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1. Introduction. An important tool to study rings with valuation is the so-

called associated graded ring construction: to a valuation ring R, we can as-

sociate a ring gr(R) graded by the valuation group. This ring is often easier

to study, and one tries to lift properties back from gr(R) to R. This principle

has been recently applied to rings of differential operators (see [9]), the Brauer

group (see, e.g., [8]), and to valuations on division algebras (see [1, 11, 12]).

This has been one of the motivations to study graded rings, see [10] for a de-

tailed discussion. In a sense, the easiest example of a graded ring is a graded

field, this is a commutative graded ring in which every homogeneous element

is invertible, and the terminology has been introduced in [13].

This note is a continuation of earlier work of the author (see [3, 4, 5, 6]), in

which graded fields and graded division rings are studied with special empha-

sis on applications to valuation theory. The aim of this note is to introduce

and study the notion of gr-transcendental graded field extension, at least in

the case where the grading group is torsion-free abelian; application to valued

field extensions leads to three different notions of transcendental extensions

of valued fields.

In Section 2, we recall some basic results on graded ring theory and on grad-

ings on polynomial rings. We introduce the notions of gr-algebraically freeness

and gr-transcendental extension in Section 3 and prove some elementary prop-

erties (see, e.g., Proposition 3.4). In Section 4, we look at two special cases:

unramified graded field extensions, where the grading groups of both graded

fields are the same, and totally ramified extensions, where the parts of degree

zero of both extensions coincide. The transcendency can be described explic-

itly in both cases; combination of the two situations leads to the existence

of a gr-transcendency basis in general (Proposition 4.5) and to the notion of

gr-transcendency degree. In Section 5, we give a structure theorem for purely

gr-transcendental graded field extensions of divisible type (Proposition 5.1);
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a graded field extension is of divisible type if the quotient of the two grad-

ing groups is torsion. In Section 6, we apply our results to valued fields and

introduce the notions of gradually, residually, and valuatively transcendental

valued field extensions.

2. Preliminaries

2.1. Graded rings. Let Γ be a torsion-free abelian group and R a commuta-

tive ring. All rings considered in this note will be commutative. Recall that R
is called a Γ -graded ring if R =⊕δ∈ΓRδ, where Rδ is an additive subgroup of R,

such that RδRγ ⊂ Rδ+γ , for all γ,δ∈ Γ . We say that a≠ 0∈ Rδ is homogeneous

of degree δ, and we then write deg(a) = δ. Let H(R) = (∪δ∈ΓRδ)\{0} be the

set of all homogeneous elements of R. If a=∑δ∈Gaδ with aδ ∈ Rδ, then aδ is

called the homogeneous component of a of degree δ; ΓR = {λ ∈ Γ | Rλ ≠ {0}}
is called the support of the graded ring R and R is a domain if and only if

H(R) has no zero divisors; in this case ΓR is a submonoid of Γ . We will say that

R is a graded ring of type Γ if R is Γ -graded with ΓR = Γ . A Γ -graded commu-

tative ring R is called a graded field if every nonzero homogeneous element

of R is invertible. If R is a graded field, then ΓR is a subgroup of Γ and is

called the grading group of R. The rational closure of ΓR is then denoted by

∆R = ΓR⊗ZQ. In this case, H(R) is a group, called the group of homogeneous

elements of R.

If R and S are Γ -graded rings, then f : R → S is called a homomorphism of

graded rings if f is grade preserving, that is, f(Rτ)⊂ Sτ for all τ ∈ Γ .

