RADIUS PROBLEMS FOR A SUBCLASS OF CLOSE-TO-CONVEX UNIVALENT FUNCTIONS

KHALIDA INAYAT NOOR

Mathematics Department College of Science King Saud University, Riyadh 11451 Saudi Arabia

(Received July 16, 1990 and in revised form December 26, 1990)

ABSTRACT. Let P[A,B], $-1 \le B < A \le 1$, be the class of functions p such that p(z) is subordinate to $\frac{1+Az}{1+Bz}$. A function f, analytic in the unit disk E is said to belong to the class $K_{\beta}^*[A,B]$ if, and only if, there exists a function g with $\frac{zg'(z)}{g(z)} \in P[A,B]$ such that $\operatorname{Re}\frac{(zf'(z))'}{g'(z)} > \beta$, $0 \le \beta < 1$ and $z \in E$. The functions in this class are close-to-convex and hence univalent. We study its relationship with some of the other subclasses of univalent functions. Some radius problems are also solved.

KEY WORDS AND PHRASES. Close-to-convex, starlike univalent, convex, radius of convexity. 1991 AMS SUBJECT CLASSIFICATION CODE. 30A32, 30A34.

1. INTRODUCTION.

Let f be analytic in $E = \{z : |z| < 1\}$ and be given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

A function g, analytic in E, is called subordinate to a function G if there exists a Schwarz function w(z), analytic in E with w(0) = 0 and |w(z)| < 1 in E, such that g(z) = G(w(z)).

In [1], Janowski introduced the class P[A,B]. For A and B, $-1 \le B < A \le 1$, a function p, analytic in E with p(0) = 1 belongs to the class P[A,B] if p(z) is subordinate to $\frac{1+Az}{1+Bz}$. When A = 1, B = -1, we obtain the class P of functions with positive real part in E. Also for $A = 1 - 2\beta$, B = -1, $0 \le \beta < 1$, we have the class $P(\beta)$. A function $h \in P(\beta)$, $0 \le \beta < 1$ if and only if $\operatorname{Re} h(z) > \beta$, $z \in E$.

Let $S^*[A, B]$ and C[A, B] denote the classes of functions, analytic in E, and given by (1.1) such that $\frac{zf'(z)}{f(z)} \in P[A, B]$ and $\frac{(zf'(z))'}{f'(z)} \in P[A, B]$ respectively. Also, for B = -1 and $A = 1 - 2\gamma$, $0 \le \gamma < 1$, we have $S^*(\gamma)$ and $C(\gamma)$ the classes of starlike and convex functions of order γ , see [2]. Now we have the following:

DEFINITION 1.1: Let f be analytic in E and be given by (1.1). Then f is said to be in the class $K_{\beta}[A,B], -1 \leq B < A \leq 1$ if and only if there exists a $g \in S^*[A,B]$ such that, for $z \in E$. $\frac{zf'(z)}{g(z)} \in P(\beta)$.

This class has been defined and studied by Silvia [3] in a more general way. When B = -1, A = 1 and $\beta = 0$, we have the class K of close-to-convex univalent functions.

DEFINITION 1.2.: Let f be analytic in E and be given by (1.1). Then $f \in K_{\beta}^*[A, B]$ if and only there exists a $g \in S^*[A, B]$ such that $\frac{(zf'(z))'}{g'(z)} \in P(\beta)$ for $z \in E$.

For $\beta = 0$, A = 1 and B = -1, we obtain the class K^* discussed in [4].

If we take $g \in C[A, B]$ in Definition 1.2, we obtain the class $C^*_{\beta}[A, B]$. The special cases of this class have been investigated in [5, 6, 7].

We shall focus on the class $K_{\beta}^*[A, B]$ and establish the relationship of this class with some other subclasses of close-to-convex functions. It is clear that

$$C[A,B] \subset S^*[A,B] \subset K_{\beta}[A,B] \subset K$$

and

$$C[A,B]\subset C^*_\beta[A,B]\subset K^*_\beta[A,B]\subset K_\beta[A,B]\subset K$$

We shall also solve some radius problems for the functions in $K^*_{\beta}[A, B]$.

2. PRELIMINARY RESULTS.

We shall need the following:

LEMMA 2.1 [8]: If $f \in C(\gamma)$, then f(z) is analytic, univalent and starlike of order $\lambda(\gamma)$ where, for $0 \le \gamma < 1$,

$$\lambda(\gamma) = \begin{cases} \frac{4^{\gamma}(1-2\gamma)}{4-2^{2\gamma}+1}, & \gamma \neq \frac{1}{2} \\ (\log 4)^{-1}, & \gamma = \frac{1}{2} \end{cases}$$

This result is sharp.

