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An optimized principal component analysis (PCA) framework is proposed to implement condition monitoring for sensors in a
nuclear power plant (NPP) in this paper. Compared with the common PCAmethod in previous research, the PCA method in this
paper is optimized at different modeling procedures, including data preprocessing stage, modeling parameter selection stage, and
fault detection and isolation stage. Then, the model’s performance is greatly improved through these optimizations. Finally, sensor
measurements from a real NPP are used to train the optimized PCA model in order to guarantee the credibility and reliability of
the simulation results. Meanwhile, artificial faults are sequentially imposed to sensor measurements to estimate the fault detection
and isolation ability of the proposed PCA model. Simulation results show that the optimized PCA model is capable of detecting
and isolating the sensors regardless of whether they exhibit major or small failures. Meanwhile, the quantitative evaluation results
also indicate that better performance can be obtained in the optimized PCA method compared with the common PCA method.

1. Introduction

As a safety-critical system, in NPPs, safety is of prime
importance. Meanwhile, there is also an increasing demand
for NPPs to operate more cost-effectively [1]. Thus, advanced
technologies for performance diagnosis and control are
incorporated into the engineering designs, which aim to
guarantee the safety and improve the economy of the whole
NPP simultaneously. Meanwhile, with the wide application
of digital I&C systems in NPPs, more sensors are applied to
obtain the operating information of the plant. On the one
hand, the application of more sensors in a NPP contributes
to advanced diagnosis and control technologies where quan-
tities of sensors are required to deliver data about the key
indicators of system status and performance; on the other
hand, it also increases the fault probability of sensors in
NPPs [2]. If an abrupt or an incipient failure occurs on a
sensor, nonpermitted characteristic property deviation of the
sensor will be caused. As a result, inaccurate measurements
are delivered to related systems which may further lead to
the plant operation deviating from the optimal condition,
resulting in process shutdown or even severe accidents in

NPPs [3]. Thus, it is necessary to implement condition
monitoring for sensors in NPPs.

Confirmed sensor measurements, in addition to con-
veying the operating information effectively to where it is
required to ensure the safety and economy of the NPP, are
also beneficial to the condition-based maintenance (CBM)
strategy in NPPs. At present, a preventive maintenance
strategy is mainly adopted in sensor calibrations during the
regular refueling of a NPP.This not only presents a significant
cost in time but also leads to component degradation due
to repetitive manipulations compared with the CBM strategy
[4, 5].

A traditional approach for sensor condition is based on
hardware redundancy [6]. The major problem with hard-
ware redundancy is the cost (including the sensor cost and
maintenance cost). In this context, approaches based on ana-
lytical redundancy are proposed in the literature, including
artificial neural networks (ANN) [7–9], independent compo-
nent analysis (ICA) [10, 11], support vector machine (SVM)
[12, 13], fuzzy logic [14–16], partial least-squares regres-
sion (PLSR) [17], and PCA [18–24]. A study conducted by
Hines and Seibert concluded that the simplicity of analytical
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redundancy techniques and the tractability of their uncer-
tainty calculations could favor them for acceptance by regula-
tory bodies [25]. Hence, PCA is adopted for sensor condition
monitoring in this paper due to its simplicity and individual
strong points.

In the literature, PCA has been used for sensor condition
monitoring in many cases. Rosani and Hines applied PCA
to monitor 5 temperature sensors in a research reactor
[20]. Water-cooled chiller sensors were analyzed with the
PCA technique by Hu [22]. Jamil et al. implemented fault
diagnosis on the Pakistan Research Reactor-2 with PCA and
Fisher discriminant analysis (FDA) [18].Magan-Carrion et al.
introduced a PCA-based method to carry out fault detection
in WSNs [26]. Liu et al. and Delimargas et al. used the
PCA method to solve the calibration sensitivity, respectively
[27, 28].

However, the previous research is mainly focused on the
design of the PCA model and implementation of the PCA
method in various industries. There are quite a few problems
in the common PCA method. Firstly, there is usually an
implicit assumption that all the data are prepared in advance;
nevertheless, data from a real NPP are usually contaminated
by random noise or unknown factors in practice. Secondly,
since thousands of sensors are applied in a NPP, it is impos-
sible to put all the sensors into a single PCA model. How to
separate sensors into various PCA models is not considered
in previous research. Finally, false alarms are inevitable in
practice due to the external and internal influences. How to
reduce the false alarms to guarantee the reliability of the PCA
model has got little attention.

