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With new three-segment piecewise-linearity in the classic Chua’s system, two new types of 2-scroll and 3-scroll Chua’s attractors
are found in this paper. By changing the outer segment slope of the three-segment piecewise-linearity as positive, the new 2-scroll
Chua’s attractor has emerged from one zero index-1 saddle-focus and two symmetric stable nonzero node-foci. In particular, by
newly introducing a piecewise-linear control function, an improved Chua’s system only with one zero index-2 saddle-focus and two
stable nonzero node-foci is constructed, fromwhich a 3-scroll Chua’s attractor is converged. Some remarks for Chua’s nonlinearities
and the generating chaotic attractors are discussed, and the stabilities at the three equilibrium points are then analyzed, upon
which the emerging mechanisms of the novel 2-scroll and 3-scroll Chua’s attractors are explored in depth. Furthermore, an analog
electronic circuit built with operational amplifier and analog multiplier is designed and hardware circuit experiments are measured
to verify the numerical simulations.These novel 2-scroll and 3-scroll Chua’s attractors reported in this paper are completely different
from the classic Chua’s attractors, which will enrich the dynamics of the classic Chua’s system.

1. Introduction

As it has been shown, Chua’s circuit is a relatively simple
circuit which has rapidly become a paradigm for chaos [1]. In
the past three decades, numerous works have been reported
on this circuit, including realization schemes, experimen-
tal measurements, numerical observations, and theoretical
proofs [2–7]. The classic Chua’s system with a simple alge-
braic structure is a dimensionless form of Chua’s equations,
and its nonlinearity formed by Chua’s diode, called Chua’s
nonlinearity in this paper, is three-segment piecewise-linear.
Consequently, the classic Chua’s system has three unstable
equilibrium points, one zero index-1 saddle-focus and two
symmetric nonzero index-2 saddle-foci, resulting in the
generation of a self-excited 2-scroll chaotic attractor [1].

By modifying Chua’s nonlinearity with multiple-segment
piecewise-linear or continuous nonlinear functions, Chua’s
system can be generalized to a system exhibiting more
complex attractors [8–10], that is, self-excited multiscroll
Chua’s chaotic attractors. Generally, self-excited multiscroll
or multiwing chaotic attractors are generated by disposing
unstable index-2 saddle-foci in terms of added breakpoints

in the model system [11, 12], which shows great theoretical
and practical significance due to the applications to encrypted
communication, chaos synchronization, and some other
fields of Chua’s systems with multiscroll chaotic attractors
[13].

Chaotic dynamics has been investigated in numerous
fields of science and engineering including mathemat-
ics, physics, chemistry, electronic circuit, information, and
mechanical engineering [14–21]. In the past few years, a new
type of attractor, defined as hidden attractor, has been found
in large numbers of nonlinear dynamical systems [19–25].
Different from self-excited attractor, hidden attractor, whose
attraction basin does not intersect with small neighborhoods
of the equilibria of the system [19–21], is sensitive to the
initial conditions and special analytical-numerical procedure
should be adopted to locate its attractive basin [20]. Recently,
by developing this procedure, hidden chaotic spiral attractor
has been numerically observed in the classic Chua’s system
with one stable zero equilibrium point [20, 26]. Furthermore,
two coexisting hidden attractors have been numerically
revealed and a dynamical route from one hidden limit
cycle to hidden twin chaotic attractors by period-doubling

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 8917313, 10 pages
https://doi.org/10.1155/2018/8917313

http://orcid.org/0000-0002-4524-1591
http://orcid.org/0000-0003-3137-7663
https://doi.org/10.1155/2018/8917313


2 Mathematical Problems in Engineering

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5−2.5

x

(a)
x

−3 −2 −1 0 1 2 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

y

(b)

Figure 1: Two self-excited Chua’s chaotic attractors with two and three index-2 saddle-foci. (a) Two-scroll with two nonzero index-2 saddle-
foci; (b) 3-scroll with three index-2 saddle-foci.

bifurcations has been reported in the classic Chua’s system
[26, 27].