2.2. Gradings on polynomial rings. Throughout, Γ will be a torsion-free

abelian group. Let R be a Γ -graded commutative ring and assume that H(R)
contains no zero divisors. Localizing R at the multiplicatively closed set H(R),
we obtain a Γ -graded field Frgr(R), called the graded field of fractions of R. The

support of Frgr(R) is the subgroup {α−β |α,β∈ ΓR} of Γ .
Let X = {Xi | i ∈ I} be a (finite or infinite) set of variables and ∆Γ = Γ ⊗Z Q

the divisible closure of Γ . Consider a map ω : X → ∆Γ and write ω(Xi) = δi.
Then ω defines a ∆Γ -grading on R[X] by taking gr(Xi) = δi. This graded ring

is denoted by R[X]ω. Clearly, the support of R[X]ω is contained in ΓR[ω(X)],
the submonoid of ∆Γ generated by ΓR and ω(X).

We call P ∈ R[X] homogenizable if there exists ω : X → ∆Γ such that P ∈
H(R[X]ω).

Now assume that R is a graded field. Then R[X]ω is a domain, and we

can consider Frgr(R[X]ω) = R(X)ω, called the ω-graded field of fractions of

R[X].
Let R be a graded subring of a Γ -graded field S, and A ⊂ H(S). Then the

subring R[A] of S generated by R and A is graded. Its graded field of fractions

R(A) is the smallest graded subfield of S containing R and A. If B ⊂ H(S) is

another subset, then R[A∪B]= R[A][B] and R(A∪B)= R(A)(B).
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3. Graded transcendental extensions of graded fields. Let Γ be a torsion-

free abelian group andR⊂S an extension of Γ -graded fields. For T ={t1, . . . , ts}⊂
H(S), we consider the map ωT : {X1, . . . ,Xs} → Γ , ωT(Xi)= deg(ti).

(1) T is called gr-algebraically free over R if there are no nonzero P ∈
H(R[X1, . . . ,Xs]ωT ) such that P(t1, . . . , ts)= 0;

(2) L⊂H(S) is called gr-algebraically free over R if every finite subset of L
is gr-algebraically free;

(3) T is called a gr-transcendency basis of S over R if T is a maximal gr-

algebraically free subset of H(S) (for the inclusion);

(4) a ∈ H(S) is called gr-transcendental over R if {a} is gr-algebraically

free; otherwise a is called gr-algebraic;

(5) R ⊂ S is called a gr-algebraic graded field extension if every a ∈ H(S)
is gr-algebraic; otherwise R ⊂ S is called a transcendental graded field

extension.

Every graded field extension of finite degree is gr-algebraic (see [6] or [7]);

consequently, [S : R]=∞ if R ⊂ S is transcendental.

If T = {t1, . . . , ts} ⊂H(S) is gr-algebraically free, then every ti is gr-transcen-

dental over R and T ∩H(R)=∅.

Proposition 3.1. Let S/R be a graded field extension and let T ⊂H(S). The

set T is a gr-transcendency basis of S over R if and only if S/R(T) is gr-algebraic

and T is gr-algebraically free over R.

Proof. First, Assume that T is a gr-transcendency basis and takea∈H(S)\
T . Then T ∪{a} is not gr-algebraically free, so there exists T ′ = {t1, . . . , ts ,a} ⊂
T∪{a} and 0≠ f(X1, . . . ,Xs,Y )∈ R[X1, . . . ,Xs,Y ]ωT ′ such that f(t1, . . . , ts ,a)=
0. We can write

f
(
X1, . . . ,Xs,Y

)=
r∑
i=1

fi
(
X1, . . . ,Xs

)
Y i (3.1)

with at least one fi ≠ 0. It follows that

r∑
i=1

fi
(
t1, . . . , ts

)
ai = 0, (3.2)

and a is gr-algebraic over R(T).
Conversely, let T ⊂H(S) be gr-algebraically free and assume that S/R(T) is

gr-algebraic. For x ∈H(S), there exists f(X) =∑ri=1aiXi ∈H(R(T)[X](gr(x)))
such that f(x) = 0. We can find T ′ = {t1, . . . , ts} ⊂ T such that each ai can be

written in the form

ai = Ni
(
t1, . . . , ts

)
D
(
t1, . . . , ts

) (3.3)
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with Ni,D ∈H(R[X1, . . . ,Xs]ωT ′ ) and d=D(t1, . . . , ts)≠ 0. The polynomial

P
(
X1, . . . ,Xs,X

)=
r∑
i=1

Ni
(
T1, . . . ,Ts

)
Xi (3.4)

is homogenizable and P(t1, . . . , ts ,x)= 0. Hence, T∪{x} is not gr-algebraically

free.

