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Abstract. We establish two general principles for fixed point theorems inD-metric spaces,
and then show that several theorems in D-metric spaces follow as corollaries of these gen-
eral principles.
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1. Introduction. The concept of aD-metric space was introduced by the first author
in [1]. A nonempty set X, together with a function D : X×X×X → [0,∞) is called a
D-metric space, denoted by (X,D) if D satisfies
(i) D(x,y,z)= 0 if and only if x =y = z (coincidence),
(ii) D(x,y,z)=D(p{x,y,z}), where p is a permutation of x,y,z (symmetry),
(iii) D(x,y,z)≤D(x,y,a)+D(x,a,z)+D(a,y,z) for all x,y,z,a∈X (tetrahedral

inequality).
The nonnegative real function D is called a D-metric on X. Some specific examples

of D-metrics appear in [2]. A D-metric is a continuous function on X3 in the topology
of D-metric convergence, which is Hausdorff (see [5]).
In this paper, we establish two general fixed point principles for mappings in a D-

metric space, which yield several fixed point theorems as corollaries.

2. Preliminaries. Let f :X →X. The orbit of f at the point x ∈X is the set O(x)=
{x,fx,f 2x,. . .}. An orbit of x is said to be bounded if there exists a constant K > 0
such that D(u,v,w) ≤ K for all u,v,w ∈ O(x). The constant K is called a D-bound
of O(x). A D-metric space X is said to be f -orbitally bounded if O(x) is bounded for
each x ∈ X. A sequence xn ⊂ X is said to be D-Cauchy if, for each ε > 0, there exists
a positive integer n0 such that, for all m > n, p ≥ n0, D(xm,xn,xp) < ε. A sequence
{xn} ⊂ X is said to be D-convergent to a point x ∈ X if, for each ε > 0 there exists
a positive integer n0 such that, for all m,n ≥ n0, D(xm,xn,x) < ε. An orbit O(x) is
called f -orbitally complete if every D-Cauchy sequence in O(x) converges to a point
in X.

Lemma 2.1 [4]. Let {xn} ⊂X be a bounded sequence with D-bound K satisfying

D(xn,xx+1,xm)≤ λnK (2.1)

for all positive integers m > n, and some 0≤ λ < 1. Then {xn} is D-Cauchy.
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3. Main results

Theorem 3.1. Let (X,D) be a D-metric spaces, f a selfmap of X. Suppose that there
exists an x0 ∈X such that O(x0) is D-bounded and f -orbitally complete. Suppose also
that f satisfies

D(fx,fy,fz)≤ λmax
{
D(x,y,z), D(x,fx,z)

}
for x,y,z ∈O(x0) (3.1)

for some 0≤ λ < 1. Then f has a unique fixed point in X.

Proof. Suppose there exists an n such that xn = xn+1. Then f has xn as a fixed
point in X. Therefore we may assume that all of the xn are distinct.
We wish to show that, for any positive integersm,n, m > n, that D(xn+1,xn+2,xm)

≤ λnK, where K is the D-bound of O(x0). The proof is by induction. From (3.1), for
anym,

D(x1,x2,xm)≤ λmax
{
D(x0,x1,xm−1), D(x0,x1,xm−1)

}≤ λK. (3.2)

Again using (3.1),

D(x2,x3,xm)≤ λmax
{
D(x2,x3,xm−1), D(x1,x2,xm−1)

}
. (3.3)

Using (3.2),

D(x2,x3,xm)≤ λmax
{
D(x2,x3,xm−1),λK

}
. (3.4)

Inequality (3.4) can be regarded as a recursion formula inm. Therefore

D(x2,x3,xm)≤ λmax
{
λmax

{
D(x2,x3,xm−2),λK

}
,λK

}≤ λ2K. (3.5)

Assume the induction hypothesis. Then, from (3.1),

D(xn+1,xn+2,xm)≤ λmax
{
D(xn+1,xn+2,xm−1), D(xn,xn+1,xm−1)

}
≤ λmax

{
D(xn+1,xn+2,xm−1),λnK

}
.