Themechanism to have different types of attractors in the
classic Chua’s system is due to different Chua’s nonlinearities
[1, 26–28]. Different Chua’s nonlinearities formulate the three
equilibrium points with different characteristics, leading to
the generations of different types of Chua’s attractors. This
paper finds 2-scroll and 3-scroll Chua’s attractors in the classic
Chua’s system by setting the outer segment slope of three-
segment piecewise-linearity to be positive and introducing
a new piecewise- linear control function [10, 28]. A distinct
characteristic is that the scroll number of the new Chua’s
attractor does not associate with the number of index-2
saddle-foci of the classic Chua’s system. To the best of our
knowledge, there are no such reports in public literature.
These findings will further enrich the dynamics of the classic
Chua’s system [1].

This rest of the paper is organized as follows. Section 2
discusses two kinds of Chua’s nonlinearities and the corre-
spondingly generating Chua’s attractors and introduces a new
three-segment piecewise-linearity. Section 3 studies a 2-scroll
Chua’s attractor with one zero index-1 saddle-focus and two
symmetric stable nonzero node-foci. Section 4 investigates a
3-scroll Chua’s attractor only with one zero index-2 saddle-
focus and two symmetric stable nonzero node-foci by newly
introducing a piecewise-linear control function. Section 5
conducts hardware circuit experiments to confirm the the-
oretical analyses. The conclusions are summarized in the last
section.

2. Remarks for Chua’s Nonlinearities and
the Generating Chaotic Attractors

The classic Chua’s system is described by the following
dimensionless equations [1]:

𝑥̇ = 𝛼 (𝑦 − 𝑥) − 𝛼𝑓 (𝑥) ,

̇𝑦 = 𝑥 − 𝑦 + 𝑧,
𝑧̇ = −𝛽𝑦 − 𝛾𝑧,

(1)

where 𝛼, 𝛽, and 𝛾 are constant parameters and

𝑓 (𝑥) = 𝑏𝑥 + 0.5 (𝑎 − 𝑏) (|𝑥 + 1| − |𝑥 − 1|) (2)

is used for describing the three-segment piecewise-linear
characteristic of system (1), with 𝑎, 𝑏 being the slopes of the
inner and outer segments of 𝑓(𝑥). Note that the parameter 𝛾
is usually ignored; that is, 𝛾 = 0.

When the parameters are given as 𝛼 = 10, 𝛽 = 14.5140,
𝛾 = 0, 𝑎 = −1.1970, and 𝑏 = −0.6464 and the initial
conditions are selected as (0.001, 0, 0), the phase portrait of
the classical 2-scroll chaotic attractor has emerged from two
symmetric index-2 saddle-foci, as shown in Figure 1(a). Note
that there exist the relations of 𝑎 < 0, 𝑏 < 0, |𝑎| > 1, and
|𝑏| < 1.

In [10], through replacing the characteristic function (2)
by a new piecewise-linear function (in the 𝑥 and 𝑧 variables)
with a controllable threshold value 𝜇 in the 𝑧-axis, a 3-scroll
chaotic attractor with three index-2 saddle-foci is converged,
as shown in Figure 1(b), where 𝛼 = 10.0, 𝛽 = 14.0, 𝛾 = 0, 𝑎 =
−1.43, 𝑏 = −0.59, and 𝜇 = 1. The mechanism for generating
the 3-scroll chaotic attractor is that the zero index-1 saddle-
focus of the classic Chua’s system is changed as a zero index-2
saddle-focus by modifying the nonlinearity of (2), leading to
the formation of an additional index-2 saddle-focus.