LEMMA 2.2. Let $p \in P(\beta)$, $0 \le \beta < 1$. Then

i)
$$p(z) = (1 - \beta)h(z) + \beta, h \in P$$
 (see [2]).

ii)
$$|p'(z)| \leq \frac{2[\operatorname{Re} p(z) - \beta]}{1 - r^2}$$

iii)
$$\left| \frac{p'(z)}{p(z)} \right| \le \frac{2(1-\beta)}{(1-r)((1-2\beta)r+1)}$$

For (ii) and (iii), we refer to [9].

LEMMA 2.3. The radius of convexity of $S^*[A, B]$ is given by the smallest root r_o in (0,1) of

i)
$$A^2r^2 - (3A - B)r + 1 = 0$$
 if $R_1 \le R_2$

ii)
$$[(A-B)+4A(1-A)]r^4+2[(A-B)+2(1-A)^2]r^2+(A-B)r-4(1-A)=0, \quad \text{if } R_2 \leq R_1,$$

where

$$R_1 = \left(\frac{L}{K}\right)^{1/2} \,, \qquad R_2 = \frac{1-Ar}{1-Br} \,, \qquad L = (1-A)(1+Ar^2) \,,$$

and

$$K = (A - B)(1 - r^2) + (1 - B)(1 + Br^2).$$

LEMMA 2.4. Let $p \in P[A, B]$. Then

$$\frac{1-Ar}{1-Br} \le \operatorname{Re} p(z) \le |p(z)| \le \frac{1+Ar}{1+Br}$$

LEMMA 2.5. Let N and D be analytic in E, D maps onto a many-sheeted starlike region.

$$N(0)=0=D(0) \text{ and } \frac{N'(z)}{D'(z)} \, \in P[A,B]. \ \text{ Then } \frac{N(z)}{D(z)} \, \in [A,B].$$

For the above two lemmas we refer to [11].

3. MAIN RESULTS.

From Definition 1.2 and Lemma 2.5, we clearly see that the function f belonging to $K_{\beta}^*[A, B]$ is close-to-convex and hence univalent. In fact, we can prove the following:

THEOREM 3.1. Let $f \in K_{\beta}^*[A, B]$, $0 \le \beta < 1$. Then $f \in K_{\sigma}[A, B]$, where $\sigma(\beta)$ is given as

$$\sigma(\beta) = \begin{cases} \frac{4^{\beta}(1-2\beta)}{4-2^{2\beta}+1}, & \beta \neq \frac{1}{2} \\ (\log 4)^{-1}, & \beta = \frac{1}{2} \end{cases}$$
(3.1)

This result is sharp for $A = 1 - b\beta$, $\beta = 1$.

PROOF. Since $f \in K_{\beta}^*[A, B]$, there exists a $g \in S^*[A, B]$ such that, for $z \in E$,

$$\frac{(zf'(z))'}{g'(z)} = (1 - \beta)h(z) + \beta, \quad h \in P$$

$$= (1 - \beta)\frac{z\phi'(z)}{\phi(z)} + \beta, \quad \text{for some } \phi \in S^*$$

$$= \frac{N'(z)}{D'(z)} \tag{3.2}$$

So

$$\frac{N(z)}{\overline{D}(z)} = \frac{zf'(z)}{g(z)} = \frac{z\left(\frac{\phi(z)}{z}\right)^{1-\beta}}{\int\limits_{0}^{z} \left(\frac{\phi(t)}{t}\right)^{1-\beta} dt}$$

$$= \frac{1}{\int\limits_{0}^{z} \left(\frac{z}{t}\right)^{1-\beta} \left[\frac{\phi(t)}{\phi(z)}\right]^{1-\beta} \frac{dt}{z}}, \tag{3.3}$$

where we integrate along the straight line segment [0,2], $z \in E$. Using Lemma 2.5 for B = -1 and

 $A=1-2\beta$, we conclude that $\operatorname{Re} \frac{N(z)}{D(z)}=\operatorname{Re} \frac{zf'(z)}{g(z)}>\beta\geq 0$, and since $\frac{zf'(z)}{g(z)}=1$ at z=0, we have

$$\left| \frac{zf'(z)}{g(z)} - \frac{1+r^2}{1-r^2} \right| \le \frac{2r}{1-r^2} \,, \tag{3.4}$$

|z| = r, $z \in E$; see [12].

