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We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator
dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the for-
mulation is mathematically transformed into a Takagi-Sugeno (T-S) fuzzy model.The goal of this study is to design a state feedback
control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints
on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost
function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs).
Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which
shows risk of potentially deteriorating the overall system. Employing backsteppingmethod, an actuator compensator is proposed to
accommodate for the influence of the actuator dynamics.The experimental results show thatwith the proposed approach high speed
train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state,
and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

1. Introduction

High speed railway systems have attracted much attention,
since they can provide greater transport capacity, significantly
faster speeds, and outstanding features of punctuality when
compared to aircraft and autovehicle. In recent years, high
speed railways have gone through rapid development in
European countries, Russia, Japan, China, and many other
developing countries. As the high speed railways networks are
becoming more and more complex, many new challenging
technical and commercial issues such as reduction of energy
consumption, safety, and comfort have been brought up.With
the breakthrough in computer control and communication
technology, the automatic train control (ATC) system is
equipped to automatically supervise the train speed to follow
a desired trajectory which also makes it possible to adjust the
train operations in a safe and energy-efficient way [1–3].

Many scholars and researchers have therefore been
searching for the optimal driving strategy over the years.
Howlett [4] applied the Pontryagin maximum principle to
prove that the optimal sequence of train driving strategy
should consist of four phases including maximum accel-
eration, cruising, coasting, and maximum braking [4–6].
Therefore, the train driving problem is characterized by the
switching locations of stages which can be formally for-
mulated as a nonlinear optimization problem. Furthermore,
various algorithms were proposed to determine the optimal
cruising speed and the switching locations, for example,
genetic algorithm [7], ant colony optimization method [8],
and simulated annealing algorithm [9], considering the real-
world operation environments such as track gradient and
speed limits, commercial punctuality constraints, and the
uncertainty of some performance parameters [10, 11].
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It should be clarified that above methods for auto-
matic train control treated the whole train that consists
of multiple cars as a single point mass and approximately
characterized its motion by a single mass point Newton
equation. Although the single mass point model makes
design of the controller much convenient, it overlooks the
interactive forces among the connected vehicleswhich should
be explicitly contemplated to achieve satisfactory control
performance for a long train. In order to overcome these
disadvantages, Gruber and Bayoumi [12] investigated the
longitudinal dynamics of multilocomotive powered train and
approximated it as a nonlinear mass-spring dashpot model
which was interconnected via couplers at the first time. They
demonstrated that thismethod could efficientlyminimize the
coupler forces which result in safer operation and increased
traveling speeds. Zhuan and Xia [13] obtained an open-loop
scheduling controller by solving an optimization problem
based on the desired trajectory, and closed-loop controller
was subsequently presented through local linearization to
maintain a steady-state motion of a train [14]. Song et al. [15]
extended the cascade mass point to model the high speed
train under unknown and time varying resistance coefficients
and designed robust adaptive control with optimal task distri-
bution for speed and position tracking with traction/braking
nonlinearities and saturation limitations.

As the aerodynamic resistance is proportional to the
square of the train’s speed, the most typical way to handle
this case is to linearize or approximate the impacts along a
prior scheduled ideal speed [16–18]. Although this approach
simplifies computational complexity, its influence on the
train’s dynamic behavior becomes increasingly significant
as the train speed increases. As a popular control method,
the fuzzy logic control has been developing quickly during
the past thirty years, where prevailing attention has been
devoted to Takagi-Sugeno (T-S) fuzzy model based control
for complex nonlinear systems [19–21]. Taking fuzzy control
methods and optimization techniques as alternatives, many
researchworks have been done in the high speed train control
and optimization fields [22–24].

However, it is worth noting that most existing methods
for high speed train control focus onoptimizing the operation
of a high speed train according to the current information,
and future behaviors during the whole travel are usually not
taken into consideration.Therefore, these approaches cannot
ensure an overall optimized operation of the train during a
long trip due to the unfavorable factors such as model inac-
curacies, operation constraints, and uneven track profile [25,
26]. As one of the most powerful directions of the modern
control, model predictive control (MPC) can be regarded as a
circular operation in which aminimization problem is solved
to calculate optimal control for certain time horizon with
hard physical constraints [27, 28]. This feature makes MPC
an ideal candidate for optimal cruise control of high speed
train too.Moreover,most approaches of high speed train con-
troller design assume that traction/braking dynamics are fast
enough to be negligible. However, it turns out that actuators
show limited performance in real situations and, accordingly,
the control performance would be severely degraded if we
design the traction/braking force for the train directly.

Motivated by earlier discussions, the main purpose of
this brief is to solve the high speed controller optimization
problem which guarantees the various railway operational
performances such as safety, energy consumption, riding
comfort, and velocity tracking with explicit consideration of
input constraints as well as the actuator dynamics. Different
from the existing results [18, 29], in this paper, T-S fuzzy
model which provides a bridge between the analysis of
nonlinear systems and the fruitful linear control theory is
employed to approximate the nonlinear dynamic model of
high speed train. Instead of using conventional open-loop
model prediction, this brief proposes a fuzzy constrained
predictive controller using a state feedback control scheme
to facilitate a finite dimensional formulation for an infinite
horizon in closed-loop prediction form. The asymptotical
stability and controller synthesis can be explicitly formulated
as a convex optimization problem in which the related
sufficient conditions of stability are cast into a set of linear
matrix inequalities (LMIs) based on Lyapunov function.
Furthermore, we analyze the influence of actuator dynamics
on the fuzzy constrained predictive controller and design a
compensator using backstepping technique [30] to accom-
modate for the influence of the actuator.

The remainder of this research is organized as follows.
Section 2 details the T-S fuzzy model that preserves the
nonlinear nature of the high speed train dynamics while, at
the same time, facilitating the control design. In Section 3,
the fuzzy constrained predictive controller of high speed
train is designed and the compensator scheme based on
backstepping is introduced. The numerical experiments are
implemented in Section 4 for demonstrating the validity
and effectiveness of the proposed approaches. Finally, some
conclusions and further works are addressed in Section 5.

Some notations are given as follows:

(1) The symbol ∗ in a matrix will be used in the subse-
quent sections to stand for the corresponding item of
a symmetric matrix.

(2) 𝑥(𝑘 + 𝑗 | 𝑘) is the predicted state at time 𝑘 + 𝑗 based
on the current state 𝑥(𝑘).

2. Problem Formulation

2.1.The DynamicModel of High Speed Train. Consider a high
speed train consisting of 𝑛 cars, which ismodeled by a cascade
of cars connected with flexible couplers. As mentioned in
[16, 31], the behavior of couplers is described approximately
by linear spring with stiffness coefficient 𝑘. Therefore, the in-
train force is described approximately by a linear function
of the coupler relative displacement 𝑥 between two adjacent
cars, which can be established as follows:

𝑓 (𝑥) = 𝑘𝑥𝑖
, 𝑖 = 1, 2, . . . , 𝑛 − 1. (1)

As 𝑥
𝑖
represents the absolute extension or compression

length of the 𝑖th coupler corresponding to the original length
without any elastic deformation, it could be positive or
negative.
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Figure 1: Longitudinal dynamics of high speed train.