We call S a pure gr-transcendental graded field extension of R if there exists

a (possibly empty) gr-transcendency basis T of R such that S = R(T). Such a

basis is called a generating gr-transcendency base.

Remark 3.2. Let A = {ai | i ∈ I} ⊂ H(S) and consider ωA : X = {Xi | i ∈
I} → Γ , ω(Xi) = deg(ai). Then we have a canonical surjection of graded rings

φA : R[X]ωA → R[A],φA(Xi)= ai. The set A is gr-algebraically free if and only

if φA is an isomorphism of graded rings. The map φA induces a morphism of

graded fields

ψA : Frgr
(
R[X]ωA

)= R(X)ωA �→ S (3.5)

and A is a generating gr-transcendency base of S over R if and only if ψA is an

isomorphism.

Proposition 3.3. Let S/R be a Γ -graded field extension and T ⊂H(S). As-

sume that T is the disjoint union of two subsets L and C .

(1) The subset C is gr-algebraically free over R(L).
(2) Every h∈H(R(T))\R is gr-transcendental over R.

Proof. (1) Assume that C is not gr-algebraically free over R(L). Then there

exist finite subsets L1 = {t1, . . . , ts} ⊂ L and C1 = {ts+1, . . . , tr} ⊂ C and a homo-

geneous polynomial P ∈ R(t1, . . . , ts)[Xs+1, . . . ,Xr ]ωC1 such that P(ts+1, . . . , tr )=
0. The coefficients of P are quotients of homogeneous polynomials in t1, . . . , ts .
Let Q be a common multiple of the denominators. Then we can write

P = F
(
t1, . . . , ts ,Xs+1, . . . ,Xr

)
Q
(
t1, . . . , ts

) (3.6)

with F ∈H(R[X1, . . . ,Xs,Xs+1, . . . ,Xr ]ωL1∪ωC1 ). Now,

F
(
t1, . . . , ts ,ts+1, . . . , tr

)= 0, (3.7)

contradicting the fact that T is gr-algebraically free over R.

(2) For h ∈H(R(T)), we have a finite subset T1 = {t1, . . . , tr} of T such that

h∈H(R(T1)), and we can write

h= P
(
t1, . . . , tr

)
Q
(
t1, . . . , tr

) (3.8)

with P,Q∈H(R[X1, . . . ,Xr ]ωT1 ) and Q(t1, . . . , tr )≠ 0.
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Assume that h is gr-algebraic over R. Then there exists F ∈ H(R[X]ω{h})
such that F(h)= 0. Write F(X)=∑ni=0aiXi. Then,

Q
(
t1, . . . , tr

)nF(h)=
n∑
i=0

aiQ
(
t1, . . . , tr

)n−iP(t1, . . . , tr )i = 0. (3.9)

Now,

F
(
X1, . . . ,Xr

)=
n∑
i=0

aiQ
(
X1, . . . ,Xr

)n−iP(X1, . . . ,Xr
)i

(3.10)

is a homogeneous polynomial in R[X1, . . . ,Xr ]ωT1 and F(t1, . . . , tr ) = 0. This

contradicts the fact that T is gr-algebraically free.