From (3.4) it is clear that

$$\underset{f \in K_{\beta}^{*}[A,B]}{\text{Min}} \underset{|z| = r}{\text{Min}} \operatorname{Re} \frac{zf'(z)}{g(z)}$$

$$= \min_{f \in K_{\beta}^*[A,B]} |\min_{|z|=r} \left| \frac{zf'(z)}{g(z)} \right|,$$

and hence it is sufficient to find the minimum of the right hand side of (3.3). Then from [8], we have

$$\sigma(\beta) = \min \left[\left| \int_{0}^{z} \left(\frac{z}{t} \right)^{1-\beta} \left(\frac{\phi(t)}{\phi(z)} \right)^{1-\beta} \frac{dt}{z} \right| \right]^{-1},$$

for $\phi \in S^*$, $z \in E$ and $\sigma(\beta)$ is as given in (3.1). This proves our result.

Sharpness for $A = 1 - 2\beta$, B = 1 follows by taking

$$f_{\beta}(z) = g_{\beta}(z) = \begin{cases} \frac{1 - (1 - z)^{2\beta - 1}}{2\beta - 1}, & \beta \neq \frac{1}{2} \\ \log(1 - z)^{-1}, & \beta = \frac{1}{2} \end{cases}$$

Using Definition 1.2 and Lemma 2.1, we immediately have the following:

THEOREM 3.2. Let $f \in C^*_{\beta}[1-2\gamma,-1]$. Then $f \in K^*_{\beta}[1-2\lambda,1]$, where $\lambda(\gamma)$ is as given in Lemma 2.1.

THEOREM 3.3. Let $f \in K_{\beta}^*[A, B]$. Then there exists a $g \in C[A, B]$ such that h defined by

$$h'(z) = \frac{(zf'(z))'}{1 + \frac{zg''(z)}{g'(z)}}$$

belongs to $K_{\beta}[A,B]$, for $z \in E$.

PROOF. Since $f \in K_{\beta}^*[A, B]$, we have $\frac{(zf'(z))'}{G'(z)} \in P(\beta)$, $G \in S^*[A, B]$. Let G(z) = zg'(z), so $g \in C[A, B]$. Now

$$G'(z) = (zg'(z))' = g'(z) \left[1 + \frac{zg''(z)}{g'(z)} \right]$$

Thus

$$\frac{(zf'(z))'}{G'(z)} = \frac{(zf'(z))'}{g'(z) \left[1 + \frac{zg''(z)}{g'(z)}\right]} = \frac{h'(z)}{g'(z)}$$

and this implies $h \in K_{\beta}[A, B]$.

We now deal with the radius problems.

THEOREM 3.4. Let $f \in K_{\beta}[A, B]$, $z \in E$. Then $f \in K_{\beta}^*[A, B]$ for $|z| < r_1$, where r_1 is the least positive root in (0, 1) of the equation

$$1 - (A+2)r + (2B-1)r^2 + Ar^3 = 0$$

PROOF. For $z \in E$, we can write

$$zf'(z) = g(z)h(z), \quad h \in P(\beta) \text{ and } g \in S^*[A, B].$$

Then

$$\frac{(zf'(z))'}{g'(z)} = h(z) + \frac{g(z)}{g'(z)} h'(z) ,$$

from which it follows that

$$\operatorname{Re}\!\left\lceil\!\frac{(zf'(z))'}{g'(z)} - \beta\right\rceil \geq \operatorname{Re}h(z) - \beta - \left|\frac{g(z)}{g'(z)}\,h'(z)\right|.$$

Now, since $g \in S^*[A, B]$, it follows from Lemma 2.4 that

$$\left|\frac{g(z)}{g'(z)}\right| \le \frac{r(1-Br)}{1-Ar} \,. \tag{3.5}$$

Using (3.5) and Lemma 2.2(ii) we have

$$\operatorname{Re}\left[\frac{(zf'(z))'}{g'(z)} - \beta\right] \ge \left[\operatorname{Re}h(z) - \beta\right] \left\{1 - \frac{2r}{1 - r^2} \frac{1 - Br}{1 - Ar}\right\}$$

$$= \left[\operatorname{Re}h(z) - \beta\right] \left[\frac{1 - (A+2)r + (2B-1)r^2 + Ar^3}{(1 - r^2)(1 - Ar)}\right]$$

and this gives us the required result.

