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SEQUENCES AND SERIES INVOLVING THE SEQUENCE
OF COMPOSITE NUMBERS
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Denoting by pn and cn thenth prime number and thenth composite number, respectively,
we prove that both the sequence (xn)n≥1, defined by xn =

∑n
k=1(ck+1−ck)/k−pn/n, and

the series
∑∞
n=1(pcn −cpn)/npn are convergent.

2000 Mathematics Subject Classification: 11A25.

1. Introduction. We use the following notation:

(i) π(x) is the number of prime numbers less than or equal to x,

(ii) pn is the nth prime number,

(iii) cn is the nth composite number; c1 = 4,c2 = 6, . . . ,
(iv) log2n= log(logn).
In 1967, Bojarincev [1] estimated cn and found out that

cn =n
(

1+ 1
logn

+ 2

log2n
+ 4

log3n
+ 19

2
1

log4n
+ 181

6
1

log5n
+o

(
1

log5n

))
. (1.1)

For c(1)n := cn and c(k+1)
n := cc(k)n , k≥ 1, we can prove that

c(k+1)
n −2c(k)n +c(k−1)

n ∼ n
log2n

. (1.2)

If n is large enough, then

c(k)n >
√
c(k−1)
n ·c(k+1)

n . (1.3)

It was shown in [3] that, for n large enough we have

pcn > cpn. (1.4)

Of course, the irregularities in the distribution of the prime numbers imply irregu-

larities in the distribution of the composed numbers. Although in the sequence of

the composite numbers, large “gaps” cannot be found. For the sequence (pn)n≥1 we

have limsupn→∞(pn+1−pn) = ∞, while in the case of the sequence (cn)n≥1 we have

1 ≤ ck+1−ck ≤ 2, with the specification that ck+1−ck = 2 if and only if the number

ck+1 is prime. In this case, denoting ck+1= pm, it is proved in [3] that

k= k(m)= pm+mxm with lim
m→∞xm = 1. (1.5)
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Since cn ∼ n, we can expect that “in mean” the sequence (cn)n≥1 behaves as the

sequence of the natural numbers. It is readily seen that, since the series
∑∞
n=1 1/

n(pn−pn+1) is divergent, it follows that the series
∑∞
n=1 1/cn(pn−pn+1) is divergent

too.

The situations to be analyzed in the present paper are, however, more complicated

and lean on a series of facts, namely

lim
n→∞

( n∑
k=1

1
k
− logn

)
= γ; (1.6)

the series
∞∑
n=2

1
n(logn)α

is convergent, for α> 1; (1.7)

π(x)=
∫ x

2

dt
logt

+O
(

x
logkx

)
, for every k > 0; (1.8)

pn =n
(

logn+ log2n−1+ log2n−2
logn

+O
(

log2
2n

log2n

))
(see [2]); (1.9)

logpn = logn+ log2n+
log2n−1

logn
+O

(
log2

2n
log2n

)
(see [5]); (1.10)

b = lim
n→∞

( n∑
k=2

1
pk
− log logn

)
(see [4]). (1.11)

2. Asymptotic behavior of certain series

Proposition 2.1. The sequence xn =
∑n
k=1(ck+1−ck)/k−pn/n is convergent.

Proof. We have

xn =
n∑
k=1

1
k
+
∑
k≤n

′ 1
k
− pn
n
, (2.1)

where
∑′ extends to all values of k such that ck+1 is a prime number, that is, ck+1=

pm, m= 3,4, . . . ,π(n). It follows by (1.5) that

n∑′

k=1

1
k
=
π(n)∑
m=3

1
pm+mxm =

π(n)∑
m=3

1
pm

−
π(n)∑
m=3

mxm
pm

(
pm+mxm

) . (2.2)

Since pm ∼m logm, we getmxm/pm(pm+mxm)∼ 1m log2m and then (1.7) implies

that the series
∑∞
m=1mxm/pm(pm+mxm) is convergent; denote its sum by a. In view

of (1.11), it then follows that

n∑′

k=1

1
k
− log2n

n→∞
������������������������������������������������������������������������������������→ b−a. (2.3)

By (1.10) limn→∞(pn/n− logn− log2n)=−1, hence (1.6) and (2.3) imply that

lim
n→∞xn = γ+b−a+1. (2.4)

The proof is completed.
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Remark 2.2. It follows by Proposition 2.1 that both the series
∑∞
k=1(ck+1−ck)/k

and
∑∞
k=1(ck+1−ck−1)/k are divergent.