The contribution of this paper is as follows: various
optimizations techniques are proposed to deal with the fore-
going problems in the common PCAmethod. Optimizations
are involved in different modeling procedures of the com-
mon PCA method, including data preprocessing, modeling
parameter selection, and fault detection and isolation.

The paper is organized as follows. Section 1 describes
the necessity of sensor condition monitoring. Based on the
previous research, an optimized PCA framework is proposed.
Section 2 outlines the common PCA method. Section 3
details the PCA optimization framework.The effectiveness of
the optimized PCA method is tested and evaluated with sen-
sor measurements from a real NPP in Section 4. Conclusions
and future work are given in the last section.

2. PCA Methodology

The basic concepts and formulas involved in the PCA
method will be briefly explained in this section. For detailed
mathematical derivation processes, refer to Li, He, or Jose
[29–31].

2.1. Basic Theories of PCA. PCA transforms a set of cor-
related variables into a set of new uncorrelated variables
and meanwhile retains most information of the original
data. Then, the principal components (PCs) are derived
from the uncorrelated variables to detect and isolate process
abnormalities in a robust way [32].

The original data matrix 𝑋 is (𝑛 samples, 𝑚 variables)
decomposed as the sum of an estimation matrix 𝑋 and a
residual matrix 𝐸:

𝑋 = 𝑋 + 𝐸 = 𝑇𝑘𝑃𝑇𝑘 + 𝐸 = 𝑡1𝑝𝑇1 + 𝑡2𝑝𝑇2 + ⋅ ⋅ ⋅ + 𝑡𝑘𝑝𝑇𝑘 . (1)

𝑇 and𝑃 are the scores and loadingmatrixes of𝑋, respectively.
Vectors 𝑝𝑖 are orthonormal, and vectors 𝑡𝑖 are also orthonor-
mal. Meanwhile, 𝑡𝑖 is the linear combination of 𝑋 which is
derived as

𝑡𝑖 = 𝑋𝑝𝑖. (2)

Vector 𝑡𝑖 represents how the samples are related to each other,
while vector 𝑝𝑖 represents how variables are related to each
other.

The next step is to select the PCs in a PCA model.
There are various criteria to determine the number of PCs
[33]. Eigenvalues corresponding to the eigenvectors describe
how much information each PC contains. Cumulative per-
cent variance (CPV) percentage represents the variation of
selected PCs accounting for all the variation of 𝑋. Then, the
CPV is adopted to determine the number of PCs. It is defined
as

CPV = ∑𝑖=𝑘𝑖=1 𝜆𝑖∑𝑖=𝑚𝑖=1 𝜆𝑖 × 100%. (3)

That is, PCA divides 𝑋 into two parts in the foregoing
steps: the model estimation matrix𝑋 and the residual matrix𝐸.
2.2. Fault Detection of PCA. There are two commonly used
statistics to carry out this task: 𝑄 statistics and Hotelling’s𝑇2 statistics. They are defined to measure the variation in
matrixes𝑋 and𝐸, respectively. If a new testing vector exceeds
the effective region in �̂� or a significant residual is observed in𝐸, a special event, either due to disturbance changes or due to
changes in the relationship between variables, can be detected
[2].𝑄 statistic quantifies the lack of fit between the testing
vectors and the model. It indicates the distance that a testing
vector falls from the PC model. The Hotelling 𝑇2 statistic
measures the variation within the PCA model. They are
calculated as

𝑄𝑖 = 𝑒𝑖𝑒𝑇𝑖 = 𝑥 (𝐼 − 𝑃𝑃𝑇) 𝑥𝑇 ≤ 𝑄𝛼,
𝑇2𝑖 = 𝑡𝑖Λ−1𝑡𝑇𝑖 = 𝑥𝑃Λ−1𝑃𝑇𝑥𝑇 ≤ 𝑇2𝛼 . (4)

𝑄𝛼 and 𝑇2𝛼 are confidence limits for 𝑄 and 𝑇2 statistics,
respectively. For the calculation of 𝑄𝛼 and 𝑇2𝛼, refer to the
doctoral thesis by Li [34].

3. Optimized Framework for Sensor Condition
Monitoring Based on Common PCA

All the optimizations based on the common PCA method
are summarized in Figure 1. Firstly, original data are prepro-
cessed with statistical analysis and sliding window method.
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Figure 1: Optimization framework of PCA in this paper.