Proposition 3.4. Let Q/S and S/R be two Γ -graded field extensions and let

TQ be a gr-algebraically free subset of Q over S and TS a gr-algebraically free

subset of S over R. Then the following properties hold:

(1) TQ∩TS =∅;

(2) TQ∪TS is a gr-algebraically free subset of Q over R;

(3) TQ∪TS is a gr-transcendency base of Q over R if and only if TQ and TS
are gr-transcendency bases, respectively of Q over S and of S over R;

(4) Q/R is a pure gr-transcendental extension if and only if Q/S and S/R
are pure gr-transcendental extensions.

Proof. (1) The proof follows from the fact that TQ∩H(S) = ∅ and TS ⊂
H(S).

(2) Clearly, finite subsets

L1 =
{
t1, . . . , ts

}⊂ TQ, L2 =
{
ts+1, . . . , ts+r

}⊂ TS (3.11)

are gr-algebraically free over R. Assume that L= L1∪L2 is not gr-algebraically

free over R. Then L1 ≠ ∅ and L2 ≠ ∅, and there exists a nonzero homoge-

nizable f ∈ R[X1, . . . ,Xs+r ] such that f(t1, . . . , ts+r )= 0. Then g = f(X1, . . . ,Xs,
ts+1, . . . , ts+r ) is a homogeneous polynomial in S[X1, . . . ,Xs], and g(t1, . . . , ts)=
0, hence Q is not gr-algebraically free over S, which is a contradiction.

(3) Let TQ and TS be gr-transcendency bases, respectively of Q over S and

of S over R, and consider free L ⊂ H(Q) gr-algebraically over R and strictly

containing TQ∪TS . Then

L= (L∩(Q\S))∪(L∩S). (3.12)

We have that at least one of the two inclusions L∩(Q\S)⊂ TQ and L∩S ⊂ TS
is strict, and L∩(Q\S)⊂H(Q) and L∩S ⊂H(S) are gr-algebraically free over,

respectively, S and R. This contradicts the hypothesis.

Conversely, assume that TQ∪TS is a gr-transcendency base of Q over R and

that TQ is not a maximal gr-algebraically free part of H(Q) over S. Let L be a
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gr-algebraically free part of H(Q) over S strictly containing TQ. Then L∪TS
strictly contains TQ∪TS and is gr-algebraically free over R by part (2), which

is a contradiction. We use the same argument if TS is not maximal.

(4) If S = R(TS) and Q = S(TQ), then Q = S(TQ) = R(TS)(TQ) = R(ST ∪TQ),
and it follows from part (2) that ST ∪TQ ⊂H(Q) is gr-algebraically free over R.

Conversely, let Q = R(L) with L ⊂ H(Q) gr-algebraically free over R. Let

LS = L∩H(S) and LQ = L\LS . It follows from part (3) that LS and LQ are gr-

transcendency bases of S over R and of Q over S. If there exists x ∈ S \R(LS),
then x is gr-algebraic over R(LS). But it follows from part (2) of Proposition 3.3

that every x ∈Q\R(LS) is gr-transcendental over R(LS), so we have a contra-

diction.

Finally, Q= R(L)= R(LQ∪LS)= R(LS)(LQ)= S(LQ).

4. Unramified and totally ramified graded field extensions. We call an ex-

tension S/R of Γ -graded fields unramified if ΓS = ΓR .

Proposition 4.1. Let S/R be an unramified Γ -graded field extension.

(1) Every transcendency basis T of S0/R0 is a gr-transcendency basis of S/R.

(2) If T is a gr-transcendency basis of S/R, then for each t ∈ T , there exists

rt ∈H(R) such that T0 = {t/rt | t ∈ T} is a transcendency basis of S0/R0.

