subsets Y0, Y1, Y2 of edges of Y as follows:

(1) Y0 = E(T), the set of edges of T ;

(2) Y1 = {y ∈ E(Y) : o(y)∈ V(T), t(y) �∈ V(T), G(y,y)=∅};
(3) Y2 = {x ∈ E(Y) : o(x)∈ V(T), t(x) �∈ V(T), G(x,x)≠∅}.

It is clear that Y 0 = Y0, E(Y)= Y0∪Y1∪Y2∪Y 1∪Y 2, and G acts with inversions on X
if and only if Y2 ≠∅.

For the rest of this section G will be a group acting on a graph X, T be a tree of

representatives for the action of the group G on X, and Y be a fundamental domain

for the action of G on X such that T ⊆ Y and XG =∅.

We have the following definitions.

Definition 3.2. For each vertex v of X, define v∗ to be the unique vertex of T
such that G(v,v∗) ≠∅. That is, v and v∗ are in the same G vertex orbit. It is clear

that if v is a vertex of T , then v∗ = v and in general, for any two vertices u and v of

X such that G(u,v)≠∅, we have u∗ = v∗.

Definition 3.3. For each edge y of Y0∪Y1∪Y2 define [y] to be an element of

G(t(y),(t(y))∗). That is, [y] satisfies the condition [y]((t(y))∗)= t(y), to be cho-

sen as follows:

[y]= 1 if y ∈ Y0, [y](y)=y if y ∈ Y2. (3.1)

Define [y] to be the element

[y]=


[y] if y ∈ Y0∪Y2,

[y]−1 if y ∈ Y1,
(3.2)

[y] is called the value of the edge y .

Definition 3.4. For each edge y of Y define −y to be the edge −y = [y]−1(y) if

y ∈ Y1, otherwise −y =y . It is clear that t(−y)= (t(y))∗ and G−y ≤G(t(y))∗ .

Definition 3.5. By a reduced word w of G we mean an expression of the form

w = g0 ·y1 ·g1 ·y2 ·g2 ·····yn ·gn, n≥ 0, yi ∈ E(Y), for i= 1,2, . . . ,n such that

(1) g0 ∈G(o(y1))∗ ;

(2) gi ∈G(t(yi))∗ , for i= 1,2, . . . ,n;

(3) (t(yi))∗ = (o(yi+1))∗, for i= 1,2, . . . ,n−1;

(4) w contains no expression of the form yi ·giy−1
i if gi ∈G−yi and G(yi,yi)=∅,

or yi ·gi ·yi if gi ∈Gyi and G(yi,yi)≠∅.
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If w = g0, then w is called a trivial word of G. If (o(y1))∗ = (t(yn))∗ then w is called

a closed word of G.

The value of w denoted [w] is defined to be the element

[w]= g0
[
y1
]
g1
[
y2
]
g2 ···

[
yn
]
gn of G. (3.3)

Before we state the main result of this section, we have the following notations: let

v ∈ V(T), m∈ Y0, y ∈ Y1, and x ∈ Y2, then

(1) 〈Gv | relGv〉 stands for any presentation of Gv ;

(2) Gm =Gm stands for the set of relations w(g)=w′(g), where w(g) and w′(g)
are words in the generating symbols of Go(m) and Gt(m), respectively of value

g, and g is in the set of the generators of Gm;

(3) y ·[y]−1Gy[y]·y−1 =Gy stands for the set of relations:yw([y]−1g[y])y−1 =
w(g), where w([y]−1g[y]) and w(g) are words in the generating symbols of

G(t(y))∗ and G(o(y))∗ of values [y]−1g[y] and g, respectively, where g is in the

set of the generators of Gy ;

(4) x ·Gx ·x−1 = Gx stands for the set of relations: xw(g)x−1 = w′(g), where

w(g) and w′(g) are words in the generating symbols of Go(x) of values g and

[x]g[x]−1, respectively, where g is in the set of the generators of Gx ;

(5) x2 = [x]2 stands for the of relation x2 =w([x]2) where w([x]2) is a word in

the set of the generators of Gx .