THEOREM 3.5. Let $f \in K^*_{\beta}[A, B]$. Then $f \in C^*_{\beta}[1, -1]$ for $|z| < r_o$, where r_o is as given in Lemma 2.3.

PROOF. Since $f \in K_{\beta}^*[A, B]$ implies that $\frac{(zf'(z))'}{g'(z)} \in P(\beta)$, $g \in S^*[A, B]$, $z \in E$. To show that $f \in C_{\beta}^*[1, -1]$ for $|z| < r_o$, it is sufficient to prove that $g \in C[1, -1] \equiv C$ for $|z| < r_o$ and this follows immediately from Lemma 2.3. Hence the theorem.

THEOREM 3.6. Let F = zf' and let $f \in K^*_{\beta}[A, B]$. Then F maps $|z| < r_2$ onto a convex domain, where r_2 is the least positive root in (0,1) of the equation

$$(1-2\beta)r^3 + (r_o+2)(2\beta-1)r^2 - (2r_o+1)r + r_o = 0,$$

and r_o as given in Lemma 2.3.

PROOF. $zF'(z)=z(zf'(z))'=zg'(z)h(z), \qquad h\in P(\beta), \ g\in S^*[A,B]$ Thus

$$\frac{(zF'(z))'}{F'(z)} = \frac{(zg'(z))'}{g'(z)} + \frac{zh'(z)}{h(z)},$$

and

$$\operatorname{Re} \frac{(zF'(z))'}{F'(z)} \ge \operatorname{Re} \frac{(zg'(z))'}{g'(z)} - \left| \frac{zh'(z)}{h(z)} \right|$$

Since $g \in S^*[A, B]$, it follows from Lemma 2.3 that $g \in C[1, -1] \equiv C$ for $|z| < r_o$. So we have, see [12],

$$\operatorname{Re}\frac{(zg'(z))'}{g'(z)} \ge \frac{r_o - r}{r_o + r} \tag{3.6}$$

Using (3.6) and Lemma 2.2(iii), we have

$$\operatorname{Re} \frac{(zF'(z))'}{F'(z)} \ge \frac{r_o - r}{r_o + r} - \frac{2r(1 - \beta)}{(1 - r)((1 - 2\beta)r + 1)}$$

$$=\frac{(r_o-r)(1-r)((1-2\beta)r+1)-2r(1-\beta)(r_o+r)}{(r_o+r)(1-r)((1-2\beta)r+1)}$$

After simplification we obtain the required result.

THEOREM 3.7. Let $F \in K_{\beta}^*[A, B]$ with respect to $G \in S^*[A, B]$, $0 \le \beta < 1$. Let, for $0 < \alpha \le \frac{1}{2}$,

$$f(z) = (1 - \alpha)F(z) + \alpha zF'(z), \qquad (3.7)$$

and

$$g(z) = (1 - \alpha)G(z) + \alpha zG'(z). \tag{3.8}$$

Then $f \in K_{\beta}^*[A, B]$ with respect to g for |z| < r, where $r = \min(r_4, r_3)$ with $r_4 = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}}$ and r_3 the least positive root in (0, 1) of the equation

$$r_o + [1 - 2\alpha(1 + r_o)]r - (r_o + 2\alpha)r^2 - (1 - 2\alpha)r^3 = 0$$
 (3.9)

The number $r_o \in (0,1)$ is given in Lemma 2.3.

PROOF. We can write (3.7) as

$$F(z) = \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_{0}^{z} z^{\frac{1}{\alpha}-2} f(z) dz.$$

So

$$zF'(z) = \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \left[(1 - \frac{1}{\alpha}) \int_{0}^{z} z^{\frac{1}{\alpha} - 2} f(z) dz + z^{\frac{1}{\alpha} - 1} f(z) \right]$$
$$= \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \left[\int_{0}^{z} z^{\frac{1}{\alpha} - 1} f'(z) dz \right].$$

Thus

$$\frac{(aF'(z))'}{G'(z)} = \frac{z^{\frac{1}{\alpha}} f(z) - (\frac{1}{\alpha} - 1) \int_{0}^{z} z^{\frac{1}{\alpha} - 1} f'(z) dz}{(\frac{1}{\alpha} - 1) \int_{0}^{z} z^{\frac{1}{\alpha} - 1} g'(z) dz}$$
$$= (1 - \beta) h(z) + \beta, \quad h \in P.$$