However, it is found that a hidden Chua’s spiral attractor
with one stable zero node-focus exists when the parameters
𝛼 = 8.8, 𝛽 = 12.0732, 𝛾 = 0.0052, 𝑎 = −0.1768, and
𝑏 = −1.1468, and the initial conditions are (9.4287, −0.5945,
and −13.4705) [20, 21], as shown in Figure 2(a), whereas when
the parameters are utilized as 𝛼 = 8.4562, 𝛽 = 12.0732,
𝛾 = 0.0052, 𝑎 = −0.1768, and 𝑏 = −1.1468, and the
initial conditions are set as (−6.0489, 0.0839, and 8.7739)
and (6.0489, −0.0839, and −8.7739), respectively, hidden twin
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Figure 2: Hidden Chua’s chaotic attractors with one stable zero node-focus. (a) Hidden Chua’s spiral attractor; (b) hidden twin Chua’s spiral
attractors, where the initial conditions for hidden attractors in blue and red colors are (−6.0489, 0.0839, and 8.7739) and (6.0489, −0.0839,
and −8.7739), respectively.
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Figure 3: Three kinds of three-segment piecewise-linearity with different relations of the slopes of the inner and outer segments 𝑎 and 𝑏. (a)
The relations of 𝑎 < 0, 𝑏 < 0, |𝑎| > 1, and |𝑏| < 1; (b) the relations of 𝑎 < 0, 𝑏 < 0, |𝑎| < 1, and |𝑏| > 1; (c) the relations of 𝑎 < 0, 𝑏 > 0, and
|𝑎| > 1.

Chua’s spiral attractors with one stable zero node-focus are
observed [26, 27], as shown in Figure 2(b). Note that Chua’s
nonlinearity is modified for the generations of these hidden
Chua’s attractors, and there exist the relations of 𝑎 < 0, 𝑏 < 0,
|𝑎| < 1, and |𝑏| > 1 and Chua’s nonlinearity is different from
that in Figure 1(a).

Chua’s nonlinearity 𝑓(𝑥) of (2) is featured by two param-
eters a, b, whose relations formulate the different Chua’s
attractors. For the classic Chua’s system, the original three-
segment piecewise- linearity is depicted in Figure 3(a), where
the conditions of 𝑎 < 0, 𝑏 < 0, |𝑎| > 1, and |𝑏| < 1 are satisfied
for generating a self-excited Chua’s attractor, as shown in
Figure 1(a), resulting in the emergence of one zero index-
1 saddle-focus and two symmetric nonzero index-2 saddle-
foci [1]. Nevertheless, a modified three-segment piecewise-
linearity is plotted in Figure 3(b), where the relations of 𝑎 < 0,
𝑏 < 0, |𝑎| < 1, and |𝑏| > 1 are satisfied for generating
a hidden Chua’s attractor, as shown in Figure 2, leading to
the formation of one stable zero node-focus and two nonzero
index-1 saddle-focus [20].

If the outer segment slope of the three-segment
piecewise-linearity 𝑓(𝑥) is changed as positive, a new Chua’s
nonlinearity is presented [28], as shown in Figure 3(c), where
the relations are built as 𝑎 < 0, 𝑏 > 0, and |𝑎| > 1, and

the characteristics of three equilibrium points are altered,
which lead to the occurrence of a new type of Chua’s chaotic
attractor as discussed in the following sections.

It is concluded that Chua’s system (1) has the same three
equilibrium points, one zero equilibrium point 𝑃0 and two
symmetric nonzero equilibrium points 𝑃±, as shown in Fig-
ure 3. With different Chua’s nonlinearities, these equilibrium
points have different dynamical characteristics, from which
different types of Chua’s chaotic attractors have emerged.

3. 2-Scroll Chua’s Attractor with Two
Stable Node-Foci

In our next work, system (1) with Chua’s nonlinearity char-
acterized by Figure 3(c) is considered, which is defined as
a modified Chua’s system. It should be illustrated that, with
𝑎 < 0, 𝑏 > 0, and |𝑎| > 1, the parameter region of interest
corresponds to the first quadrant of Chua’s parameter space
(𝛼 > 0, 𝛽 > 0, and 𝛾 = 0) in the considered region.