Theorem 3.6. Let G, X, T , Y , Y0, Y1, and Y2 be as above. Then the following are

equivalent:

(i) X is tree;

(ii) G is generated by the generators of Gv and by the elements [y] and [x] and G
has the presentation

G =
〈
Gv,y,x | relGv, Gm =Gm, y ·[y]−1Gy[y]·y−1 =Gy,
x ·Gx ·x−1 =Gx, x2 = [x]2

〉 (3.4)

via the map Gv →Gv , y → [y], and x→ [x] where v ∈ V(T), m ∈ Y0, y ∈ Y1,

and x ∈ Y2;

(iii) every element of G is the value of a closed and reduced word of G. Moreover,

if w is a nontrivial closed and reduced word of G, then [w] is not the identity

element of G.

Proof. (i) implies (ii) follows from [5, Theorem 5.1].

(ii) implies (iii) follows from [6, Corollary 1].

(iii) implies (i) follows from [7, Corollary 3.6].

4. Structure theorem for subgroups of groups acting on trees with inversions.

In this section, we summarize the methods for obtaining generators and presentation

for subgroups of groups acting on trees with inversions obtained by [8, Theorem 3,

page 28]. In [4, Theorem 2.5, page 91] generators and presentation for a subgroup B of

a given groupAwith given generators and presentation is obtained by a method called

the Reidemeister-Schreier methods. In view of such methods we have the following
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remarks related to subgroups of groups acting on trees with inversions: let G be a

group acting on a tree X, v be a vertex of X, z be an edge of X and, H be a subgroup

of G, then

(1) the generators and presentation for the vertex stabilizer Gv of v under G are

arbitrary;

(2) the generators for the edge stabilizer Gz of z under G are arbitrary;

(3) the generators and presentation for G are those of Theorem 3.6(ii);

(4) the generators and presentation for the vertex stabilizer Hv = H ∩Gv of v
under H are those obtained by the Reidemeister-Schreier methods from the

generators and presentation for Gv ;

(5) the generators for the edge stabilizer Hz = H ∩Gz of z under H are those

obtained by the Reidemeister-Schreier methods from the generators of Gz;
(6) the generators and presentation for H are given in Theorem 4.4.

Now we proceed to obtain the generators and presentation for subgroups of groups

acting on trees with inversions as follows.

Let G, X, T , Y , Y0, Y1, and Y2 be as above such that X is a tree, and H be a subgroup

of G. We have the following definitions.

Definition 4.1. (1) For each g ∈ G and y ∈ Y0 ∪ Y1 ∪ Y2, define Dgy to be any

double coset representative system for Go(y)mod(Go(y) ∩g−1Hg,Gy) containing 1

but otherwise arbitrary.

(2) For each v ∈ V(T), let Dv be a double coset representative system for

Gmod(H,Gv) satisfying the condition that if g ∈Dv and

g = g0
[
y1
]
g1
[
y2
]
g2 ···

[
yn
]
gn, (4.1)

where g0 · y1 · g1 · y2 · g2 · ··· · yn · gn is a closed and reduced word of G, then

g0[y1]g1[y2]g2 ···[yi]∈D(o(yi+1))∗ , andgi∈Dfiyi , where fi=g0[y1]g1[y2]g2 ···[yi].
For more details see [8, page 23].

(3) For each y ∈ Y0 ∪Y1 ∪Y2, define Dy to be the set Dy = {de : d ∈ Do(y), e ∈
Ddy, de[y] �∈D(t(y))∗}, and defineDy to be the setDy = {de : d∈D0(y), e∈Ddy, de[y]
∈D(t(y))∗}.

Definition 4.2. The collection of double coset representative {Dv}, and the as-

sociated collections {Dy}, and {Dy} defined above will be called a cress for GmodH.

For the existence of a cress for GmodH we refer the readers to [8, page 23].