(3.6)

Inequality (3.6) can be regarded as a recursion formula inm. Therefore,

D(xn+1,xn+2,xm)≤ λmax
{
λmax

{
D(xn+1,xn+2,xm−2),λnK

}
,λnK

}
=max{λ2D(xn+1,xn+2,xm−2),λn+2K,λn+1K

}
=max{λ2D(xn+1,xn+2,xm−2),λn+1K

}
≤max{λ2 ·λmax{D(xn+1,xn+2,xm−3),λn+1K

}
,λn+1K

}
=max{λ3D(xn+1,xn+2,xm−3),λn+1K

}≤ ···
≤max{λnD(xn+1,xn+2,xm−n),λn+1K

}
≤max{λn ·λmax{D(xn+1,xn+2,xm−n−1),λn+1K

}
,λn+1K

}
= λn+1K,

(3.7)

and {xn} is D-Cauchy by Lemma 2.1. Since X is x0-orbitally complete, there exists a
p ∈X with limxn = p.
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In (3.1) set x = xn, z = p to obtain

D(xn+1,xn+1,fp)≤ λmax
{
D(xn,xn,p),D(xn,xn+1,p)

}
. (3.8)

Taking the limit of (3.8) as n→∞ yields D(p,p,fp)≤ λD(p,p,p)= 0, and p = fp.
To prove uniqueness, suppose that q is also a fixed point of f . Then, from (3.1),

D(p,p,q)=D(fp,fp,fq)≤ λmax
{
D(p,p,q), D(p,fp,q)

}= λD(p,p,q), (3.9)

which implies that p = q.

Corollary 3.2 [2, Theorem 2.1]. Let f be a selfmap of a complete and bounded
D-metric space X satisfying

D(fx,fy,fz)≤ λD(x,y,z) (3.10)

for all x,y,z ∈ X, for some 0 ≤ λ < 1. Then f has a unique fixed point p, and f is
continuous at p.

Proof. In (3.10) sety = fx to obtain (3.1). Then, fromTheorem 3.1, f has a unique
fixed point p.
To prove continuity, let {zn} ⊂X with limzn = p. From (3.10),

D(p,p,fzn)=D(fp,fp,fzn)≤ λD(p,p,zn). (3.11)

Taking the limit as n→∞ gives limsupD(p,p,fzn)= 0, and liminfD(p,p,fzn)= 0
which implies that limfzn = p = fp, and f is continuous at p.

Corollary 3.3 [2, Corollary 1.1]. Let f be a selfmap of a complete and bounded
D-metric space satisfying the condition that there exists a positive integer q such that

D(fqx,f qy,f qz)≤ λD(x,y,z) (3.12)

for all x,y,z ∈ X, for some 0 ≤ λ < 1. Then f has a unique fixed point p, and f is
f -orbitally continuous at p.

Proof. Define T = fq. Then (3.12) reduces to (3.10), and T has a unique fixed point
p by Corollary 3.2; i.e., p = Tp = fqp. Thus fp = fq+1p = T(fp), and fp is also a
fixed point of T . Uniqueness implies that fp = p, and p is a fixed point of f . Condition
(3.12) implies the uniqueness of p as a fixed point of f .
For the continuity, let {zn} ⊂O(f), with limzn = p. From (3.12),

D(fqp,f qp,f qzn)≤ λD(p,p,zn). (3.13)

Taking the limit as n→∞ shows that limfqzn = p = fqp, and fq is f -orbitally con-
tinuous at p. But, since each zn ∈ O(f), limfqzn = limfzn+q−1, and f is f -orbitally
continuous at p.

Corollary 3.4. Let f be a selfmap of X,X an f -orbitally bounded and complete
D-metric space satisfying

D(fx,fy,fz)≤α
[
1+D(x,fx,z)
1+D(x,y,z)

]
D(y,fy,z)+βD(x,y,z) (3.14)
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for all x,y,z ∈ X, α,β ≥ 0, α+β < 1. Then f has a unique fixed point p and f is
continuous at p.

Proof. In (3.14) set y = fx to obtain

D(fx,f 2x,fz)≤αD(fx,f 2x,z)+βD(x,fx,z)

≤ λmax
{
D(fx,f 2x,z), D(x,fx,z)

}
,

(3.15)

where λ=α+β < 1, and (3.1) is satisfied. The conclusion follows from Theorem 3.1.
To prove the continuity of f at p, let {zn} ⊂ X with limzn = p. In (3.14) set x = z

= p, y = zn, to obtain

D(p,fzn,p)=D(fp,fzn,fp)

≤α
[
1+D(p,fp,p)
1+D(p,zn,p)

]
D(zn,fzn,p)+βD(p,zn,p)

≤αD(zn,fzn,p)+βD(p,zn,p).

(3.16)

Taking the limsup of both sides of (3.16) as n→∞ yields

D(p, limsupfzn,p)≤αD(p, limsupfzn,p), (3.17)

which implies that limsupfzn = p. Similarly, taking the liminf of both sides of (3.16)
as n→∞ yields

D(p, liminffzn,p)≤αD(p, liminffzn,p), (3.18)

which implies that liminffzn = p. Therefore limfzn = p = fp, and f is continuous
at p.