Three same equilibrium points of Chua’s system (1) are
given by

𝑃0 = (0, 0, 0) ,
𝑃± = (±𝑘, 0, ∓𝑘) , (3)
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Figure 4: 2-scroll Chua’s chaotic attractor with two symmetric stable nonzero node-foci. (a) Phase portrait in the x-y plane; (b) phase portrait
in the x-z plane.

where 𝑘 = (𝑏 − 𝑎)/(1 + 𝑏). The Jacobian matrix at the
equilibrium point is given as

J (𝑐) = [[
[

−𝛼 (𝑐 + 1) 𝛼 0
1 −1 1
0 −𝛽 0

]]
]

, (4)

where 𝑐 = 𝑎 for 𝑃0 and 𝑐 = 𝑏 for 𝑃±. The characteristic
equation is

𝑃 (𝜆) = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0, (5)

where 𝑎1 = 𝛼(𝑐 + 1) + 1, 𝑎2 = 𝛼𝑐 + 𝛽, and 𝑎3 = 𝛼𝛽(𝑐 + 1). The
Routh-Hurwitz conditions for the above cubic polynomial
are given by

𝑎1 = 𝛼 (𝑐 + 1) + 1 > 0,
𝑎3 = 𝛼𝛽 (𝑐 + 1) > 0,

𝑎1𝑎2 − 𝑎3 = 𝛼𝑐 [𝛼 (𝑐 + 1) + 1] + 𝛽 > 0.
(6)

Note that for the modified Chua’s system (1) with Chua’s
nonlinearity of Figure 3(c), there exist the relations of 𝑎 < 0,
𝑏 > 0, and |𝑎| > 1. For 𝑃0, 𝑐 = 𝑎. In view of 𝑎 + 1 < 0, the
second condition, that is, 𝑎3 = 𝛼𝛽(𝑎 + 1) > 0, is not satisfied.
Thus, 𝑃0 is always unstable, whereas for 𝑃±, 𝑐 = 𝑏. Due to
𝑏 > 0, the three conditions of (6) are satisfied, implying that
𝑃± are always stable, no matter the positive values of 𝛼 and 𝛽.

Considering that the system parameters 𝛼 = 5.8, 𝛽 =
6.2, 𝑎 = −1.1, and 𝑏 = 0.02 and the initial conditions
(0.001, 0, 0), the phase portraits of a 2-scroll Chua’s chaotic
attractor in two different planes are plotted in Figures 4(a)
and 4(b), respectively, where the mark I stands for the zero
equilibrium point, and the marks ◻ and ∗ represent the two
symmetric nonzero equilibrium points. Correspondingly,

the eigenvalues at these three equilibrium points of (3) are
calculated as

𝑃0: 𝜆1 = 1.4398,
𝜆2,3 = −0.9299 ± 𝑗1.2779, (7a)

𝑃±: 𝜆1,2 = −0.0669 ± 𝑗2.3246,
𝜆3 = −6.7821. (7b)

It means that 𝑃0 is a saddle-focus having a positive real root
and two complex conjugate rootswith negative real parts, that
is, index-1 saddle-focus, whereas 𝑃± are two symmetric stable
node-foci having two complex conjugate roots with negative
real parts and a negative real root.

Consequently, when the two parameters 𝑎 and 𝑏 of the
three-segment piecewise-linearity in (2) satisfy the condi-
tions

𝑎 < 0,
𝑏 > 0,

|𝑎| > 1
(8)

the modified Chua’s system (1) has two symmetric stable
nonzero node-foci but can generate 2-scroll Chua’s chaotic
attractor. This type of attractor is completely different from
the self-excited 2-scroll chaotic attractor reported in [1]
and also different from the hidden chaotic spiral attractor
reported in [20, 26].