Proposition 4.3. For each y ∈ Y0∪Y1∪Y2 and g ∈Dy there exist unique elements

g[y]∈D(t(y))∗ , g[y]∈Dg[y]y , and ay ∈ [y]−1Gy[y] such that g[y](g[y]g[y]ay)−1

∈H.

Proof. See [8, page 28].

Note that H∩g[y]g[y]Gyg[y]
−1
g[y]

−1
is a subgroup of H∩gGo(y)g−1.

Before we proceed to state the main result of this section, we introduce the following

convention on notation on the generators and defining relations of H:

(A) For any vertex v of T , 〈H∩dGvd−1 | rel(H∩dGvd−1)〉 is the presentation of

the subgroup H∩dGvd−1 of Gv obtained by the Reidemeister-Schreier methods.
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(B) For any y ∈ Y0∪Y1∪Y2, the relations

g(y)·
(
H∩g[y]g[y]Gyg[y]

−1
g[y]

−1)·(g(y))−1 =H∩gGyg−1, (4.2)

where g ∈Dy are similar to the relations of G as in Theorem 3.6(ii).

The main result of this section is the following theorem. For the proof see [8, The-

orem 3].

Theorem 4.4. Let G be a group acting on a tree X, and let T be a tree of repre-

sentatives for the action of the group G on X and Y be a fundamental domain for the

action of G on X such that T ⊆ Y and XG = ∅. Let H be a subgroup of G, and {Du},
{Dz}, and {Dz} be a cress for GmodH, for all u∈ V(T), and all z ∈ Y0∪Y1∪Y2. Then

we have the following:

(I) H is generated by the following:

(1) the generators of the subgroups H ∩ dGvd−1 of Gv , where v ∈ V(T) and

d∈Dv ;

(2) the elements g(ggam)−1, where m∈ Y0 and g ∈Dm;

(3) the elements g[y](g[y]g[y]ay)−1, where y ∈ Y1 and g ∈Dy ;

(4) the elements g[x](g[x]g[x]ax)−1, where x ∈ Y2 and g ∈Dx such that H∩
[x]Gxg−1 =∅;

(5) the elements g[x]g−1, where x ∈ Y2 and g ∈Dx such that H∩g[x]Gxg−1 ≠
∅.

(II) H has the presentation 〈P | R〉, where P is the set of generating symbols of the

following forms:

(1) the generating symbols of the subgroups H∩dGvd−1 of Gv , where d∈Dv ;

(2) the edges g(m), where m∈ Y0 and g ∈Dm;

(3) the edges g(y), where y ∈ Y1 and g ∈Dy ;

(4) the edges g(x), where x ∈ Y2 and g ∈Dx such that H∩g[x]Gxg−1 ≠∅.

(III) R is the set of relations of the following forms:

(1) the relations, rel(H ∩dGvd−1) of the subgroups H ∩dGvd−1 of Gv , where

d∈Dv ;

(2) the relations H∩gGmg−1 =H∩gGmg−1, where m∈ Y0 and g ∈Dm;

(3) the relations H∩gGyg−1 =H∩gGyg−1, where y ∈ Y0 and g ∈Dy ;

(4) the relations H∩gGxg−1 =H∩gGxg−1, where x ∈ Y2 and g ∈Dx such that

H∩g[x]Gxg−1 ≠∅;

(5) the relations g(m) · (H ∩ggGmg−1g−1) · (g(m))−1 = H ∩gGmg−1, where

m∈ Y0 and g ∈Dm;

(6) the relations g(y) · (H ∩ g[y]g[y]Gyg[y]
−1
g[y]

−1
) · (de(y))−1 = H ∩

gGyg−1, where y ∈ Y1 and g ∈Dy ;

(7) the relations g(x) · (H ∩ g[x]g[x]Gxg[x]
−1
g[x]

−1
) · (g(x))−1 = H ∩

gGxg−1, where x ∈ Y2 and g ∈Dx such that H∩g[x]Gxg−1 ≠∅;

(8) the relations g(x)·(H∩gGxg−1)·(g(x))−1 =H∩gGxg−1, where x ∈ Y2 and

g ∈Dx such that H∩g[x]Gxg−1 ≠∅;

(9) the relations (g(x))2 = g[x]2g−1, where x ∈ Y2 and g ∈ Dx such that H∩
g[x]Gxg−1 ≠∅.
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Definition 4.5. A group is called quasi free group if it is a free product of a free

group and a number of cyclic groups of order 2.