Proof. (1) If T is not gr-algebraically free over R, then there exist {t1, . . . ,
ts} ⊂ T ⊂ R0 and P ∈H(R[X1, . . . ,Xs]ωT ) such that

P
(
t1, . . . , ts

)= 0. (4.1)

In R[X1, . . . ,Xs]ωT , we have that deg(Xi) = 0, for all i, and we can conclude

that all the coefficients of P are homogeneous of the same degree δ (which is

also the degree of P ). Take x ≠ 0 ∈ Rδ, then x−1P(t1, . . . , ts) = 0, and x−1P ∈
R0[X1, . . . ,Xs], hence T is not algebraically free over R0, which is a contradic-

tion. From the fact that S0/R(T)0 is algebraic and ΓS = ΓR = ΓR(T) is a torsion

group over ΓR(T), we conclude that S/R(T) is gr-algebraic (see [6, Proposition

1, page 24]).

(2) Let T be a gr-transcendency basis of S/R. For every t ∈ T , we choose

rt ∈ R such that deg(rt) = deg(t) (using the fact that ΓR = ΓS ). Then LT =
{t/rt | t ∈ T} ⊂ S0 is still a gr-transcendency basis of S/R. From the fact that

LT is gr-algebraically free, it follows immediately that LT is algebraically free;

also the fact that S/R(LT ) is gr-algebraic entails that S/(R(LT )0) is algebraic,

and the proof is finished after we remark that R(LT )0 = R0(LT ).

Corollary 4.2. Every unramified graded field extension S/R has a gr-

transcendency basis and all the gr-transcendency bases have the same cardi-

nality, equal to the transcendency degree of S0/R0.

We call an extension S/R of Γ -graded fields totally ramified if R0 = S0.
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Proposition 4.3. If S/R is a totally ramified extension of Γ -graded fields,

then T ⊂H(S) is gr-algebraically free over R if and only if ΓT = {deg(t) | t ∈ T}
is linearly free in ΓS/ΓR .

Proof. Assume first that T is not algebraically free. Then there exist T ′ =
{t1, . . . , ts} ⊂ T and a nonzero P ∈H(R[X1, . . . ,Xs]ωT ) such that P(t1, . . . , ts)= 0.

The polynomial P can be written as a sum of monomials, and at least two of

them are different from 0, say

aXn1
1 ···Xsns, bXm1

1 ···Xsms. (4.2)

All these monomials have the same degree, hence

deg(a)+
s∑
j=1

nj deg
(
tj
)= deg(b)+

s∑
j=1

mj deg
(
tj
)
,

s∑
j=1

(
nj−mj

)
deg

(
tj
)= deg(b)−deg(a)∈ ΓR,

(4.3)

so ΓT is not linearly free modulo ΓR .

Conversely, assume that there exists T ′ = {t1, . . . , ts} ⊂ T such that ΓT ′ is not

linearly free modulo ΓR . Then there exist l1, . . . , ls ∈ Z such that

s∑
k=1

lkdeg
(
tk
)= λ∈ ΓR. (4.4)

Take a≠ 0∈H(R) such that deg(a)= λ. Then,

b = a−1tl11 ···tlss ∈ R0. (4.5)

For every m∈ {1, . . . ,s}, we take

im = lm, jm = 0 if lm ≥ 0,

im = 0, jm =−lm if lm < 0.
(4.6)

The polynomial

P
(
X1, . . . ,Xs

)= a−1b−1Xi11 ···Xsis−Xj11 ···Xsjs (4.7)

is homogeneous in R[X1, . . . ,Xs]ωT ′ , and P(t1, . . . , ts) = 0, so it follows that T ′

is not gr-algebraically free.

Corollary 4.4. Every totally ramified graded field extension S/R has a gr-

transcendency basis and all the gr-transcendency bases have the same cardi-

nality, equal to the rank of the abelian group ΓS/ΓR .

Proof. Take a maximal free subgroup F of ΓS/ΓR ; then ΓS/ΓR(F) is torsion.

For every f ∈ F , choose tf ∈ H(S) such that deg(tf ) represents f in ΓS/ΓR .



4442 M. BOULAGOUAZ

It follows from Proposition 4.3 that T = {tf | f ∈ F} is gr-algebraically free.