4. 3-Scroll Chua’s Attractor with One
Saddle-Focus and Two Stable Node-Foci

Reconsider the modified Chua’s system (1) with Chua’s
nonlinearity characterized by Figure 3(c). Usually, by defining
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ℎ (𝑥) ≜ 𝑥 + 𝑓 (𝑥)
= (𝑏 + 1) 𝑥 + 0.5 (𝑎 − 𝑏) (|𝑥 + 1| − |𝑥 − 1|) (9)

an equivalent form of the modified Chua’s system (1) is then
expressed as

𝑥̇ = 𝛼𝑦 − 𝛼ℎ (𝑥) ,
̇𝑦 = 𝑥 − 𝑦 + 𝑧,

𝑧̇ = −𝛽𝑦.
(10)

Likewise, the nonlinearity ℎ(𝑥) is also a three-segment
piecewise-linearity.

With (7a), the zero equilibrium point 𝑃0 of system (10)
is an index-1 saddle-focus. In order to make 𝑃0 convert into
an index-2 saddle-focus, a piecewise-linear control function
with two variables 𝑥 and 𝑧 is introduced, which can be
expressed by [10]

ℎ𝜇 (𝑥, 𝑧) = ℎ (𝑥) [1 + sgn (𝑧 − 𝜇) − sgn (𝑧 + 𝜇)]

= {
{
{

ℎ (𝑥) , |𝑧| ≥ 𝜇,
−ℎ (𝑥) , |𝑧| ≤ 𝜇,

(11)

where the parameter 𝜇 is a controllable threshold value in the
z-axis and satisfies 0 < 𝜇 < 1. Thus, by replacing ℎ(𝑥) with
ℎ𝜇(𝑥, 𝑧), an improved Chua’s system is obtained as

𝑥̇ = 𝛼𝑦 − 𝛼ℎ𝜇 (𝑥, 𝑧) ,
̇𝑦 = 𝑥 − 𝑦 + 𝑧,

𝑧̇ = −𝛽𝑦,
(12)

where 𝛼 > 0 and 𝛽 > 0.
Similarly, the improved Chua’s system described by (12)

has three equilibrium points given in (3). Considering the
piecewise-linear control function ℎ𝜇(𝑥, 𝑧) with the condition
0 < 𝜇 < 1, the zero equilibrium point 𝑃0 is situated in the
inner region of the x-z plane and the two symmetric nonzero
equilibrium points P± are located in the outer regions of the
x-z plane. Thus, the stability of 𝑃0 is forcedly altered and the
stabilities of 𝑃± are still maintained unchanged.

Therefore, the Jacobian matrix evaluated at the zero
equilibrium 𝑃0 is derived as

J (𝑃0) = [[
[

𝛼 (𝑎 + 1) 𝛼 0
1 −1 1
0 −𝛽 0

]]
]

. (13)

The characteristic equation at the zero equilibrium point 𝑃0
is yielded as

𝑃 (𝜆) = 𝜆3 + 𝑏1𝜆2 + 𝑏2𝜆 + 𝑏3 = 0, (14)

where 𝑏1 = 1−𝛼(𝑎+1), 𝑏2 = 𝛽−𝛼(𝑎+2), and 𝑏3 = −𝛼𝛽(𝑎+1).
The coefficients of (14) are all nonzero and theRouth-Hurwitz
conditions are given by

𝑏1 = 1 − 𝛼 (𝑎 + 1) > 0,
𝑏3 = −𝛼𝛽 (𝑎 + 1) > 0,

𝑏1𝑏2 − 𝑏3 = 𝛼 (𝑎 + 2) (𝛼𝑎 + 𝛼 − 1) + 𝛽 > 0.
(15)

When 𝑎 and 𝑏 of ℎ(𝑥) satisfy the conditions given in (8), there
exists 𝑎 + 1 < 0. Thus, the first two conditions, that is, 𝑏1 > 0
and 𝑏3 > 0, are satisfied, but the third condition, that is, 𝑏1𝑏2 −𝑏3 > 0, cannot be satisfied when 𝛽 < −𝛼(𝑎 + 2)(𝛼𝑎 + 𝛼 − 1).
For example, the system parameters of the improved Chua’s
system are chosen as

𝛼 = 5.8,
𝛽 = 5.8,
𝑎 = −1.1,
𝑏 = 0.02,
𝜇 = 0.4.