Proposition 2.3. Let s be a real number. If yn =
∑n
k=1 (ck+1−ck)s/k, then yn =

logn+(2s−1) log2n+O(1).
Proof. If the number ck+1 is composed, then ck+1−ck = 1, while if ck+1 is prime

then ck+1−ck = 2. Thus

yn =
n∑
k=1

1
k
+

n∑′

k=1

2s−1
k

, (2.5)

where
∑′ extends to the indices k such that ck+1 is prime. Now (1.6) and (2.3) imply

that

yn = logn+γ+o(1)+(2s−1
)(

log2n+b−a+o(1)
)

(2.6)

and the proof ends.

Proposition 2.4. If zn =
∑n
k=1(ck+1−ck)/(ck+2−ck+1), then zn =n+3/2·n/logn+

O(n/log2n).

Proof. The following cases can arise:

(a) if both ck+1 and ck+1+1 are composite numbers, then ck+1−ck = ck+2−ck+1 = 1;

(b) if ck+1 is prime and ck+1+1 is composed, then ck+1−ck = 2 and ck+2−ck+1 = 1;

(c) if ck+1 is composite and ck+1+1 is prime, then ck+1−ck = 1 and ck+2−ck+1 = 2;

(d) if both ck+1 and ck+1+1 are prime numbers, then ck+1−ck = ck+2−ck+1 = 2.

Next, denote by π2(x) the number of the prime numbers p ≤ x such that p+2 is

prime. It is known (see [2]) that

π2(x)=O
(

x
log2x

)
. (2.7)

By taking into consideration the above four cases, it follows that

zn = 1
(
n−π(n))+2

(
π(n)−π2(n)

)+ 1
2

(
π(n)−π2(n)

)+π2(n)+O(1). (2.8)

Since π(x)= x/logx+O(x/log2x), the desired conclusion follows.

Proposition 2.5. If tn =
∑n
k=1(ck+2−2ck+1+ck)2, then tn = 2π(n)+O(1).

Proof. By analyzing the cases occurring in the proof of the preceding proposition,

we see that ck+2−2ck+1+ck = 0 in the cases (a) and (d), while (ck+2−2ck+1+ck)2 = 1

in the cases (b) and (d). Consequently, tn = 2π(n)+O(1).

3. Studying the convergence of certain series

Proposition 3.1. The series

∞∑
n=1

pcn−cpn
npn

(3.1)

is convergent.
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First we prove the following fact.

Lemma 3.2. The relation

1
logpn

= 1
logn

− log2n
log2n

+O
(

log2
2n

log3n

)
(3.2)

holds.

Proof. By (1.10), it follows that

1
logpn

= 1
logn

· 1

1+ log2n/logn+ log2n/log2n+O(1/log2n
) . (3.3)

For |x|< 1 we have 1/(1+x)= 1−x+O(x2), hence,

1
logpn

= 1
logn

·
(

1− log2n
logn

− log2n
log2n

+O
(

log2
2n

log2n

))
(3.4)

which implies the desired conclusion.