Corollary 3.5. Let f be a selfmap of an f -orbitally bounded and complete D-
metric space X, q a fixed positive integer. Suppose that f satisfies

D(fqx,f qy,f qz)≤α
[
1+D(x,f qx,z)
1+D(x,y,z)

]
D(y,f qy,z)+βD(x,y,z) (3.19)

for all x,y,z ∈ X, where α,β≥ 0, α+β < 1. Then f has a unique fixed point p and f
is f -orbitally continuous at p.

Proof. Set T = fq. Then T satisfies (3.14). Therefore T has a unique fixed point
atp, and is continuous atp. A standard argument then verifies that f hasp as a unique
fixed point. As in the proof of Corollary 3.3, f is f -orbitally continuous at p.

4. α-condensing maps. For any set A in a D-metric space X, the D-diameter of
A,δ(A), is defined by δ(A) = supx,y,z∈AD(x,y,z). The measure of noncompactness
of a bounded setA in aD-metric spaceX is a nonnegative real numberα(A) defined by

α(A)= inf{γ > 0 :A=∪n
i=1 :Ai for which δ(Ai)≤ γ for i= 1,2, . . . ,n}. (4.1)
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Definition 4.1. A selfmap f of X is called α-condensing if, for any bounded set
A in X, f(A) is bounded and α(f(A)) < α(A) if α(A) > 0.

Some authors refer to α-condensing maps as densifying maps.

Lemma 4.2. Let f : X → X, X an f -orbitally bounded and complete D-metric space,
be α-condensing. Then O(x) is compact for each x ∈X.

Proof. Let x ∈X and define A⊂X by A= {xn}, where xn = fnx. Then

A= {x,fx,f 2x,. . .} = {x}∪{fx,f 2x,. . .} = {x}∪f(A). (4.2)

Therefore, if A is not precompact, then α(A) = α(f(A)) < α(A), a contradiction.
Therefore Ā=O(x) is compact, since Ā is a complete D-metric space.

Define δ(x,y,z)= δ(O(x)∪O(y)O(z))

Theorem 4.3. Let f be a continuous compact selfmap of a bounded D-metric space
X, satisfying

D(f rx,f sy,f tz) < δ(x,y,z) for each x,y,z ∈X, with two of {x,y,z} distinct,
(4.3)

where r ,s, and t are fixed positive integers. Then f has a unique fixed point in X.

Proof. Since f is compact, there exists a compact subset Y of X containing fX.
Then fY ⊂ Y andA :=∩∞n=1fnY is a nonempty compact f -invariant subset of X which
is mapped by f onto itself. A has the same properties with respect to f r ,f s , and f t .
Suppose that δ(A) > 0. Since A is compact there exist x,y,z ∈ A such that δ(A) =

D(x,y,z). Since fA=A, there exist x′,y ′, and z′ in A such that x = f rx′, y = f sy ′,
and z = f tz′. Then, from (4.3),

δ(A)=D(x,y,z)=D(f rx′,f sy ′,f tz′) < δ(x,y,z)= δ(A), (4.4)

a contradiction. Therefore A consists of a single point, which is a fixed point of f .
Suppose p and q are fixed points of f , p �= q. Then, from (4.3),

0< D(p,p,q)=D(f rp,f sp,f tq) < D(p,p,q), (4.5)

a contradiction. Therefore the fixed point is unique.

Corollary 4.4 [8, Theorem 2]. Let X be a compact D-metric space, f a continuous
selfmap of X satisfying

D(fx,fy,fz)

<max
{
D(x,y,z), D(x,fx,z), D(y,fy,z), D(x,fy,z), D(y,fx,z)

}
D(p,p,q)

(4.6)

for all x,y,z ∈ X with x �= fx, y �= fy , or z �= fz. Then f has a unique fixed point p
in X.



446 B. C. DHAGE ET AL.

Proof. Inequality (4.6) implies that D(fx,fy,fz) < δ(x,y,z), and the existence
and uniqueness of a fixed point p follows from Theorem 4.3.
For continuity, let {zn} ⊂X with zn �= p for each n and limzn = p. From (4.6)

D(p,p,fzn)=D(fp,fp,fzn) < D(p,fp,zn). (4.7)

Taking the limit as n→∞ implies that f is continuous at p.
Theorem 4.5. Let f be an f -orbitally continuous α-condensing selfmap of a com-

plete bounded D-metric space X. Let a∈X. If (4.3) holds on O(a), then f has a unique
fixed point p ∈O(a), and limnfnx = p for each x ∈O(a).

Proof. From Lemma 4.2, O(a) is compact. Since f is a continuous α-condensing
selfmap of O(a), f is compact. Now apply Theorem 4.3.