(16)

The third condition of (15) cannot be satisfied, implying that
𝑃0 is unstable.

In contrast, the Jacobian matrix evaluated at the two
symmetric nonzero equilibria 𝑃± is obtained as

J (𝑃±) = [[
[

−𝛼 (𝑏 + 1) 𝛼 0
1 −1 1
0 −𝛽 0

]]
]

(17)

which is identical with the Jacobian matrix (4) for the case of
𝑃±. Hence, 𝑃± are always stable.

For the system parameters given in (16), the eigenvalues
at three equilibrium points are calculated as

𝑃0: 𝜆1,2 = 0.2496 ± 𝑗1.2472,
𝜆3 = −2.0792, (18a)

𝑃±: 𝜆1,2 = −0.0635 ± 𝑗2.2472,
𝜆3 = −6.7891. (18b)

It means that 𝑃0 is an index-2 saddle-focus having two
complex conjugate roots with positive real parts and a
negative real root, whereas𝑃± are two stable node-foci having
two complex conjugate roots with negative real parts and a
negative real root.

For the system parameters given in (16) and the initial
conditions (0.001, 0, 0), the phase portraits of the chaotic
attractor in three different planes are plotted in Figures 5(a),
5(b), and 5(c), respectively, and Poincaré mapping on the
𝑦 = 0 section is depicted in Figure 5(d). It can be observed
from Figure 5 that a novel 3-scroll Chua’s chaotic attractor is
generated in the improved Chua’s system.

It should be clarified that the newly found 3-scroll
Chua’s chaotic attractor has one zero index-2 saddle-focus
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Figure 5: Novel 3-scroll Chua’s chaotic attractor with one zero index-2 saddle-focus and two stable nonzero node-foci. (a) Phase portrait in
the x-y plane; (b) phase portrait in the x-z plane; (c) phase portrait in the y-z plane; (d) Poincaré mapping in the x-z plane.

and two stable nonzero node-foci, whereas the 3-scroll
attractor reported in [10] has three index-2 saddle-foci.
Therefore, the new3-scroll Chua’s chaotic attractor is different
from the self-excited or hidden Chua’s chaotic attractors
[19–21].

Additionally, the system parameters given in (16) and
other initial conditions are considered. When the initial
conditions (1, 0, 0) are assigned, the improved Chua’s system
exhibits a chaotic spiral attractor, as shown in Figure 6(a),
while when the initial conditions (−1, 0, 1) and (1, 0, −1) are
selected, respectively, the improved Chua’s system displays
two stable point attractors settling down the two symmetric
nonzero equilibrium points P± [29], as shown in Figure 6(b),
where the trajectories from the initial states of (−1, 0, 1) are
colored in blue and those from (1, 0,−1) are colored in red.The
above results illustrate that just like the dynamical systems
reported in [29–35], the improved Chua’s system can present
multistability.

5. Circuit Realizations
and Hardware Experiments

An analog electronic circuit built with operational amplifier
and analog multiplier is designed to physically realize the
improved Chua’s system for generating the novel 3-scroll
Chua’s chaotic attractor, as shown in Figure 7 [9, 30, 31]. The
designed circuit is constructed by three parts: the first part is a
basic three-dimensional Chua’s system with three integration
channels, as shown in Figure 7(a); the second part is the
circuit for realizing the piecewise-linearity ℎ(𝑥), as shown in
Figure 7(b); and the third part is the circuit for implementing
the control function ℎ𝜇(𝑥, 𝑧), as shown in Figure 7(c).