We have the following corollaries of Theorem 4.4.

Corollary 4.6. If H∩Gv = {1} for all v ∈ V(X), then H is a quasi free group.

Corollary 4.7. If H ∩Gy = {1} for all y ∈ E(X), then H is a free product of a

quasi-HNN group and the intersections of H with Gv for all v ∈ V(T).
Corollary 4.8. If H is a nontrivial free product, then H is either infinite cyclic

group, a finite cyclic group of order 2, or H is contained in Gv for some v ∈ V(X).
Corollary 4.9. IfH is a normal subgroup ofG such thatH∩Gv is quasi free group

for all v ∈ V(X), and H∩Gy = {1} for all y ∈ E(X), then H is a quasi free group.

Corollary 4.10. If H has the property that Dz =∅, for all z ∈ Y0∪Y1∪Y2, then H
is a tree product of the subgroups H∩dGvd−1 of Gv , where v ∈ V(T) and d∈Dv with

amalgamation subgroups H∩gGmg−1, m∈ Y0, g ∈Dm, H∩gGyg−1, y ∈ Y1, g ∈Dy ,

and H∩gGxg−1, x ∈ Y2, g ∈Dx such that H∩g[x]Gxg−1 ≠∅.

5. Subgroups of quasi-HNN groups. In this section, we construct a tree on which

a quasi-HNN group acts with inversions, and then we formulate its subgroups.

The following lemma is essential for the proof of the main theorem of the paper.

Lemma 5.1. A group is a quasi-HNN group if and only if there is a tree on which the

group acts with inversion and is transitive on the set of vertices. Moreover, the stabilizer

of any vertex is conjugate to the base and the stabilizer of any edge is conjugate to an

associate subgroup of the base.

Proof. Let G be a group acting with inversions on a tree X such that G is transitive

on V(X). Let T be a tree of representatives, and Y be a fundamental domain for the

action of G on X such that T ⊆ Y . Since G is transitive on V(X), therefore T consists

of exactly one vertex v (say) without edges. So Y0 = ∅. Since G acts with inversions

on X, therefore Y2 ≠∅. Then by Theorem 3.6, G has the presentation

G = 〈Gv,y,x | relGv, y ·[y]−1Gy[y]·y−1 =Gy, x ·Gx ·x−1 =Gx, x2 = [x]2〉 (5.1)

via the map Gv → Gv , y → [y], and x → [x] where v ∈ V(T), y ∈ Y1, and x ∈ Y2.

Then G is a quasi-HNN group of base Gv , and associated isomorphic pairs

([y]−1Gy[y],Gy) of subgroups ofGv via the isomorphismφy : [y]−1Gy[y]→Gy de-

fined byφy([y]−1g[y])= g, for all g ∈Gy and all y ∈ Y1 such that o(y)= v , and as-

sociated isomorphic pairs (Gx,Gx) of subgroups of Gv via the mapping αx :Gx →Gx
defined by αx(g) = [x]g[x]−1, for all g ∈ Gx and all x ∈ Y2 such that o(x) = v . Let

gx = [x]2. It is clear that αx is an automorphism ofGx , and α2
x is inner automorphism

of Gx determined by gx , and αx([x]2)= [x]2.