The force diagram of high speed train is depicted in
Figure 1, where 𝑢

𝑖
, 𝑅
𝑚𝑖
, and 𝑅

𝑎
denote traction force,

mechanical resistance, and aerodynamic drag of the 𝑖th car,
respectively. Let 𝑚

𝑖
be the mass of 𝑖th car; then according to

Davis’ equation [32], 𝑅
𝑚𝑖

and 𝑅
𝑎
are given by

𝑅
𝑚𝑖
= (𝑐
0
+ 𝑐
1
V
𝑖
)𝑚
𝑖
,

𝑅
𝑎
= 𝑐
2
𝑀V2
𝑖
,

(2)

where 𝑐
0
, 𝑐
1
, and 𝑐

2
are positive constants and𝑀 is the total

mass of train given by ∑𝑛
𝑖=1
𝑚
𝑖
.

We assume that the air resistance acts only on the leading
car and the rolling resistance acts on every car. According to
Newton’s law, the longitudinal dynamics for each car can be
established by the following equation:

𝑚
1
V̇
1
= 𝑢
1
− 𝑓
1
− 𝑅
𝑚1
− 𝑅
𝑎
,

𝑚
𝑖
V̇
𝑖
= 𝑢
𝑖
+ 𝑓
𝑖−1
− 𝑓
𝑖
− 𝑅
𝑚𝑖
, 𝑖 = 2, 3, . . . , 𝑛,

(3)

where𝑚
𝑖
is the inertia mass, V

𝑖
is the speed of the 𝑖th car, and

𝑓
𝑖
denotes the interactive force between the 𝑖th car and the

(𝑖 + 1)th car.
To achieve the high-precise velocity tracking, it is

assumed that every car of the high speed train has its
own independent control command, and we will adopt the
distributed driving design for each car of the high speed train.
Then the dynamic equation of an 𝑛-cars high speed train can
be obtained from (1) to (3) that

�̇�
𝑖 (
𝑡) = V

𝑖
− V
𝑖+1
, 𝑖 = 1, 2, . . . , 𝑛,

𝑚
1
V̇
1 (
𝑡) = 𝑢1

− 𝑘𝑥
1
− (𝑐
0
+ 𝑐
1
V
1
)𝑚
1
− 𝑐
2
(

𝑛

∑

𝑖=1

𝑚
𝑖
) V2
1
,

𝑚
𝑖
V̇
𝑖 (
𝑡) = 𝑢𝑖

+ 𝑘𝑥
𝑖−1
− 𝑘𝑥
𝑖
− (𝑐
0
+ 𝑐
1
V
𝑖
)𝑚
𝑖
,

𝑖 = 2, 3, . . . , 𝑛 − 1,

𝑚
𝑛
V̇
𝑛 (
𝑡) = 𝑢𝑛

+ 𝑘𝑥
𝑛−1

− (𝑐
0
+ 𝑐
1
V
𝑛
)𝑚
𝑛
.

(4)

To study the cruise control problem of the high speed
train, the desired cruise speeds for each car of the high
speed train are supposed as V∗ and the relative coupler
displacements between the connected cars are 𝑥∗ which is
equal to zero at the equilibrium state. Then the control forces
in the equilibrium state are calculated as

𝑢
1
= (𝑐
0
+ 𝑐
1
V∗)𝑚

1
+ 𝑐
2
(

𝑛

∑

𝑖=1

𝑚
𝑖
)(V∗)2 ,

𝑢
𝑖
= (𝑐
0
+ 𝑐
1
V∗)𝑚

𝑖
, 𝑖 = 2, 3, . . . , 𝑛 − 1.

(5)

Letting �̂�
𝑖
= 𝑥
𝑖
−𝑥
∗, V̂
𝑖
= V
𝑖
−V∗, and �̂�

𝑖
= 𝑢
𝑖
−𝑢
𝑖
and choos-

ing 𝑥(𝑡) = [�̂�
1
(𝑡), �̂�
2
(𝑡), . . . , �̂�

𝑛−1
(𝑡), V̂
1
(𝑡), V̂
2
(𝑡), . . . , V̂

𝑛
(𝑡)]
𝑇

as the state variable and 𝑢(𝑡) = [�̂�
1
(𝑡)/𝑚
1
, �̂�
2
(𝑡)/𝑚
2
, . . .,

�̂�
𝑛
(𝑡)/𝑚
𝑛
]
𝑇 as the decision vector, the error dynamic equation

around the equilibrium state can be formulated as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , (6)

where

𝐴 = [

𝐴
11
𝐴
12

𝐴
21
𝐴
22

] ,

𝐴
12
=

[

[

[
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𝐴
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In order to apply the MPC framework, the continuous
time-domain state-space equation (6) is discretized by the
zero-order hold method with a sampling period 𝑇

𝑠
:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (8)

where 𝐴 = 𝑒𝐴𝑇𝑠 and 𝐵 = ∫𝑇𝑠
0
𝑒
𝐴𝜏
𝑑𝜏𝐵.

2.2. T-S Fuzzy Model for the High Speed Train. It has been
proven that T-S fuzzy models can approximate any smooth
nonlinear system to any accuracy within a compact set. The
following T-S fuzzy dynamic model proposed in [19, 33] can
be used to represent the high speed train with both fuzzy
inference rules and local analytic linear models as follows:

Fuzzy rule 𝑙: IF V̂
1
(𝑘) is𝑀𝑙

1
and ⋅ ⋅ ⋅ and V̂

𝑛
(𝑘) is𝑀𝑙

𝑛
,

THEN

𝑥 (𝑘 + 1) = 𝐴 𝑙
𝑥 (𝑘) + 𝐵𝑙

𝑢 (𝑘) , 𝑙 = 1, . . . , 𝑟. (9)

Here, 𝑟 is the number of inference rules and 𝑀
𝑙

𝑖
(𝑖 =

1, 2, . . . , 𝑛) are the fuzzy sets; 𝑥(𝑘) is the state vector and 𝑢(𝑘)
is the input vector, both of which are defined in (8);𝐴

𝑙
and 𝐵

𝑙

are known constant matrices with appropriate dimensions.
Let ℎ
𝑙
(𝑧(𝑘)) be the normalized membership function of

the inferred fuzzy set 𝑀𝑙, where 𝑧(𝑘) = [V̂
1
(𝑘), . . . , V̂

𝑛
(𝑘)],

𝑀
𝑙
= ∏
𝑛

𝑖=1
𝑀
𝑙

𝑖
, and ∑𝑟

𝑙=1
ℎ
𝑙
(𝑧(𝑘)) = 1. By using a center-

average defuzzifier, product inference, and singleton fuzzifier,
the dynamic fuzzy model (9) can be expressed by the
following global model:

𝑥 (𝑘 + 1) =

𝑟

∑

𝑙=1

ℎ
𝑙 (
𝑧 (𝑘)) (𝐴 𝑙

𝑥 (𝑘) + 𝐵𝑙
𝑢 (𝑘)) ,

𝑙 = 1, . . . , 𝑟.

(10)

3. Optimal Cruise Control Design

The goal of the fuzzy constrained predictive controller for-
mulated in this brief is to develop the state feedback control
law that satisfies all the constraints to optimize the high speed
train operation performance with respect to safety, energy
consumption, riding comfort, and velocity tracking with a
minimized cost function by rejecting the effect of the actuator
dynamics.