Then, the preprocessed data are applied to train the PCA
model. Meanwhile, at the PCA modeling stage, three kinds
of modeling parameter selection criteria are proposed com-
pared with the common random selection criterion, includ-
ing the variance of sensor measurements, the correlation of
sensor measurements, and the type of sensors. Particularly,
two different variance criteria are contained in the criterion of
variance, which are standard deviation and volatility degree
of the sensor measurements, respectively. Next, a false alarm
reducing method is applied to reduce the false alarms of𝑄 and 𝑇2 statistics in the fault detection stage. Finally, the
detected abnormal behavior is analyzed in principal and
residual space simultaneously to locate the faulty sensormore
accurately in the isolation stage. This way, more credible and
reliablemonitoring results can be obtainedwith the foregoing
optimizations in a common method.

3.1. Data Preprocessing Stage. Since sensors in a NPP usually
work at high temperature, high pressure, high radiation,
high humidity, or high corrosion environment, thus singular
points or noise-like fluctuations are inevitable in the original
measurements [35]. If these data are directly used to develop
the PCA model (nine coolant outlet temperature sensors are
selected as an example), the monitoring results with 1000
testing samples are shown in Figure 2. It is evident from
Figure 2 that the results are not quite satisfactory; both 𝑄
and 𝑇2 statistics present quite a few alarms under normal
operating conditions. Thus, data preprocessing is necessary
for the data from a real environment.

The abnormal fluctuations in the original data are further
classified into singular points and random fluctuations, and
they are preprocessed with various methods in this paper.

To eliminate the singular points in the original data, a
statistics-based analysis method is applied, which is charac-
terized by its simple structure, small calculating amount, and
fast speed [36]. All these advantages make it well suitable for
the monitoring of sensors in a NPP, where a large number
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Figure 2: 𝑄 and 𝑇2 statistics with original data.

of sensors are installed. The theory of this statistics-based
method is explained as follows.

Most random errors obey normal distribution under
normal operating conditions; there is only a very small
probability that the random error is greater than 3 standard
deviations of the sensor measurements [37]. Whether 𝑥𝑖 is a
singular point in 𝑥 or not, it can be inferred by𝑥𝑖 − 𝑥 > 3𝜎 (𝑖 = 1, 2, . . . , 𝑛) , (5)

where 𝑥 is the arithmetic average and 𝜎 is the standard
deviation estimation for the 𝑛 equal precision measurements
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Figure 3: Measurements with and without singular points.

of sensor 𝑥. If 𝑥𝑖 satisfies (5), 𝑥𝑖 will be treated as a singular
point and eliminated from the original data directly.

The measurements of three feedwater flow sensors are
selected as an example to show the effectiveness of the
singular points elimination method, and the results are given
in Figure 3. It can be seen that singular points are all existent
in themeasurements of 1#, 2#, and 3# feedwater sensors based
on the foregoing analysis.

After singular points are eliminated according to (5),
random fluctuations in the measurements will be fur-
ther reduced. Medium filtering, arithmetic average filtering,
weighted recursive filtering, and wavelet analysis are the
most used methods to reduce the random fluctuations [38].
Usually, the selection of the elimination method is mainly
dependent on the characteristics of the measurements. Con-
sidering the type of sensors applied during modeling in
this paper, the sliding window average method is used as
the denoising method for the sensor measurements from a
real NPP [39]. It is a time-domain denoising method which
constantly takes out contiguous𝑚measurements of sensor 𝑥
and calculates the arithmetic average of the𝑚measurement.𝑚 is just the length of the sliding window. Then, the average
value in the sliding window is regarded as the estimated value
at moment 𝑘. That is,

𝑥𝑘,est = 𝑥 = 𝑘∑
𝑖=𝑘−𝑚+1

𝑥𝑖. (6)

Random fluctuations are filtered based on (6). Then, the
data present a smoother changing trend after singular points
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Figure 4: 𝑄 and 𝑇2 statistics with preprocessed data.

and random fluctuations are reduced from the original.
The measurements in Figure 2 are used again to show the
effectiveness of data preprocessing, and the results in this case
are shown in Figure 4.

Compared with Figure 2, it is clear that the false alarms
of 𝑄 and 𝑇2 statistics are greatly reduced. Then, it can be
concluded that data preprocessing is significantly effective in
improving the accuracy of the PCA model, and it is really
necessary and meaningful to preprocess the data from a real
operating environment.