Conversely, let G∗ be the quasi-HNN group

G∗ = 〈G,ti,tj | relG, tiAit−1
i = Bi, tjCjt2

j = Cj, t2
j = cj, i∈ I, j ∈ J

〉
(5.2)

of base G, and associated pairs (Ai,Bi), and (Cj,Cj), i∈ I, j ∈ J of subgroups of G.
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Now, we construct a tree X on which G∗ acts on X with inversions such that G∗ is

transitive on V(X), and call it the standard tree associated with the quasi-HNN group.

In this construction, define

V(X)= {gG : g ∈G∗}, (5.3)

and define

E(X)= {(gBi,ti
)

: g ∈G∗, i∈ I}∪{(gAi,t−1
i
)

: g ∈G∗, i∈ I}

∪{(gCj,tj
)

: g ∈G∗, j ∈ J}.
(5.4)

The terminals of the edges are defined as follows:

o
(
gBi,ti

)= o(gAi,t−1
i
)= o(gCj,tj

)= gG,
t
(
gBi,ti

)= gtiG, t
(
gAi,t−1

i
)= gt−1

i G, t
(
gCj,tj

)= gtjG.
(5.5)

The inverses of the edges are defined as follows:

(
gBi,ti

)= (gtiAi,t−1
i
)
,

(
gAi,t−1

i
)= (gt−1

i Bi,ti
)
,

(
gCj,tj

)= (gtjCj,tj
)
. (5.6)

From above X is a graph. G∗ acts on X as follows: let g′ ∈G∗. Then for any vertex

gG of X we have g′(gG)= g′gG, and for any edge (gBi,ti), or (gAi,t−1
i ), or (gCj,tj)

of X, we have

g′
(
gBi,ti

)= (g′gBi,ti
)
, g′

(
gAi,t−1

i
)= (g′gAi,t−1

i
)
, g′

(
gCj,tj

)= (g′gCj,tj
)
.

(5.7)

The action of G∗ on the vertices of X is transitive because for any two vertices aG
and bG of X we have ba−1(aG)= bG. That is, the element ba−1 ofG∗ maps the vertex

aG to the vertex bG. Then there is exactly one G vertex orbit. We take T = {G} to be

the tree of representatives for the action of G∗ on X. G∗ acts on X with inversions

because the element tj ∈G∗ maps the edge (Cj,tj) to its inverse (Cj,tj). That is,

tj
(
Cj,tj

)= (tjCj,tj
)= (Cj,tj

)
. (5.8)

Let λi, βi, and γj stand for the edges (Bi,ti), (Ai,t−1
i ), and (Cj,tj), respectively.

Then

o
(
λi
)= o(βi

)= o(γj
)=G, t

(
λi
)= tiG, t

(
βi
)= t−1

i G, t
(
γj
)= tjG,

λi =
(
tiAi,t−1

i
)
, βi =

(
t−1
i Bi,ti

)
, γj =

(
tjCj,tj

)
.

(5.9)

From above, we see that λi and λi, and βi and βi are in different G∗ edge orbits, while

γj and γj are in the same G∗ edge orbit. Moreover, any edge of X is of the form g(λi),
g(λi), or g(γj) for some g ∈G∗.
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Let Y be the subgraph ofX consisting of the edges λi, βi, and γj , and their terminals

and inverses for all i∈ I and all j ∈ J. Thus, V(Y)= {G,tiG,t−1
i G,tjG : i∈ I, j ∈ J} and

E(Y) = {λi,βi,γj,λi,βi,γj : i ∈ I, j ∈ J}. It is clear that T is a tree of representatives

for the action G∗ on X, and Y is a fundamental domain for the action of G∗ on X and

T ⊆ Y . Moreover, Y0 =∅, Y1 = {λi : i∈ I}, and Y2 = {γj : i∈ J}.
From above, it is easy to verify that the stabilizer of the vertex v , where v = G

is G∗v = G and the stabilizers of the edges λi, βi, and γj are G∗λi = Bi, G∗βi = Ai, and

G∗γj = Cj , respectively. This implies that the stabilizer of any vertex is conjugate to

the base G and the stabilizer of any edge is conjugate to an associate subgroup Ai,
Bi, or Cj of the base G. The values of the edges λi, βi, and γj are [λi]= ti, [βi]= t−1

i ,

and [γj]= tj , respectively. By Theorem 3.6, the presentation of G∗ and the action of

G∗ on X implies that X is a tree.