On the basis of either theoretic viewpoints or practical
viewpoints, the following cost function is proposed:

𝐽 =

𝑇end

∑

𝑡=𝑡
0

(

𝑛−1

∑

𝑖=1

𝛼
𝑓
𝑓
2

𝑖
+

𝑛

∑

𝑖=1

𝛼
𝑢
𝑢
2

𝑖
+

𝑛

∑

𝑖=1

𝛼VV̂
2

𝑖
) , (11)

where 𝑡
0
and 𝑇end are related to the start and end times of the

optimizing interval; 𝛼
𝑓
, 𝛼
𝑢
, and 𝛼V denote the weight factors

of different objectives.

Remark 1. In the optimization objective criterion (11), the
deviations of relative coupler displacements for each car
are defined as the indicators of safety and riding comfort.
Generally speaking, the integrand 𝑢

𝑖
(𝑡)V
𝑖
(𝑡) represents the

exported tractive power of train 𝑖 at time 𝑡. Since our attention
is focused on the energy consumption associated with the
control strategy tending to the equilibrium state, we use the
second part to express the energy efficiency performance.The
third term represents the error of tracking the desired speed
profile.

One of the most appealing features of the MPC is that
the transient control performance of the closed-loop system
can be adequately addressed in terms of certain optimal
performance cost. For the train operation problem, the fuzzy
constrained MPC approach uses the current train dynamic
state, train model, and operational limits to compute future
control inputs, so that the train operating performance (11) is
optimized over the prediction horizon.

Assume that exact measurement of the train state 𝑥(𝑘 | 𝑘)
is available at each sampling decision step 𝑘, and let𝑥(𝑘+𝑗 | 𝑘)
be the predicted state of the high speed train at time 𝑘+𝑗 and
let 𝑢(𝑘 + 𝑗 | 𝑘) be the future control at time 𝑘 + 𝑗; we consider
the infinite horizon MPC problem with a quadratic objective
as [34]. According to the error dynamical equation (8), the
above performance objective function can bemathematically
transformed into the following optimization problem:

min
𝑢(𝑘+𝑗|𝑘)

𝐽
∞

0
(𝑘)

=

∞

∑

𝑗=0

[

𝑥 (𝑘 + 𝑗 | 𝑘)

𝑢 (𝑘 + 𝑗 | 𝑘)

]

𝑇

[

𝑄 0

0 𝑅

][

𝑥 (𝑘 + 𝑗 | 𝑘)

𝑢 (𝑘 + 𝑗 | 𝑘)

] ,

(12)

where

𝑄 =

[

[

[

[

[

[

diag
{

{

{

𝑛−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝛼
𝑓
𝑘
2
, . . . , 𝛼

𝑓
𝑘
2
}

}

}

0

0 diag{𝛼V, . . . , 𝛼V⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

}

]

]

]

]

]

]

,

𝑅 = diag{𝛼
𝑢
, . . . , 𝛼

𝑢⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

} .

(13)

In practical applications, it is common to consider the
bounded constraints on the control inputs𝑢

𝑖
(𝑘) on each car of

the high speed train. More specifically, 𝑢
𝑖
(𝑘) needs to satisfy

𝑢
𝑖min(𝑘) ≤ 𝑢𝑖(𝑘) ≤ 𝑢𝑖max(𝑘), which depend not only on the

train’s capacity of traction or brake effort but also on safety
and comfort requirements. In this paper, a corresponding
constraint on �̂�

𝑖
(𝑘 + 𝑗 | 𝑘) in the following inequality is

studied:





�̂�
𝑖
(𝑘 + 𝑗 | 𝑘)





≤ �̂�
𝑖max, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 > 0. (14)

The typical approaches for control design are carried out
based on the fuzzymodel via the so-called parallel distributed
compensation (PDC) method. In this section, we use the
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fuzzy rule based state feedback control approach. Consider
the following fuzzy state feedback control law:

Rule 𝑙: IF V̂
1
(𝑘) is𝑀𝑙

1
and ⋅ ⋅ ⋅ and V̂

𝑛
(𝑘) is𝑀𝑙

𝑛
, THEN

𝑢
𝑙 (
𝑘) = 𝐹𝑙

𝑥 (𝑘) , 𝑙 = 1, . . . , 𝑟, (15)

where 𝑥(𝑘) is the input of the controller for the high speed
train; 𝐹

𝑙
is the gain matrix of the state feedback controller.

Hence, the fuzzy controller can be represented by

𝑢 (𝑘) =

𝑟

∑

𝑙=1

ℎ
𝑙 (
𝑧 (𝑘)) 𝐹𝑙

𝑥 (𝑘) . (16)

According to the fuzzy dynamic model of high speed train
(10) and fuzzy state feedback law (16), the close-loop system
is written as

𝑥 (𝑘 + 1)

=

𝑟

∑

𝑙=1

ℎ
𝑙 (
𝑧 (𝑘)) [𝐴 𝑙

𝑥 (𝑘) + 𝐵𝑙

𝑟

∑

𝑚=1

ℎ
𝑚 (
𝑧 (𝑘)) 𝐹𝑚

𝑥 (𝑘)]

=

𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

ℎ
𝑙 (
𝑧 (𝑘)) ℎ𝑚 (

𝑧 (𝑘)) [𝐴 𝑙
𝑥 (𝑘) + 𝐵𝑙

𝐹
𝑚
𝑥 (𝑘)] .

(17)

The following lemma will play an important role in
obtainingmain results in this paper.We show themas follows.

Lemma 2 (see [35]). For any real matrices 𝑋
𝑙
and 𝑌

𝑙
, for 1 ≤

𝑙 ≤ 𝑟, and 𝑆 > 0 with appropriate dimensions, the following
inequalities hold:

2

𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

ℎ
𝑙
ℎ
𝑚
𝑋
𝑇

𝑙
𝑆𝑌
𝑚
≤

𝑟

∑

𝑙=1

ℎ
𝑙
(𝑋
𝑇

𝑙
𝑆𝑋
𝑙
+ 𝑌
𝑇

𝑙
𝑆𝑌
𝑙
) ,

2

𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

𝑟

∑

𝑞=1

𝑟

∑

𝑤=1

ℎ
𝑙
ℎ
𝑚
ℎ
𝑞
ℎ
𝑤
𝑋
𝑇

𝑙𝑚
𝑆𝑌
𝑞𝑤

≤

𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

ℎ
𝑙
ℎ
𝑚
(𝑋
𝑇

𝑙𝑚
𝑆𝑋
𝑙𝑚
+ 𝑌
𝑇

𝑙𝑚
𝑆𝑌
𝑙𝑚
) ,

(18)

where ℎ
𝑙
≥ 0 and ∑𝑟

𝑙=1
ℎ
𝑙
= 1.

3.1. Fuzzy Predictive Controller of High Speed Train with Input
Constraints. Based on the Lyapunov stability theory, we will
detail the fuzzy predictive controller design for optimal cruise
control of the high speed train. At first, the actuator dynamics
are not considered in model (11), and the following theorem
will provide a sufficient condition for the existence of the
fuzzy constrained predictive cruise controllerwhich stabilizes
the fuzzy system and minimizes the value of the objective
function defined in (12).