Finally, ΓR(T) = ΓR(ΓT ) and R(T)0 = R0, so S0/R(T)0 = R0/R0 is algebraic. It fol-

lows that S/R(T) is gr-algebraic if and only if (ΓS/ΓR(ΓT )= ΓS)/ΓR(F) is torsion,

see [6, Proposition 1, page 24].

We now look at the general case: if S/R is an extension of Γ -graded fields,

then S/R(S0) is a totally ramified extension and R(S0)/R is an unramified ex-

tension. The above results show that S/R has a gr-transcendency basis with

cardinality equal to the sum of the transcendency degree of S0/R0 and the rank

of ΓS/ΓR . Moreover, we have the following result.

Proposition 4.5. Let S/R be a Γ -graded field extension. Then all gr-tran-

scendency bases of S/R have the same cardinality, equal to the sum of the

transcendency degree of S0/R0 and the rank of ΓS/ΓR .

Proof. Let T be a gr-transcendency basis of S/R. Then ΓR(T) = ΓR(ΓT ), and

ΓS/ΓR(T) is torsion since S/R(T) is gr-algebraic. Applying Zorn’s lemma to the

set � consisting of T∗ ⊂ T such that ΓT∗ is linearly free over ΓR , and such

that two different elements in T∗ have different degrees, we obtain a maximal

subset Tm satisfying these two properties. Then ΓR(ΓT )/ΓR(ΓTm) and, a fortiori,

ΓS/ΓR(ΓTm) are torsion, and Tm is a basis of ΓS/ΓR , proving that Tm is a gr-

transcendency basis of S/R(S0).
On the other hand, the map deg :H(S)→ ΓS is a group homomorphism and

its kernel S∗0 is a multiplicative subgroup of S0. The image of H(R(Tm)) under

deg is ΓR(ΓTm) and the inverse image of ΓR(ΓTm) is H(R(Tm))S∗0 .

For every t ∈ T = T \Tm, there exists nt ∈ N such that nt deg(t) ∈ ΓR(ΓTm)
or, equivalently, tnt ∈H(R(Tm))S∗0 . Therefore,

tntH
(
R
(
Tm
))∩S∗0 ≠∅. (4.8)

Let G be the multiplicative subgroup of H(R)(T) generated by H(R) and T in

H(S). Then an element x ∈ R(T)∩ S0 can be written as a quotient
∑
i ai by∑

j bj , where the ai and bj are elements of G∩S0. Hence,

R(T)∩S0 = R0(G)∩S0 (4.9)

and S0/R0(G∩S0) is algebraic.

For every t ∈ T , we choose t̃ ∈ tntH(R(Tm))∩S0 and we put

T̃ = {t̃ | t ∈ T} (4.10)

and G̃ = R∗0 (T̃ ), the subgroup of S∗0 generated by R∗0 and T̃ . Then (G∩S0)/G̃
is torsion, hence R(T)∩S0 is algebraic over R0(G̃)= R0(T̃ ). Now S0/R(T)∩S0

is algebraic, so S0/R0(T̃ ) is also algebraic. We know that T̃ is gr-algebraically
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free over R0, so T̃ is a gr-transcendency basis of R(S0)/R and Tm∪ T̃ is a gr-

transcendency basis of S/R. To finish the proof, it suffices to remark that the

map T → Tm∪ T̃ , mapping t to t if t ∈ Tm, and to t̃ otherwise, is a bijection.

The cardinality of a gr-transcendency basis of S/R is called the gr-transcen-

dency degree of S/R, and is denoted by [S : R]t .

5. Extensions of divisible type. We say that an extension S/R of Γ -graded

fields is of divisible type if ΓS/ΓR is a torsion group. In this situation, we have

that ΓS ⊂∆R .

Proposition 5.1. Let R be a Γ -graded fieldX = {Xi | i∈ I} a set of variables,

and ω :X →∆R .