Differentiating both sides and simplifying, we obtain

$$\operatorname{Re}\left[\frac{(zf'(z))'}{g'(z)} - \beta\right] \ge (1 - \beta)\operatorname{Re}h(z)\left[1 - \frac{2}{1 - r^2} \left| \begin{array}{c} \frac{z}{z}\frac{1}{\alpha} - 1 & g'(z) dz \\ 0 & \\ \frac{1}{z}\frac{1}{\alpha} - 1 & g'(z) \end{array}\right]\right]$$
(3.10)

Now

$$\frac{z^{\frac{1}{\alpha}-1}g'(z)}{\sum_{\alpha}^{z}z^{(\frac{1}{\alpha}-1)}g'(z)dz} = (\frac{1}{\alpha}-1) + \frac{(zG'(z))'}{G'(z)}$$
(3.11)

Using (3.6) and (3.11), the relation (3.10) yields

$$\operatorname{Re}\left[\frac{(zf'(z))'}{g'(z)} - \beta\right] \ge (1-\beta)\operatorname{Re}h(z)\left[1 - \frac{2}{1-r^2} \frac{\alpha r(r_o + r)}{r_o + (1-2\alpha)r}\right]$$

$$= (1 - \beta) \operatorname{Re} h(z) \left[\frac{r_o (1 - 2\alpha - 2\alpha r_o) r - (r_o + 2\alpha) r^2 - (1 - 2\alpha) r^3}{(1 - r^2) \left[r_o + (1 - 2\alpha) r \right]} \right]$$
(3.12)

Since it is known [13] that $g \in S^*[A, B]$ for $|z| < r_4 = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}}$, we obtain from (3.12)

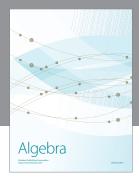
that $f \in K_{\beta}^*[A, B]$ for $|z| < r = \min(r_4, r_3)$, where r_3 is the least positive root of (3.9).

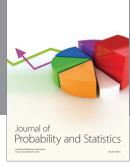
ACKNOWLEDGEMENT. The author is grateful to the referee for his helpful suggestions and comments.

REFERENCES

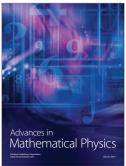
- JANOWSKI, J., Some extreme problems for certain families of analytic functions, <u>Ann. Polon. Math.</u> 28(1973), 297-326.
- 2. ROBERTSON, M.S., On the theory of univalent functions, Ann. Math. 37(1936), 374-408.
- SILVIA, E.M., Subclasses of close-to-convex functions, <u>Inter. J. Math. & Math. Sci. 6</u>(1983), 449-458.
- NOOR, K.I. and AL-DIHAN, N., A subclass of close-to-convex functions, <u>Pb. Univ. J. Math.</u> 16(1982), 183-192.

- NOOR, K.I. and THOMAS, D.K., On quasi-convex univalent functions, <u>Inter. J. Math. & Math. Sci.</u> 3(1980) 255-266.
- NOOR, K.I., On a subclass of close-to-convex functions, <u>Comm. Math. Univ. St. Pauli,</u> <u>29</u>(1980), 25-28.
- NOOR, K.I., On quasi-convex functions and related topics, <u>Inter. J. Math. & Math. Sci.</u> 10(1987), 241-258.
- 8. GOEL, R.M., Functions starlike and convex of order α, <u>J. London Math. Soc. 9</u>(1974), 128-130.
- McCARTY, C.P., Functions with real part greater than α, <u>Proc. Amer. Math. Soc. 35</u>(1972), 211-216.
- ANH, V.V., K-fold symmetric starlike univalent functions, <u>Bull. Austral. Math. Soc.</u> 32(1985), 419-436.
- PARVATHAM, R. and SHANMUGHAM, T.N., On analytic functions with reference to an integral operator, <u>Bull. Austral. Math. Soc. 28</u>(1983), 207-215.
- 12. NEHARI, Z., Conformal Mapping, McGraw-Hill, New York, 1954.
- 13. NOOR, K.I., On some subclasses of close-to-convex functions in Univalent Functions, Fractional Calculus and Their Applications, ed. by H. Srivistava and S. Owa, <u>J. Wiley and Sons, London</u>, 1989.





Submit your manuscripts at http://www.hindawi.com



Journal of Discrete Mathematics