Theorem 3. Consider the fuzzy predictive cruise controller of
𝑛-cars high speed train in (10) with a fuzzy state feedback
control strategy in the form of (17) and control input constraint
in (14). For a given pair of positive definite matrices {𝑄, 𝑅},
if there exist matrices 𝐻(𝑘) > 0, 𝐺(𝑘), 𝑌

𝑙
(𝑘), and Φ for

𝑙 = 1, 2, . . . , 𝑟 with appropriate dimensions, such that the LMI
optimization problem in (19) is feasibly subject to (20)–(23),

min
𝛾,𝐻(𝑘),𝑌

𝑖
(𝑘)

𝛾, (19)

[

[

[

[

[

[

[

𝐻 (𝑘) − 𝐺 (𝑘) − 𝐺 (𝑘)
𝑇

∗ ∗ ∗

𝐴
𝑙
𝐺 (𝑘) + 𝐵𝑙

𝑌
𝑙

−𝐻 (𝑘) ∗ ∗

𝑌
𝑙

0 −𝛾𝑅
−1

∗

𝑄
1/2
𝐺 (𝑘) 0 0 −𝛾𝐼

]

]

]

]

]

]

]

< 0, 𝑙 = 1, 2, . . . , 𝑟, (20)

[

[

[

[

[

𝐻 (𝑘) − 𝐺 (𝑘) − 𝐺 (𝑘)
𝑇

∗ ∗

(

𝐴
𝑙
𝐺 (𝑘) + 𝐵𝑙

𝑌
𝑚
+ 𝐴
𝑚
𝐺 (𝑘) + 𝐵𝑚

𝑌
𝑙

2

) −𝐻 (𝑘) ∗

𝑄
1/2
𝐺 (𝑘) 0 −𝛾𝐼

]

]

]

]

]

< 0, 1 ≤ 𝑙 < 𝑚 ≤ 𝑟, (21)

[

−1 𝑥 (𝑘 | 𝑘)
𝑇

𝑥 (𝑘 | 𝑘) −𝐻 (𝑘)

] ≤ 0, (22)

[

−Φ ∗

𝑌
𝑇

𝑙
𝐻(𝑘) − 𝐺 (𝑘) − 𝐺 (𝑘)

𝑇
] ≤ 0,

𝑒
𝑇

𝑖
Φ𝑒
𝑖
≤ �̂�
2

max,

𝑙 = 1, 2, . . . , 𝑟, 𝑖 = 1, 2, . . . , 𝑛,

(23)
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where 𝑒
𝑖
is the 𝑖th column of the identitymatrix, then the control

gain 𝐹
𝑙
(𝑘) = 𝑌

𝑙
(𝑘)𝐺(𝑘)

−1 is obtained to guarantee that the per-
formance objective function (12) isminimized and control input
constraint is ensured.The high speed train tracks the predefined
speed profile, and the relative spring displacement between the
two connected cars is stabilized to the equilibrium state.

Proof. For the error state-space model (17), at sampling step
𝑘, construct the following Lyapunov function candidate:
𝑉(𝑥(𝑘)) = 𝑥(𝑘)

𝑇
𝑃(𝑘)𝑥(𝑘), where 𝑃(𝑘) is a common positive

definite matrix. In order to guarantee the stability condition
for closed-loop control of high speed train, we impose the
following design requirement:

𝑉 (𝑥 (𝑘 + 𝑗 + 1 | 𝑘)) − 𝑉 (𝑥 (𝑘 + 𝑗 | 𝑘))

≤ − [𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑄𝑥 (𝑘 + 𝑗 | 𝑘)

+ 𝑢 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑅𝑢 (𝑘 + 𝑗 | 𝑘)] .

(24)

By summing (24) from 𝑗 = 0 to∞, we obtain the following
formula:

𝑉 (𝑥 (𝑘 +∞ | 𝑘)) − 𝑉 (𝑥 (𝑘 | 𝑘))

≤ −

∞

∑

𝑗=0

[𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑄𝑥 (𝑘 + 𝑗 | 𝑘)

+ 𝑢 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑅𝑢 (𝑘 + 𝑗 | 𝑘)] .

(25)

For the object function (12), it is reasonable to state that
𝑉(𝑥(𝑘 + ∞ | 𝑘)) = 0 as 𝑥(𝑘 + ∞ | 𝑘) = 0. Obviously, the
design requirement (24) can be converted to

𝐽
∞

0
≤ 𝑉 (𝑥 (𝑘 | 𝑘)) , (26)

where 𝑥(𝑘 | 𝑘) is the state of high speed train at the initial
time.

Let 𝑉(𝑥(𝑘 | 𝑘)) ≤ 𝛾, where 𝛾 is a nonnegative coefficient
to be minimized. Then the optimal cruise control problem
(12) is relaxed by the following convex optimization problem:

𝑥 (𝑘 | 𝑘)
𝑇
𝑃 (𝑘) 𝑥 (𝑘 | 𝑘) ≤ 𝛾. (27)

First, we will give the sufficient conditions for (24) and
(27). Considering the closed-loop system in (17), the stability
constraint (24) yields

[

𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

ℎ
𝑙
(𝑧 (𝑘 + 𝑗 | 𝑘)) ℎ

𝑚
(𝑧 (𝑘 + 𝑗 | 𝑘))

⋅ (𝐴
𝑙
𝑥 (𝑘 + 𝑗 | 𝑘) + 𝐵

𝑙
𝐹
𝑚
𝑥 (𝑘 + 𝑗 | 𝑘))]

𝑇

⋅ 𝑃 (𝑘)

⋅ [

𝑟

∑

𝑞=1

𝑟

∑

𝑤=1

ℎ
𝑞
(𝑧 (𝑘 + 𝑗 | 𝑘)) ℎ

𝑤
(𝑧 (𝑘 + 𝑗 | 𝑘))

⋅ (𝐴
𝑞
𝑥 (𝑘 + 𝑗 | 𝑘) + 𝐵

𝑞
𝐹
𝑤
𝑥 (𝑘 + 𝑗 | 𝑘))] − 𝑥 (𝑘

+ 𝑗 | 𝑘)

𝑇
𝑃 (𝑘) 𝑥 (𝑘 + 𝑗 | 𝑘) + 𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑄𝑥 (𝑘

+ 𝑗 | 𝑘) + [

𝑟

∑

𝑙=1

ℎ
𝑙
(𝑧 (𝑘 + 𝑗 | 𝑘)) 𝐹

𝑙
𝑥 (𝑘 + 𝑗 | 𝑘)]

⋅ 𝑅 [

𝑟

∑

𝑚=1

ℎ
𝑚
(𝑧 (𝑘 + 𝑗 | 𝑘)) 𝐹

𝑚
𝑥 (𝑘 + 𝑗 | 𝑘)] ≤ 0.

(28)

Let ℎ
𝑙
= ℎ
𝑙
(𝑧(𝑘 + 𝑗 | 𝑘)); one can further obtain that

r
∑

𝑙=1

𝑟

∑

𝑚=1

𝑟

∑

𝑞=1

𝑟

∑

𝑤=1

ℎ
𝑙
ℎ
𝑚
ℎ
𝑞
ℎ
𝑤
𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇

⋅ [(𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑚
)

𝑇
𝑃 (𝑘) (𝐴𝑞

+ 𝐵
𝑞
𝐹
𝑤
) − 𝑃 (𝑘)]

⋅ 𝑥 (𝑘 + 𝑗 | 𝑘) + 𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑄𝑥 (𝑘 + 𝑗 | 𝑘)

+

𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

ℎ
𝑙
ℎ
𝑚
𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝐹
𝑇

𝑙
𝑅𝐹
𝑚
𝑥 (𝑘 + 𝑗 | 𝑘)

≤ 0.