(1) The graded field extension R(X)ω/R is pure gr-transcendental of divisible

type; X is a generating gr-transcendency basis.

(2) Every pure gr-transcendental graded field extension of divisible type of R
is gr-isomorphic to R(X)ω for a suitable choice of X and ω.

Proof. (1) It is clear that R(X)ω/R is an extension of divisible type since

ΓR(X)ω ⊂ ∆R and ∆R/ΓR is torsion. If X is not gr-algebraically free over R,

then there exist F = {X1, . . . ,Xr} ⊂ X finite and a polynomial P ∈ H(R[Y1, . . . ,
Yr ]ω|F|) such that P(X1, . . . ,Xr )= 0. But then P is the zero polynomial.

(2) Let S/R be a pure gr-transcendental graded field extension of divisible

type with gr-transcendency basis T = {ti | i ∈ I}. Then deg(ti) ∈ ∆R . Let X =
{Xi | i ∈ I} be a set of indeterminates and consider ω : X → ∆R , ω(Xi) =
deg(ti). By Remark 3.2, the map ψ : R(X)ω → S defined by ψ(Xi) = ti is an

isomorphism of graded fields.

Proposition 5.2. Let R be a Γ -graded field and ω : X = {Xi | i ∈ I} → ∆R .

Then (R(X)ω)0/R0 is a pure transcendental field extension and [(R(X)ω)0 :

R0]t = [R(X)ω : R]t .

Proof. Let � be the set consisting of all couples (Y ,BY ) with Y ⊂ X and

(R(Y)ω|Y )0/R0 a pure transcendental field extension with generating transcen-

dency basis BY . The set � is partially ordered: (Y ,BY ) ≤ (Z,BZ) if and only if

Y ⊂ Z and BY ⊂ BZ .

Take (Y ,BY ) ∈ � and Y ⊂ Z ⊂ X. Remark that there exists BZ ⊂ R(Z)ω|Z0

such that BY ⊂ BZ and (Z,BZ) ∈ � if and only if R(Z)
ω|Z
0 /R(Y)

ω|Y
0 is a purely

transcendental field extension. Indeed, if B is a generating transcendency basis,

then BZ = B∪BY satisfies the required conditions.

Every totally ordered subset {(Yi,BYi) | i ∈ J} ⊂ � has an upper bound,

namely (XJ = ∪Yi, BJ = ∪BYi). Indeed, if BJ is not algebraically free over R0,

then there exists a finite subset P ⊂ BJ which is not algebraically free. P is

contained in some Bj , which is algebraically free, so we have a contradiction.

On the other hand, BJ ⊂ R(XJ)(ω(XJ))0 and, for each Yi, the generating transcen-

dency basis Bi of R(Yi)
ω|Yi
0 /R0 is included in BJ , hence R(Yi)

ω|Yi
0 ⊂ R0(BJ) and
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R(XJ)
(gr(XJ))
0 ⊂ R0(BJ). So, (XJ = ∪Yi, BJ = ∪BYi) ∈ � and is bigger than all

the (Yi,BYi). It then follows from Zorn’s lemma that there exists a maximal

element (Xm,BXm)∈�. We show that Xm =X.

Assume that there exists x ∈ X \ Xm and let Y = Xm ∪ {x}. Then

R(Y)
ω|Y
0 /R(Xm)

ω|Xm
0 is purely transcendental of degree one with generating

transcendency base {x}. Let α be the order of deg(x) over ΓR(ω(Xm)) and

take z ∈ R(Xm)ω|Xm0 such that deg(z)=αdeg(x). Then

R(Y)
ω|Y
0 = R(Xm)ω|Xm0

(
z−1xα

)
, (5.1)

where z−1xα is transcendental overR(Xm)
ω|Xm
0 , andR(Y)

ω|Y
0 /R(Xm)0 is purely

transcendental. This implies that (Xm,BXm) is not maximal in �, a contradic-

tion. We conclude that R(X)(ω(X))0 /R is purely transcendental and we have a

generating transcendency basis BX indexed by X, so [(R(X)ω)0 : R0]t = #(X)=
[R(X)ω : R]t by Proposition 5.1.