This completes the proof.

Remark 5.2. The tree X, constructed above, will be called the standard tree of the

quasi-HNN group G∗.

In view of Lemma 5.1 and Definition 4.2 the following concepts is clear.

Let H be a subgroup of the quasi-HNN group

G∗ = 〈G,ti,tj | relG, tiAit−1
i = Bi, tjCjt−1

j = Cj, t2
j = cj, i∈ I, j ∈ J

〉
(5.10)

of base G and associated pairs (Ai,Bi), and (Cj,Cj), i∈ I, j ∈ J of subgroups of G.

We have the following concepts:

(1) for each i ∈ I, j ∈ J, and d ∈ G, let Ddi and Ddj be double coset representa-

tive system for Gmod(G∩d−1Hd,Bi), and Gmod(G∩d−1Hd,Cj), respectively

containing 1, but otherwise arbitrary;

(2) let D be a double coset representative system for G∗mod(H,D) satisfying the

condition that if g = gote1
k1
g1t

e2
k2
g2 ···tenkngn ∈ D, then ws ∈ D and gs ∈ Dwsks ,

where

ws = gote1
k1
g1t

e2
k2
g2 ···tesks for s = 1, . . . ,n; (5.11)

(3) for each s ∈ I∪J, let Ds = {de : d∈D, e ∈Dds , dets �∈D}, and Ds = {de : d∈D,
e∈Dds , dets ∈D};

(4) for each s ∈ I∪J, and g ∈Ds , let gts ∈D be the representative of gts in D, and

gts ∈Dgtss be the representative of gts in Dgtss ;

(5) for each i∈ I, and g ∈Di, let ki be an element ofAi such that gti(gti gtiki)−1 ∈
H;

(6) for each j ∈ J, and g ∈Dj , let kj be an element of Cj such that gtj(gtj gtjkj)−1

∈H.

Definition 5.3. The collection of double coset representative {D}, and the as-

sociated collections {Dds }, {Ds}, and {Ds} defined above will be called a cress for

G∗modH.

The main result of this section is the following theorem.
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Theorem 5.4. Let H be a subgroup of the quasi-HNN group

G∗ = 〈G,ti,tj | relG, tiAit−1
i = Bi, tjCjt−1

j = Cj, t2
j = cj, i∈ I, j ∈ J

〉
(5.12)

with base G and associated pairs (Ai,Bi), and (Cj,Cj), i∈ I, j ∈ J of subgroups of G.

Let {D}, {Dds }, {Ds}, and {Ds}, s ∈ I∪J, be a cress for G∗modH.

Then, we have the following:

(I) H is generated by the following:

(1) the generators of the subgroup H∩dGd−1 of G, for all d∈D;

(2) the elements gti(gti gtiki)−1, where i∈ I and g ∈Di;
(3) the elements gtj(gtj gtjkj)−1, where j ∈ J, g ∈Dj , and H∩gtjCjg−1 =∅;

(4) the elements gtjg−1, where j ∈ J, g ∈Dj , and H∩gtjCjg−1 ≠∅.

(II) H has the presentation 〈P | R〉, where P is the set of generating symbols of the

following forms:

(1) the generating symbols of the subgroup H∩dGd−1 of G, for all d∈D;

(2) the symbols g(λi), where i∈ I and g ∈Di;
(3) the symbols g(λj), where j ∈ J and g ∈Dj .