(29)

By Lemma 2, one can get that above inequality is equiva-
lent to
𝑟

∑

𝑙=1

𝑟

∑

𝑚=1

ℎ
𝑙
ℎ
𝑚
[(𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑚
)

𝑇
𝑃 (𝑘) (𝐴 𝑙

+ 𝐵
𝑙
𝐹
𝑚
) − 𝑃 (𝑘)

+ 𝑄 + 𝐹
𝑇

𝑙
𝑅𝐹
𝑙
] =

𝑟

∑

𝑙=1

ℎ
2

𝑙
[(𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑙
)

𝑇
𝑃 (𝑘) (𝐴 𝑙

+ 𝐵
𝑙
𝐹
𝑙
) − 𝑃 (𝑘) + 𝑄 + 𝐹

𝑇

𝑙
𝑅𝐹
𝑙
]

+ 2

𝑟−1

∑

𝑙=1

𝑟

∑

𝑚=𝑙

ℎ
𝑙
ℎ
𝑚
[(

𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑚
+ 𝐴
𝑚
+ 𝐵
𝑚
𝐹
𝑙

2

)

𝑇

⋅ 𝑃 (𝑘) (

𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑚
+ 𝐴
𝑚
+ 𝐵
𝑚
𝐹
𝑙

2

) − 𝑃 (𝑘) + 𝑄]

≤ 0.

(30)

It is obvious that the stability constraint (24) holds if we
guarantee the following inequalities:

(𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑙
)

𝑇
𝑃 (𝑘) (𝐴 𝑙

+ 𝐵
𝑙
𝐹
𝑙
) − 𝑃 (𝑘) + 𝑄 + 𝐹

𝑇

𝑙
𝑅𝐹
𝑙

< 0, 𝑙 = 1, 2, . . . , 𝑟,

(31)

(

𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑚
+ 𝐴
𝑚
+ 𝐵
𝑚
𝐹
𝑙

2

)

𝑇

𝑃 (𝑘)

⋅ (

𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑚
+ 𝐴
𝑚
+ 𝐵
𝑚
𝐹
𝑙

2

) − 𝑃 (𝑘) + 𝑄 ≤ 0,

1 ≤ 𝑙 < 𝑚 ≤ 𝑟.

(32)
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By variable substitution, let 𝑃(𝑘) = 𝛾𝐻(𝑘)
−1; inequality

(31) can be transformed to

(𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑙
)

𝑇
𝐻(𝑘)
−1
(𝐴
𝑙
+ 𝐵
𝑙
𝐹
𝑙
) − 𝐻 (𝑘)

−1
+

𝑄

𝛾

+

𝐹
𝑇

𝑙
𝑅𝐹
𝑙

𝛾

< 0.

(33)

By Schur complement, one can get that above inequality
is equivalent to

[

[

[

[

[

[

[

−𝐻
−1
(𝑘) ∗ ∗ ∗

𝐴
𝑙
+ 𝐵
𝑙
𝑌
𝑙
𝐺 (𝑘)
−1

−𝐻 (𝑘) ∗ ∗

𝑌
𝑙
𝐺 (𝑘)
−1

0 −𝛾𝑅
−1

0

𝑄
1/2

0 0 −𝛾𝐼

]

]

]

]

]

]

]

< 0, (34)

where 𝐹
𝑙
(𝑘) = 𝑌

𝑙
(𝑘)𝐺(𝑘)

−1.
According to the inequality 𝐻(𝑘) − 𝐺(𝑘) − 𝐺𝑇(𝑘) ≥

−𝐺(𝑘)
𝑇
𝐻(𝑘)
−1
𝐺(𝑘), where 𝐺(𝑘) is a nonsingular matrix and

𝐻(𝑘) > 0, premultiplying and postmultiplying both sides of
(34) by diag{𝐺(𝑘)𝑇, 𝐼, 𝐼, 𝐼} and its transpose, one can obtain
that inequality (31) is equivalent to inequality (20).

Using similar proof technique, inequality (32) can be
obtained from (21).

Furthermore, premultiplying and postmultiplying both
sides of (22) by diag{𝐼,𝐻(𝑘)−𝑇} and its transpose, we have

[

[

[

[

−1 𝑥 (𝑘 | 𝑘)
𝑇 𝑃 (𝑘)

𝛾

𝑃 (𝑘)

𝛾

𝑥 (𝑘 | 𝑘) −

𝑃 (𝑘)

𝛾

]

]

]

]

≤ 0. (35)

By Schur complement, we obtain

𝑥 (𝑘 | 𝑘)
𝑇
𝑃 (𝑘) 𝑥 (𝑘 | 𝑘) ≤ 𝛾. (36)

Thus, the sufficient conditions for (24) and (27) are
ensured.

Next, we will detail the sufficient condition for the control
constraint (14). Following (24), we have

𝑉 (𝑥 (𝑘 + 𝑗 + 1 | 𝑘)) − 𝑉 (𝑥 (𝑘 + 𝑗 | 𝑘)) ≤ 0, 𝑗 > 0 (37)

which is equivalent to

𝑥 (𝑘 + 𝑗 + 1 | 𝑘)

𝑇
𝑃 (𝑘) 𝑥 (𝑘 + 𝑗 + 1 | 𝑘)

≤ 𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑃 (𝑘) 𝑥 (𝑘 + 𝑗 | 𝑘) , 𝑗 > 0.

(38)

Then, along (22), the following can be obtained:

𝑥 (𝑘 + 𝑗 + 1 | 𝑘)

𝑇
𝑃 (𝑘) 𝑥 (𝑘 + 𝑗 + 1 | 𝑘)

≤ 𝑥 (𝑘 + 𝑗 | 𝑘)

𝑇
𝑃 (𝑘) 𝑥 (𝑘 + 𝑗 | 𝑘) ≤ 𝛾, 𝑗 > 0.

(39)

Considering the fact that 𝑥(𝑘 + 𝑖 | 𝑘) → 0 as 𝑖 → ∞, thus 𝜉 =
{𝑥 | 𝑥

𝑇
𝐻
−1
𝑥 ≤ 1} is an invariant ellipsoid for the predicted

states of high speed train.

The control constraint on each car of high speed train in
(14) can be expressed as

max
𝑗>0





𝑢
𝑖
(𝑘 + 𝑗 | 𝑘)






2
= max
𝑗>0





(𝐹
𝑙
𝑥 (𝑘 + 𝑗 | 𝑘))

𝑖






2

≤ max
𝑧∈𝜉





(𝐹
𝑙
𝑧)
𝑖






2

≤






(𝐹
𝑙
𝐻
1/2
)
𝑖







2

2






(𝐻
−1/2

𝑧)
𝑖







2

2

≤ (𝐹
𝑙
𝐻𝐹
𝑇

𝑙
)
𝑖𝑖
,

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑟.

(40)

By Schur complement, above inequality is true if the follow-
ing inequality holds:

[

−Φ ∗

𝐹
𝑇

𝑙
−𝐻 (𝑘)

−1
] ≤ 0,

𝑒
𝑇

𝑖
Φ𝑒
𝑖
≤ �̂�
2

max,

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑟,

(41)

where 𝑒
𝑖
is the 𝑖th column of the identity matrix. Premultiply-

ing and postmultiplying both sides of (41) by diag{𝐼, 𝐺(𝑘)𝑇}
and its transpose, inequality (41) can be represented by

[

−Φ ∗

𝑌
𝑇

𝑙
−𝐺 (𝑘)

𝑇
𝐻(𝑘)
−1
𝐺 (𝑘)

] ≤ 0,

𝑒
𝑇

𝑖
Φ𝑒
𝑖
≤ �̂�
2

max,

𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑟.