As an immediate consequence of Propositions 5.1 and 5.2, we have the

following corollary.

Corollary 5.3. If S/R is a purely gr-transcendental extension of Γ -graded

fields of divisible type, then S0/R0 is purely transcendental and [S : R]t = [S0 :

R0]t .

6. Application to valued extensions

6.1. The associated graded field. Let (F,v) be a valued field with valuation

group ΓF and let F be the residue field. For λ ∈ ΓF , we have that Fλ = {x ∈ F |
v(x)≥ λ} is a subgroup of (F,+) and Fλ+ = {x ∈ K | v(x) > λ} is a subgroup

of Fλ. We also write gr(F)λ = Fλ/Fλ+ . In particular, gr(F)0 = F . On

gr(F)=
⊕
ΓF

gr(F)λ, (6.1)

we define a multiplication as follows:

(
a+Fλ+

)(
b+Fδ+

)= (ab+F(λ+δ)+) (6.2)

for a ∈ gr(F)λ and b ∈ gr(F)δ. This multiplication extends linearly to gr(F)
and makes gr(F) into a ΓF -graded field, called the associated graded field.

Let πλ : Fλ → gr(F)λ be the canonical projection. For every x ∈ F , we put

x̃ =πv(x)(x). The group ΓF is totally ordered, and therefore torsion-free. Notice

that if E/F is an extension of valued fields, then gr(E)/gr(F) is an extension

of graded fields. More details on the associated graded field (or division ring)

can be found in [2, 3, 6, 7, 8, 11].
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For an extension of valued fields E/F , we now define the following notions:

(1) [E : F]t·g = [gr(E) : gr(F)]t , the gradual transcendence degree of E/F ;

(2) [E : F]t·r = [E : F]t , the residual transcendence degree of E/F ;

(3) [E : F]t·v = rank(ΓE/ΓF ), the valuative transcendence degree of E/F .

We call E a gradually (resp., residually, resp., valuatively) transcendental valued

extension of F if gr(E)/gr(F) is a gr-transcendental graded field extension

(resp., if E/F is a transcendental field extension, resp., if ΓE/ΓF is free).

If T ⊂ E is such that T̃ = {t̃ | t ∈ T} is gr-algebraically free over gr(E) (resp., a

gr-transcendency basis of gr(E)/gr(F)), then we call T gradually algebraically

free (resp., a gradually transcendental basis of E/F ).

Observe that if T is a gradually transcendental basis of E/F , then there exists

T1 ⊂ E such that T ∪T1 is a transcendency basis of E/F . Moreover, if [E : F]t is

finite, then the cardinality of T1 is independent of the choice of T . Indeed, we

can take for T1 a transcendency basis of E/F(T), and if [E : F]t is finite, then

the cardinality of T1 is nothing but the transcendency degree of E/F(T).

Corollary 6.1. Let E/F be an extension of valued fields. Then

(1) [E : F]t·g ≤ [E : F]t and [E : F]t·g = [E : F]t·r +[E : F]t·v ;

(2) rank(ΓE/ΓF )≤ [E : F]t and [E : F]t ≤ [E : F]t ;
(3) if E/F is gradually purely transcendental (i.e., gr(E)/gr(F) is purely gr-

transcendental) and ΓE/ΓF is torsion ( [E : F]t·v = 0), then E/F is residually

purely transcendental.

We call a valued field extension E/F gr-defective if [E : F]t·g < [E : F]t , and

non-gr-defective if [E : F]t·g = [E : F]t . The extension E/F is non-gr-defective

if and only if there exists a transcendency basis T of E such that T̃ is a gr-

transcendency basis of gr(E)/gr(F).
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