In Figure 7, the system parameters given in (16) are used,
and the time constant R0C0 of the integrator is determined
by 𝑅0 = 10 kΩ and 𝐶0 = 33 nF. The operational amplifiers
OP07CP and analogmultipliers AD633JNZwith±15Vpower
supplies are utilized. Thus, the saturation voltage of the
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Figure 6: Multistability in the improved Chua’s system, where the phase portraits are in the x-y plane. (a) Chaotic spiral attractor for (1, 0,
0); (b) two stable point attractors for (−1, 0, 1) and (1, 0, −1).
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Figure 7: The improved Chua’s chaotic system. (a) Basic circuit with three integration channels; (b) ℎ(𝑥) piecewise-linearity realization; (c)
ℎ𝜇(𝑥, 𝑧) control function realization.

operational amplifier output is 𝐸sat = 13.5V. Note that in
Figure 7(b) the following relations should be satisfied as

𝑅ℎ2 = 𝐸sat𝑅ℎ1 = 135 kΩ,

𝑅ℎ3 = 𝑅ℎ2𝑅ℎ4
(𝑏 − 𝑎) 𝑅ℎ1 − 𝑅ℎ4 = 11.0536 kΩ. (19)

The experimental prototype of the improved Chua’s
chaotic system is photographed in Figure 8. By Tektronix
TDS 3034C digital oscilloscope, the phase portraits of novel
3-scroll Chua’s chaotic attractor in three different planes are
experimentally measured, as shown in Figures 9(a), 9(b), and
9(c), respectively. Furthermore, if the feedback resistance up
the op-amp:7 in Figure 7(a) is changed as 62 kΩ and the real-
ization circuit of ℎ(𝑥) is directly linked to the input terminal
of the op-amp :1 in Figure 7(a), the circuit realization of the

modified Chua’s system for generating 2-scroll Chua’s chaotic
attractor is established, from which the phase portraits of
2-scroll Chua’s chaotic attractor in two different planes are
experimentally captured, as plotted in Figures 10(a) and 10(b),
respectively. Obviously, the experimental measurements of
Figures 9 and 10 are consistentwith the numerical simulations
of Figures 5 and 4, respectively.

6. Conclusion

In this paper, by changing Chua’s nonlinearity and intro-
ducing piecewise-linear control function, a new type of 2-
scroll and 3-scroll Chua’s chaotic attractors generated from
an improved Chua’s system are studied through theoretical
analyses, numerical simulations, and hardware circuit exper-
iments. The traditional 2-scroll and 3-scroll Chua’s chaotic
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Figure 8: Photograph of the experimental prototype, the left part is basic circuit with three integration channels, whereas the right part is
ℎ(𝑥) piecewise-linearity circuit and ℎ𝜇(𝑥, 𝑧) control function circuit.

(a) (b)

(c)

Figure 9: Experimentally measured phase portraits of 3-scroll Chua’s attractor. (a) Phase portrait in the x-y plane; (b) phase portrait in the
x-z plane; (c) phase portrait in the y-z plane.
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(a) (b)

Figure 10: Experimentally measured phase portraits of 2-scroll Chua’s attractor. (a) Phase portrait in the x-y plane; (b) phase portrait in the
x-z plane.

attractors are all excited from index-2 saddle-foci, whereas
the proposed 2-scroll and 3-scroll Chua’s chaotic attractors
have emerged from two symmetric stable node-foci or one
index-2 saddle-focus and two symmetric stable node-foci.
Therefore, it is very interesting and particularly valuable
to discover this 3-scroll chaotic attractor in the improved
Chua’s system only with one zero index-2 saddle-focus and
two symmetric stable nonzero node-foci. Due to this, the
proposed 3-scroll Chua’s chaotic system may be regarded
as a special paradigm for investigating special nonlinear
phenomena different from self-excited and hidden Chua’s
chaotic attractors.
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