(42)

According to the inequality 𝐻(𝑘) − 𝐺(𝑘) − 𝐺(𝑘)𝑇 ≥

−𝐺(𝑘)
𝑇
𝐻(𝑘)
−1
𝐺(𝑘), where 𝐺(𝑘) is a nonsingular matrix and

𝐻(𝑘) > 0, inequality (23) can be obtained. Then the
MPC infinite horizon objective function is minimized, which
implies that optimal cruise control performance in (27) can
be ensured via this approach.Thus, the proof is complete.

Remark 4. Theorem 3 gives a sufficient condition for choos-
ing proper control gain 𝐹(𝑘) to optimize high speed train
operation in infinite time horizon subject to input con-
straints. The conditions in Theorem 3 take the form of
LMIs, which can be easily determined by using the Matlab
LMI toolbox. Consequently, the proposed fuzzy constrained
optimal cruise controller can be better applied to the practical
high speed train cruise control.

In practice, the control performance for high speed
train would inevitably be degraded if we design the trac-
tion/braking force directly. Therefore, it is necessary to study
the fuzzy constrained predictive control strategy to inhibit the
influences of actuator dynamics.

3.2. Fuzzy Constrained Predictive Controller of High Speed
Train with Actuator Dynamics. In this subsection, the influ-
ences of actuator dynamics on control performance are
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Fuzzy predictive
controller

Actuator 
compensator Actuator 

[𝛿a(k), 𝛿u(k)]

uc(k) 𝛿a(k)u(k)

Figure 2: Structure of the actuator compensation scheme.

considered, and a compensator is developed to reduce the dif-
ference between the fuzzy constrained predictive controller
output and the actual nonlinear control output. It is assumed
that the actuator of every car in the high speed train has
identical dynamics attributes, and the actuator dynamics in
this brief are considered for the following case:

Δ𝛿
𝑎
𝑖

(𝑘) = 𝛿𝑢
𝑖

(𝑘) ,

Δ𝛿
𝑢
𝑖

(𝑘) = −𝑎𝛿𝑢
𝑖

(𝑘) + 𝑏 (𝑢𝑖 (
𝑘) − 𝛿𝑎

𝑖

(𝑘)) , 𝑎, 𝑏 > 0,

(43)

where 𝑢
𝑖
(𝑘) is control input of the 𝑖th car from the fuzzy

predictive controller, 𝛿
𝑎
𝑖

(𝑘) is the actual control output
imposed on the 𝑖th car, and 𝛿

𝑢
𝑖

(𝑘) is a virtual input.
The overall structure of the compensation scheme con-

sists of fuzzy predictive controller, actuator compensator, and
actuator as depicted in Figure 2, where 𝑢

𝑐
(𝑘) is the control

input from actuator compensator.
Next, based on Theorem 3, we will state our main results

on the actuator compensator design for the fuzzy constrained
predictive controller based on backstepping [36] approach.

Theorem 5. Consider the actuator dynamics of high speed
train as described by (43). If the 𝑖th control input 𝑢

𝑐
𝑖

(𝑘) from
actuator compensator in Figure 2 is adjusted according to the
equation

𝑢
𝑐
𝑖

(𝑘) =

(𝑎𝛿
𝑢
𝑖

(𝑘) + 𝑏𝛿𝑎
𝑖

(𝑘) + Δ
2
𝑢
𝑖 (
𝑘) − 𝑘0

𝛿
𝑢
𝑖

(𝑘) + 𝑘0
Δ𝑢
𝑖 (
𝑘) − 𝑘0

𝑒
2
𝑖

(𝑘))

𝑏

,
(44)

then it is ensured that the actual output of high speed train
actuator asymptotically tracks the desired one given by the
fuzzy constrained predictive controller in Theorem 3.

Proof. Consider the control-loop system as shown in Fig-
ure 2. 𝑢

𝑖
(𝑘) in the actuator dynamics (43) is changed into

𝑢
𝑐
𝑖

(𝑘) as

Δ𝛿
𝑎
𝑖

(𝑘) = 𝛿𝑢
𝑖

(𝑘) ,

Δ𝛿
𝑢
𝑖

(𝑘) = −𝑎𝛿𝑢
𝑖

(𝑘) + 𝑏 (𝑢𝑐
𝑖

(𝑘) − 𝛿𝑎
𝑖

(𝑘)) , 𝑎, 𝑏 > 0,

(45)

where 𝑢
𝑐
𝑖

(𝑘) is the 𝑖th control input from the actuator
compensator. For the purpose of maintaining the desired
performance of the fuzzy constrained predictive controller,
we should guarantee that 𝛿

𝑎
𝑖

(𝑘) will closely track 𝑢
𝑖
(𝑘). Thus,

the error is defined as

𝑒
1
𝑖

(𝑘) = 𝛿𝑎
𝑖

(𝑘) − 𝑢𝑖 (
𝑘) . (46)

Taking forward difference, we have

Δ𝑒
1
𝑖

(𝑘) = Δ𝛿𝑎
𝑖

(𝑘) − Δ𝑢𝑖 (
𝑘) = 𝛿𝑢

𝑖

(𝑘) − Δ𝑢𝑖 (
𝑘) . (47)

To apply the backstepping recursive design procedure, we
start with the definition of the virtual input 𝛿

𝑢
𝑖

(𝑘) = Δ𝑢
𝑖
(𝑘) −

𝑘
0
𝑒
1
𝑖

(𝑘), where 𝑘
0
is a constant. Then, one can obtain that

Δ𝑒
1
𝑖

(𝑘) = −𝑘0
𝑒
1
𝑖

(𝑘) . (48)

Proceeding to apply backstepping process, we introduce the
following variable:

𝑒
2
𝑖

(𝑘) = 𝛿𝑢
𝑖

(𝑘) − Δ𝑢𝑖 (
𝑘) + 𝑘0

𝑒
1
𝑖

(𝑘) . (49)

Taking forward difference, the above equation becomes

Δ𝑒
2
𝑖

(𝑘) = Δ𝛿𝑢
𝑖

(𝑘) − Δ
2
𝑢
𝑖 (
𝑘) + 𝑘0

Δ𝑒
1
𝑖

(𝑘)

= −𝑎𝛿
𝑢
𝑖

(𝑘) + 𝑏𝑢𝑐
𝑖

(𝑘) − 𝑏𝛿𝑎
𝑖

(𝑘) − Δ
2
𝑢
𝑖 (
𝑘)

+ 𝑘
0
𝛿
𝑢
𝑖

(𝑘) − 𝑘0
Δ𝑢
𝑖 (
𝑘) .

(50)

Next, we construct the Lyapunov function candidate

𝑉 (𝑘) = 𝑒
2

1
𝑖

(𝑘) + 𝑒
2

2
𝑖

(𝑘) (51)

and also take its forward difference to obtain

𝑉 (𝑘 + 1) − 𝑉 (𝑘) = 𝑒
2

1
𝑖

(𝑘 + 1) + 𝑒
2

2
𝑖

(𝑘 + 1) − 𝑒
2

1
𝑖

(𝑘)

− 𝑒
2

2
𝑖

(𝑘)

= (2𝑒
1
𝑖

(𝑘) + Δ𝑒1
𝑖

(𝑘)) Δ𝑒1
𝑖

(𝑘)

+ (2𝑒
2
𝑖

(𝑘) + Δ𝑒2
𝑖

(𝑘)) Δ𝑒2
𝑖

(𝑘) .