Proof of Proposition 3.1. By (1.1), we get

cpn = pn
(

1+ 1
logpn

+ 2

log2pn
+O

(
1

log3pn

))
(3.5)

and then we have, in view of the above lemma,

cpn = pn
(

1+ 1
logn

− log2n−2

log2n
+O

(
log2

2n
log3n

))
. (3.6)

Now, replacing pn by means of (1.9), we get

cpn = pn+n+
n

logn
+O

(
n log2

2n
log2n

)
. (3.7)

If we let x = pcn in (1.8), then we deduce

cn =
∫ pcn

2

dt
logt

+O
(

n
log2n

)
. (3.8)

For x = cpn , also (1.8) implies

π
(
cpn

)=
∫ cpn

2

dt
logt

+O
(

n
log2n

)
. (3.9)

It is readily seen that π(cm)+m+1 = cm and for m = pn this implies that π(cpn)+
pn+1= cpn . Then, (3.9) becomes

cpn−pn−1=
∫ cpn

2

dt
logt

+O
(

n
log2n

)
. (3.10)

By subtracting (3.8) from the above relation, we get

cpn−pn−cn−1=
∫ cpn
pcn

dt
logt

+O
(

n
log2n

)
. (3.11)
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In view of (1.1) and (3.7), this relation takes the form

O
(
n log2

2n
log2n

)
=
∫ cpn
pcn

dt
logt

+O
(

n
log2n

)
. (3.12)

By applying the mean value theorem to the above integral, it follows that there exists

θn ∈ (pcn ,cpn) such that

∫ cpn
pcn

dt
logt

= cpn−pcn
logθn

. (3.13)

Since logθn ∼ logn, (3.12) becomes

O
(
n log2

2n
log2n

)
= cpn−pcn

logn
+O

(
n

log2n

)
. (3.14)

Since pn ∼n logn, we obtain furthermore

cpn−pcn
npn

=O
(

log2
2n

n log2n

)
. (3.15)

For n large enough we have

cpn−pcn > 0,
log2

2n
n log2n

<
1

n log1.5n
, (3.16)

hence in view of (1.6), it follows that the series
∑∞
n=1(cpn−pcn)/npn is convergent.

Proposition 3.3. Let k≥3 and letα1,α2, . . . ,αk be real numbers such that
∑k
i=1αi=

0 and
∑k
i=1(i−1)αi = 0. If (xn)n≥1 is a decreasing sequence which converges to 0, then

the series ∞∑
n=1

(
αkcn+k+αk−1cn+k−1+···+α1cn+1

)
xn (3.17)

is convergent.

Proof. Denote εi =αkci+k+αk−1ci+k−1+···+α1ci+1 and a=α1c2+(α1+α2)c3+
(α1+α2+···+αk−1)ck. Since

∑k
i=1αi = 0, it then follows that

k∑
i=1

εi = a+αkcn+k+
(
αk+αk−1

)
cn+k−1+···+

(
αk+αk−1+···+α2

)
cn+2. (3.18)

Denote cn+i = cn+2+x(n)i . Since 1 ≤ ci+1−ci ≤ 2, it then follows that 1 ≤ x(n)i < 2k.

Relation (3.18) can take the form

k∑
i=1

εi = a+
k∑
i=1

(i−1)αicn+2+
k∑
i=3

(
αk+αk−1+···+αi

)
x(n)i

= a+
k∑
i=3

(
αk+αk−1+···+αi

)
x(n)i .

(3.19)
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Since

∣∣∣∣∣
k∑
i=3

(
αk+αk−1+···+αi

)
x(n)i

∣∣∣∣∣≤
k∑
i=3

(∣∣αk∣∣+∣∣αk−1

∣∣+···+∣∣αi∣∣)·2k=M, (3.20)

then it follows that the sequence (
∑n
i=1 εi)n≥1 is bounded. Consequently, the conver-

gence of our series follows by Dirichlet’s criterion.

Proposition 3.4. The series

∞∑
n=1

cn+1−cn−1
pn

(3.21)

is convergent.

Proof. Denoting Sn =
∑n
k=1(ck+1−ck−1)/pk, it follows that Sn =

∑′
pk≤n1/pk,

where
∑′ extends to the indices k such that ck + 1 = pm with prime pm. In view

of (1.5), it follows that k= k(m)∼ pm ∼m logm, hence pk ∼ k logk∼m log2m. then

(1.7) implies that the series
∑∞
n=1(cn+1−cn−1)/pn is convergent.
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