(III) R is the set of relations of the following forms:

(1) the relations rel(H∩dGd−1) of the subgroup H∩dGd−1 of G, for all d∈D;

(2) the relations H∩gAig−1 =H∩gBig−1, where i∈ I and g ∈Di;
(3) the relations H∩gCjg−1 =H∩gCjg−1, where j ∈ J and g ∈Dj ;
(4) the relations g(λi) · (H ∩ gti gtiAigti

−1
gti

−1) · (g(λi))−1 = H ∩ gBig−1,

where i∈ I and g ∈Di;
(5) the relations g(γj) · (H ∩gtj gtjCjgtj

−1
gtj

−1) · (g(γj))−1 = H ∩g(Cj)g−1,

where j ∈ J and g ∈Dj such that H∩gtjCjg−1 =∅;

(6) the relations g(γj) · (H ∩gCjg−1) · (g(γj))−1 = H∩g(Cj)g−1, where j ∈ J
and g ∈Dj such that H∩gtjCjg−1 ≠∅;

(7) the relations (g(γj))2 = gcjg−1, where j ∈ J and g ∈ Dj such that H ∩
gtjCjg−1 ≠∅.

Proof. Let X be the standard tree constructed in Lemma 5.1 on which G∗ acts.

Then T = {G}, Y0 =∅, Y1 = {λi : i∈ I}, and Y2 = {γj : i∈ J}. Let v =G. Then D =Dv ,

Di =Dλi ,Dj =Dγj ,Di =Dλi , andDj =Dγj . Since Y0 =∅, thereforeX does not contain

the edgesm of Theorem 4.4. Therefore H is generated by the generators of the forms

(I)(1), (3), (4), and (5) of Theorem 4.4. Similarly H has the presentation of generating

symbols (II)(1), (3), and (4), and relations (II)(1), (6), (7), (8), and (9) of Theorem 4.4.

This completes the proof.

We have the following corollaries of Theorem 5.4.

Corollary 5.5. Any subgroup H of G∗ having trivial intersection with each con-

jugate of the base G is a quasi free.

Corollary 5.6. Any subgroup H of G∗ having trivial intersection with the conju-

gates of Bi and Cj is the free product of a quasi free group and the intersection of H
with certain conjugates of G.
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Corollary 5.7. If H is a normal subgroup of G∗, H∩gGg−1 is a quasi free group,

H∩gAig−1 = {1}, and H∩gCjg−1 = {1} for all i ∈ I, j ∈ J, and g ∈ G∗, then H is

quasi free.

Corollary 5.8. If H has the property that Ds = ∅, for all s ∈ I ∪ J, then H is

a tree product of the subgroups H ∩dGd−1 of G, for all d ∈ D with amalgamation

subgroups H∩gAig−1, H∩gBig−1, where i∈ I, g ∈Di, and H∩gCjg−1, where j ∈ J
and g ∈Dj .

6. Subgroups of HNN groups. This section is an application of Theorem 5.4. First

we start by finding the structures of subgroups of HNN groups. For different methods

of finding the structures of subgroups of HNN groups we refer the readers to [1].

By taking J =∅ of Theorem 5.4, we have the following theorem and corollaries.

Theorem 6.1. Let H be a subgroup of the HNN group,

G∗ = 〈G,ti | relG, tiAit−1
i = Bi, i∈ I

〉
, (6.1)

with base G and associated pairs (Ai,Bi), i∈ I subgroups of G.

Let {D}, {Ddi }, {Di}, and {Di}, i∈ I, be a cress for G∗modH.

Then, we have the following:

(I) H is generated by the following:

(1) the generators of the subgroups H∩dGd−1 of G, for all d∈D;

(2) the elements gti(gti gtiki)−1, where i∈ I and g ∈Di.
(II) H has the presentation 〈P | R〉, where P is the set of generating symbols of the

following forms:

(1) the generating symbols of the subgroups H∩dGd−1 of G, for all d∈D;

(2) the symbols g(λi), where i∈ I and g ∈Di.
(III) R is the set of relations of the following forms:

(1) the relations rel(H∩dGd−1) of the subgroups H∩dGd−1 of G, for all d∈D;

(2) the relations H∩gAig−1 =H∩gBig−1, where i∈ I and g ∈Di;
(3) the relations g(λi)·(H∩gti gtiAigti

−1
gti

−1)·(g(λi))−1=H∩gBig−1, where

i∈ I and g ∈Di.
Corollary 6.2. Any subgroup ofG∗ having trivial intersection with each conjugate

of the base is free.