(52)

By combining (44), (48), and (50), we can obtain that
condition (52) is equivalent to

𝑉 (𝑘 + 1) − 𝑉 (𝑘) = 𝑘0
(𝑘
0
− 2) (𝑒

2

1
𝑖

(𝑘) + 𝑒
2

2
𝑖

(𝑘)) , (53)

which shows that the origin (𝑒
1
𝑖

= 0, 𝑒
2
𝑖

= 0) is asymptoti-
cally stable by appropriately choosing 𝑘

0
.

Therefore, the 𝑖th control input 𝑢
𝑐
𝑖

(𝑘) from actuator
compensator in form of (44) is obtained to guarantee that the
second-order actuator dynamics are reduced. This completes
the proof.

Remark 6. Theorem 5 develops a compensator using the
backstepping technique to inhibit second-order actuator
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Table 1: The simulation parameters of high speed train.

Parameters Value Unit
Mass𝑚

𝑖
80 × 10

3 kg
Rotary mass coefficient 0.06 —
𝑘 80 × 10

3 Nm−1

𝑐
0

0.01176 Nkg−1

𝑐
1

7.7616 × 10
−4 Ns(mkg)−1

𝑐
2

1.6 × 10
−5 Ns2(m2kg)−1

dynamics for high speed train. It should be pointed out that
the actuator dynamics associated with the control problem of
high speed train are closely related to traction and braking
actions. In practical operation, traction and braking actions
are usually taken interchangeably by the control system. For
the sake of simplicity, this paper addresses the train dynamic
model during traction and braking phase in a unified form
with different parameters, which can be achieved by tuning 𝑎
and 𝑏 in (43).

4. Numerical Simulations

In this section, we will give numerical experiments to illus-
trate the effectiveness of the proposedmethod for the optimal
control of high speed train. In these examples, we consider a
high speed train with eight cars. The parameters of the high
speed train are listed in Table 1, which are derived from the
experimental results of the Japanese Shinkansen high speed
train [17].

With the consideration of both theoretical and practical
factors, the membership functions for the speed tracking
error are chosen as shown in Figure 3.

According to the above membership functions, the close-
loop system of high speed train (17) can be transformed to

𝑥 (𝑘 + 1) =

5

∑

𝑙=1

5

∑

𝑚=1

ℎ
𝑙
(V̂
1 (
𝑘)) ℎ𝑚

(V̂
1 (
𝑘))

⋅ [𝐴
𝑙
𝑥 (𝑘) + 𝐵𝑙

𝐹
𝑚
𝑥 (𝑘)] ,

(54)

where

ℎ
1
(V̂
1 (
𝑘)) =

{

{

{

−V̂
1 (
𝑘) − 20

20

, −40 ≤ V̂
1 (
𝑘) < −20,

1, V̂
1 (
𝑘) < −40,

ℎ
2
(V̂
1 (
𝑘))

=

{
{

{
{

{





V̂
1 (
𝑘) + 20





+ 20

20

, −40 ≤ V̂
1 (
𝑘) < 0,

0, otherwise,

ℎ
3
(V̂
1 (
𝑘)) =

{
{

{
{

{





V̂
1 (
𝑘)





+ 20

20

, −20 ≤ V̂
1 (
𝑘) < 20,

0, otherwise,
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Figure 3: The membership functions for the speed tracking error.

ℎ
4
(V̂
1 (
𝑘))

=

{
{

{
{

{





V̂
1 (
𝑘) − 20





+ 20

20

, 0 ≤ V̂
1 (
𝑘) < −40,

0, otherwise,

ℎ
5
(V̂
1 (
𝑘)) =

{

{

{

V̂
1 (
𝑘) − 20

20

, 20 ≤ V̂
1 (
𝑘) < 40,

1, 40 ≤ V̂
1 (
𝑘) .

(55)

In addition, 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2, . . . , 5, can be easily deter-

mined with respect to (11) and (54), which are not mentioned
here to keep the paper concise.

4.1. Example 1. Regarding the parameters used in the con-
troller design, the sampling period 𝑇

𝑠
is 0.5 s, and the weights

are 𝛼
𝑓
= 4 × 10

−7, 𝛼
𝑢
= 200, and 𝛼V = 0.5. For the optimal

control of high speed train, the constraints for control input
are determined not only by the physical characteristics of
actuators but also by safety and comfort requirements. In
practical optimal operations, the realistic constraint is usually
far below the theoretical value ofmaximum traction effort. As
a result, we adopt a usual and simplified constraint |𝑢

𝑖
(𝑘)| ≤ 5

for the magnitude of control input in this research. Suppose
that the high speed train is cruising at an initial speed V

𝑖
=

180 km/h, 𝑖 = 1, . . . , 8, and the initial relative displacement
between the two neighbouring cars is 𝑥

𝑖
= 0, 𝑖 = 1, . . . , 8. The

desired speed of the high speed train is given as follows:

V∗ =

{
{
{
{

{
{
{
{

{

180 km/h, 0 s ≤ 𝑡 < 100 s,

200 km/h, 100 s ≤ 𝑡 < 1000 s,

170 km/h, 1000 s ≤ 𝑡 ≤ 2000 s.

(56)

When actuator dynamics are not considered for high
speed train, by applying the fuzzy constrained predictive
control in Theorem 3, the fuzzy predictive control gain can
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Figure 4: Optimal curves for each car under the fuzzy constrained
predictive controller.

be obtained as 𝐹
𝑙
(𝑘) = 𝑌

𝑙
(𝑘)𝐺(𝑘)

−1. With help of Matlab
LMI toolbox, gain 𝐹

𝑙
is solved efficiently and the minimum

performance value is 𝛾∗ = 161588.5. As the dimensions for
gain 𝐹

𝑙
are very large, it is not given here to keep the paper

concise.
Under the fuzzy constrained predictive control, the run-

ning speed curves for each high speed train are plotted
in Figure 4(a), where the velocity curves for each car are
described in solid line and the dotted line denotes the desired
speed. It shows that, at the initial time, each car of the high
speed train tracks the desired speed V∗ = 180 km/h. Then,
at the time 𝑡 = 100 s, the desired speed for high speed train
increases to 200 km/h, and each car of high speed train
begins to accelerate to track the reference speed. We can
find out that each car of high speed train can perfectly track
the desired speed V∗ = 200 km/h after 𝑡 = 432 s and the
acceleration phrase lasts nearly 332 seconds. From 𝑡 = 1000 s,
the reference speed changes to 170 km/h, and each car of high
speed train begins to brake to track the predefined speed. We
can observe that the speeds of each car are eventually kept
at the equilibrium state (zero point) from 1428 s. It is easy
to calculate that the mean acceleration rate is approximately
0.06m/s2, which ensures the safety and comfort of the
operation of the high speed train. It can be inferred from the
above results that althoughmaximum traction force is usually
adopted in an energy-efficient driving strategy, it may not be
the optimal choice when other factors such as speed tracking
and in-train forces are contemplated as a whole.