Corollary 4.6. Let f be a continuous α-condensing selfmap of a complete bounded
D-metric space X satisfying (4.6) for all x,y,z ∈ X with x ≠ fx, y ≠ fy , or z ≠ fz.
Then f has a unique fixed point p in X.

As in the proof of Corollary 4.4, D(fx,fy,fz) < δ(x,y,z) and the result follows
from Theorem 4.5.

Theorem 4.7. Let f be a selfmap of a D-metric space X. Suppose that there exists
a point a ∈ X with O(a) bounded and complete. Suppose that f is continuous and
α-condensing on O(a) and satisfies (4.3) for each x,y,z ∈ O(a) with two of {x,y,z}
distinct, and x ≠ fx, y ≠ fy, z ≠ fz. Then f has a fixed point in O(a).

Proof. By Lemma 4.2 O(a) is compact. If there exists some integer n for which
fna= fn+1a, then f has a fixed point in O(a). Assume that fna≠ fn+1a for each n.
Note that f , restricted to O(a) is a continuous compact selfmap of O(a). Suppose
that u ≠ fu for each cluster point u of O(a). Then f satisfies condition (4.3) for all
x,y,z ∈O(a), with two of {x,y,z} distinct. Therefore, by Theorem 4.3, f , restricted
to O(a), has a unique fixed point p ∈ O(a). This contradicts the assumption that
u ≠ fu for each cluster point u of O(a). Therefore u = fu for some cluster point
u∈O(a).
The proofs of Theorems 4.3, 4.5, and 4.7 are very similar to their metric space coun-

terparts in [6] and [7], but have been given here for completeness.
The following results are proved using the proof technique analogous to the corre-

sponding metric space theorems.

Theorem 4.8. Let f be a selfmap of X, an f -orbitally bounded and complete D-
metric space. Suppose that f is α-condensing, f -orbitally continuous and satisfies

D(fx,fy,fz) < α
[
1+D(x,fx,z)
1+D(x,y,z)

]
D(y,fy,z)+βD(x,y,z)=M(x,y,z) (4.8)

for all x,y,z ∈X with x ≠ fx, y ≠ fy, z ≠ fz, where α,β > 0, α+β≤ 1. Then f has
a unique fixed point p ∈X and f is continuous at p.

Proof. If α+β < 1, the result follows from Corollary 3.4. Therefore we assume
that α+β = 1. Let x0 ∈ X and define xn+1 = fxn, n ≥ 0. From Lemma 4.2 it follows
that O(x0) is compact. Obviously f :O(x0)→O(x0).
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Case I. There exists some x,y,z ∈ O(x0) for which M = 0. Then y = fy = z = x,
and y is a fixed point of f . Inequality (4.8) implies uniqueness.

Case II. M ≠ 0 for all x,y,z ∈O(x0). Define a function F : (O(x0))3→ [0,∞) by

F(x,y,z)= D(fx,fy,fz)
M(x,y,z)

. (4.9)

The function F is well defined on (O(x0))3 since M ≠ 0 on O(x0).
Since F is continuous onO(x0), it attains its maximum value at some point (u,v,w)

∈O(x0). We call this maximum value c. From (4.8) it follows that 0< c < 1. Therefore

D(fx,fy,fz)≤ cM(x,y,z)

≤α′
[
1+D(x,fx,z)
1+D(x,y,z)

]
D(y,fy,z)+β′D(x,y,z)

(4.10)

for all x,y,z ∈O(x0), whereα′ = cα > 0, β′ = cβ > 0, andα′+β′ = c(α+β) < 1. Since
O(x0) is compact, it is bounded and complete. The result follows from Corollary 3.4.

Corollary 4.9. Let f be a selfmap of a complete and f -orbitally bounded D-metric
space. Suppose that f is α-condensing and f -orbitally continuous. Let q be a positive
integer. Suppose that f satisfies

D(fqx,f qy,f qz) < α
[
1+D(x,f qx,z)
1+D(x,y,z)

]
D(y,f qy,z)+βD(x,y,z) (4.11)

for all x,y,z ∈ X for which the right-hand side of (4.11) is not zero, where α,β > 0,
α+β≤ 1. Then f has a unique fixed point p and f is f -orbitally continuous at p.

Proof. Set T = fq. Then T satisfies (4.8), and the existence and uniqueness of the
fixed point p, for T , follows from Theorem 4.8. It then follows that p is the unique
fixed point for f . The continuity argument is the same as that used in the proof of
Corollary 3.3.

Corollary 4.10. Let f be a continuous selfmap of a compact D-metric space sat-
isfying (4.8). Then f has a unique fixed point p, and f is continuous at p.

This result is an immediate consequence of Theorem 4.8.
Corollary 4.10 includes [3, Theorem 2.2] as a special case.
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