Corollary 6.3. Any subgroup H of G∗ having trivial intersection with the conju-

gates of Bi is the free product of a free group and the intersection of H with certain

conjugates of G.

Corollary 6.4. If H is a normal subgroup of G∗, H∩gGg−1 is a free group, and

H∩gAig−1 = {1}, for all i∈ I and g ∈G∗, then H is free.

Corollary 6.5. If H has the property that Di = ∅, for all i ∈ I, then H is a tree

product of the subgroups H∩dGd−1 of G, for all d∈D with amalgamation subgroups

H∩gAig−1 and H∩gBig−1, where i∈ I and g ∈Di.
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7. Subgroups of pure quasi-HNN groups. This section is an application of Theorem

5.4. First, we start by finding the structures of subgroups of the pure quasi-HNN

groups.

By taking I =∅ in Theorem 5.4, we have the following theorem and corollaries.

Theorem 7.1. Let H be a subgroup of the pure quasi-HNN group,

G∗ = 〈G,tj | relG, tjCjt−1
j = Cj, t2

j = cj, j ∈ J
〉
, (7.1)

with base G and associated pairs (Cj,Cj), j ∈ J of subgroups of G.

Let {D}, {Ddj }, {Dj}, and {Dj}, j ∈ J, be a cress for G∗modH.

Then, we have the following:

(I) H is generated by the following:

(1) the generators of the subgroups H∩dGd−1 of G, for all d∈D;

(2) the elements gtj(gtj gtjkj)−1 where j ∈ J, g ∈Dj , and H∩gtjCjg−1 =∅;

(3) the elements gtjg−1, where j ∈ J, g ∈Dj , and H∩gtjCjg−1 ≠∅.

(II) H has the presentation 〈P | R〉, where P is the set of generating symbols of the

following forms:

(1) the generating symbols of the subgroups H∩dGd−1 of G, for all d∈D;

(2) the symbols g(λj), where j ∈ J and g ∈Dj .
(III) R is the set of relations of the following forms:

(1) the relations rel(H∩dGd−1) of the subgroups H∩dGd−1 of G, for all d∈D;

(2) the relations H∩gCjg−1 =H∩gCjg−1, where j ∈ J and g ∈Dj ;
(3) the relations g(γj) · (H ∩ gtj gtjCjgtj

−1
gtj

−1) · (g(γj))−1 = H ∩ gCjg−1,

where j ∈ J and g ∈Dj such that H∩gtjCjg−1 =∅;

(4) the relations g(γj)·(H∩gCjg−1)·(g(γj))−1 =H∩gCjg−1, where j ∈ J and

g ∈Dj such that H∩gtjCjg−1 ≠∅;

(5) the relations (g(γj))2 = gcjg−1, where j ∈ J and g ∈ Dj such that H ∩
gtjCjg−1 ≠∅.

We have the following corollaries of Theorem 7.1.

Corollary 7.2. Any subgroup ofG∗ having trivial intersection with each conjugate

of the base G is quasi free.

Corollary 7.3. Any subgroup H of G∗ having trivial intersection with the conju-

gates of Cj is the free product of a quasi free group and the intersection of H with

certain conjugates of G.

Corollary 7.4. If H is a normal subgroup of G∗, H∩gGg−1 is a quasi free group,

and H∩gCjg−1 = {1} for all j ∈ J and all g ∈G∗, then H is quasi free.

Corollary 7.5. If H has the property that Dj = ∅, for all j ∈ J, then H is a tree

product of the subgroups H∩dGd−1of G, for all d∈D with amalgamation subgroups

H∩gCjg−1 where j ∈ J and g ∈Dj .
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