The evolution curves of relative coupler displacements
between two neighboring cars are shown in Figure 4(b).
When the high speed train starts to accelerate or decelerate,

the deviations of the relative coupler displacements go up
remarkably at the beginning of acceleration or deceleration
phrase. As the speed is approaching the desired one, the
absolute values of the displacements follow a downward
trend. In the end, the relative coupler displacements between
the two connected cars are stabilized at the equilibrium state
(zero point). It is obvious that the deviations of the relative
coupler displacements from the equilibrium state remain
positive in the acceleration phase (i.e., generating traction
force in the longitudinal direction) and become negative
when the train begins to decelerate (i.e., generating braking
force in the longitudinal direction), which are in accordance
with practice. Meanwhile, the deviations of relative spring
displacements for each car are effectively controlled in the
reasonable range of 0.07 m during the whole journey, which
ensure the safety and comfort of the operation of the high
speed train. Correspondingly, the control forces 𝑢

𝑖
(𝑘) for

each train are plotted in Figure 4(c), which show that at the
beginning the control forces 𝑢

𝑖
(𝑘) for each train are very big

for tracking the desired speed, and when the tracking goal
of the fuzzy constrained predictive control is achieved, the
control forces are reduced and converge to a constant.

From what has been discussed above, it can be concluded
that the fuzzy constrained predictive design approach is able
to schedule the train to track the reference speed profile
without violating any operational constraints.

4.2. Example 2. Then, under the case of actuator dynamics,
we will consider the fuzzy constrained predictive control of
high speed train. The actuator model is chosen as (43) with
𝑎 = 14 and 𝑏 = 100 during traction phase and with 𝑎 = 20
and 𝑏 = 150 for braking phase. Other control parameters
remain the same as in Example 1 and the simulation results
are given in Figure 5. By comparing to Figure 4, it is shown
that, at the beginning of the acceleration and deceleration
periods, the speed, relative coupler displacements between
the two connected cars, and control forces with actuator
dynamics have bigger fluctuations than the case without
actuator dynamics. These unstable behaviors may be quite
uncomfortable for passengers. In addition, all the speeds
of each car with actuator dynamics track the desired speed
slower than the case without actuator dynamics. The accel-
eration phrase undergoes nearly 480 s and the deceleration
phrase lasts almost 620 s compared to 332 s and 432 s in
Example 1, respectively, which clearly indicate that the
actuator dynamics will lead to the degradation of the fuzzy
constrained predictive controller.

We further consider the case where the actuator com-
pensator in Figure 2 is introduced to counterbalance the
effect of actuator dynamics. According to Theorem 5, by
applying 𝑢

𝑐
𝑖

(𝑘) to each car, the running curves are depicted
in Figure 6. From Figure 6, we can observe that, in the
beginning, due to the big gap with the desired speed, all the
cars are running with the traction forces. After 𝑡 = 1000 s,
each car of high speed train begins to brake to track the lower
reference speed. It can be clearly found that the fluctuations
in Figure 5 are effectively handled, and both the relative
spring displacements and speed of each car are finally kept
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Figure 5: Optimal curves for each car under the fuzzy constrained
predictive controller with actuator dynamics.

at the equilibrium state (zero point), which indicates the
effectiveness of the proposed actuator compensator scheme.

To better show the effectiveness of the proposed actuator
compensation method, we give some sensitivity analysis
under different conditions. Then the case without actuator
dynamics (Case 1), the case with actuator dynamics (Case 2),
and the case with actuator compensator (Case 3) are plotted
in Figure 7. For the convenience of comparing, we calculate
the mean values of speeds, relative spring displacements, and
forces for the three cases. From these simulation results, it can
be seen that, during the whole travel, the mean speed curve
and mean traction effort in Case 3 can exactly track the ideal
results in Case 1, which also takes shorter time to reach the
equilibrium state than Case 2. Moreover, the max value of
mean relative spring displacements is much smaller due to
the actuator compensator, which greatly enhances safety for
high speed train movement.

In addition, simulations are carried out to investigate the
effects of 𝛼

𝑓
, 𝛼
𝑢
, and 𝛼V on the train’s performance, which

allow the proposed controller tomake some adjustments with
in-train force minimization, energy consumption reduction,
and velocity tracking improvement. In order to facilitate
energy consumption analysis in different control strategies,
we use 𝐸 = ∫𝑇𝑓

𝑡
0

|𝑢
𝑖
V
𝑖
|𝑑𝑡 to approximate the energy consumed

during the optimizing interval. Under the fuzzy constrained
predictive controller with actuator compensator, the energy
consumption, duration time, and max coupler displacement
during the acceleration phase are summarized in Table 2.

First, we augment 𝛼
𝑢
from 200 to 2000 and the other two

parameters remain the same as in Example 1, which implies
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Figure 6: Optimal curves for each car under the fuzzy constrained
predictive controller with actuator compensator.

that controller is tuned to be an energy efficiency-emphasized
one. Consequently, energy consumption decreases from
29856MJ to 29678MJ. By contrast, the acceleration time is
longer and the max coupler displacement is larger compared
to the case in Example 1, which results in worse speed
tracking results, and in-train forces increase. To examine
what exactly happenswhen attention is paid on better velocity
tracking results, we change 𝛼V from 0.5 to 10, and the other
parameters are the same as those presented in the above
example unless otherwise noted. We can observe that it takes
as soon as 314 s to catch the desired speed with 𝛼V = 10

compared to 360 s with 𝛼V = 0.5. This phenomenon can
be explained by the reason that more efforts are exerted on
each car to prompt the velocity in a shorter time, thereby
leading to the fact that the maximum traction effort and
energy consumption have a slight rise in this case.

Thus, the emphasized performancewould be better, while
the other two aspects of the performance would deteriorate.
In practice, we should coordinate the three parameters with
regard to the desired performance.

5. Conclusion

In this brief, we investigate the problem of fuzzy predictive
cruise control of high speed train such that the objective
function value of train performance criteria is optimized
at every step in infinite time horizon subject to input
constraints. Employing Takagi-Sugeno (T-S) fuzzymodel, we
approximate the high speed train system to an interpolation
of some local linear models by fuzzy membership functions.
Based on Lyapunov stability theory, a set of LMIs is given
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Figure 7: Simulation results with different control weights.

Table 2: The simulation results with different control weights.

Item 𝛼
𝑓
= 4 × 10

−7
, 𝛼
𝑢
= 200 𝛼

𝑓
= 4 × 10

−7
, 𝛼
𝑢
= 2000 𝛼

𝑓
= 4 × 10

−7
, 𝛼
𝑢
= 2000

𝛼V = 0.5 𝛼V = 0.5 𝛼V = 10

Energy consumption (MJ) 29856 29678 29947
Acceleration time (s) 332 360 314
Max coupler displacement (m) 0.0544 0.0578 0.0592

to solve the corresponding controller optimization problem
which guarantees the various railway operational perfor-
mances such as safety, energy consumption, riding comfort,
and velocity tracking. Moreover, a mathematically rigorous
and algorithmically tractable actuator compensator is added
to adjust the output of the fuzzy constrained predictive

controller in the presence of traction and braking dynamics,
which greatly enhances safety and comfort for high speed
train movement. The effectiveness and applicability of the
proposed method are further examined through numerical
experiments. Additionally, we notice that if the number
of cars increases, the computational time in the proposed
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algorithm may increase drastically. Then, one may resort
to the distributed MPC design method, which needs to be
investigated in the future.
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