3.2. Modeling Parameter Selection Stage. After the original
data are preprocessed, the next step is to develop the PCA
model with the preprocessed measurements. Obviously, it is
unrealistic and unreasonable to put all sensors in aNPP into a
single PCAmodel; thus, a distributed framework is proposed
in this paper, that is, multiple PCAmodels running in parallel
to implement condition monitoring for all the monitored
sensors in a NPP. Hence, how to best group various sensors
into various PCA models to get optimal performance is
very important [35]. In this context, the following criteria
are proposed, which are compared with random modeling
parameter selection criterion.

(1) Variance. Two different criteria are included in variance,
which are standard deviation and volatility degree of the
sensor measurements. They are described as follows.

(a) Standard Deviation. It refers to the standard deviation of
the sensormeasurements, which is typically used in statistical
terminology. Considering that a similar standard deviation of
the sensor measurements in a PCA model may be beneficial
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to the detection of small failures, thus it is defined in this
paper:

𝑆 = √∑𝑛𝑖=1 (𝑥 (𝑖) − 𝑥 (𝑖))2𝑛 − 1 . (7)

(b) Volatility Degree. It refers to the volatility degree of the
sensor measurements, which is a bit different from “standard
deviation” defined in statistical terminology. The volatility
degree of sensor measurement is described as

𝑉 = ∑𝑛𝑖=1 (𝑥 (𝑖) /𝑥 − 𝑥 (𝑖)/𝑥)2𝑛 . (8)

Compared with the criterion of standard variation, the
criterion of volatility degree may be more reasonable. Since
the sensor measurements cover different orders of magni-
tude, standard deviation may be incapable of describing the
variation in the measurements more accurately. Two vectors𝑠1 and 𝑠2 are taken as an example for explanation. Suppose
that

𝑠1 = [0.5 0.2 0.3 0.1 0.4] ,
𝑠2 = [5 2 3 1 4] . (9)

Obviously, we can see that the changing trends, namely, the
volatility degrees of 𝑠1 and 𝑠2, are equal. Then, the 𝑆 and 𝑉
values of 𝑠1 and 𝑠2 can be calculated as follows:

𝑆𝑠1 = √∑5𝑖=1 (𝑠1 (𝑖) − 0.3)25 − 1 ≈ 0.1581,
𝑆𝑠2 = √∑5𝑖=1 (𝑠2 (𝑖) − 3)25 − 1 ≈ 1.5811,
𝑉𝑠1 = √∑5𝑖=1 (𝑠1 (𝑖) /0.3 − 1)25 − 1 ≈ 0.5270,
𝑉𝑠2 = √∑5𝑖=1 (𝑠2 (𝑖) /3 − 1)25 − 1 ≈ 0.5270.

(10)

Based on (10), the foregoing inference is proved to be right;
that is, the same volatility degree of 𝑠1 and 𝑠2 is obtained;
however, the standard deviation of 𝑠1 and 𝑠2 is different.
Thus, the volatility degree-based criterion is proposed as the
supplement of the standard deviation-based criterion in this
paper. This way, sensor measurements with similar changing
trends (namely, with similar volatility degree) rather than
with similar standard deviation can be grouped together to
train a PCA model. Then, the PCA model should be more
sensitive to glitches in the monitored sensors. And the fault
detection sensitivity with these two different criteria will be
evaluated in the simulation section.

(2) Correlation. It refers to the correlation coefficients
between sensors 𝑥 and 𝑦 which can be calculated as (11).
A higher 𝑅 value usually means a more significant linear

correlation between 𝑥 and 𝑦. Since PCA is a linear analysis
method, naturally it is advantageous to group the linear
dependent sensors into a single set to develop the PCAmodel.
Thus, this criterion is proposed.

𝑅𝑥𝑦 = ∑𝑛𝑖=1 (𝑥 (𝑖) − 𝑥) (𝑦 (𝑖) − 𝑦)√∑𝑛𝑖=1 (𝑥 (𝑖) − 𝑥)2√∑𝑛𝑖=1 (𝑦 (𝑖) − 𝑦)2 . (11)

Then, the sensor measurements with higher correlation
coefficients are separated into the same PCA model. That is,
sensors in each PCA model present higher linear correlation
compared with a random grouping PCA model.

(3) Type. It refers to the types of sensors that are used
to measure various parameters in a NPP. As it is known,
various parameters are usually measured with various types
of sensors, and various types of sensors are usually with
different measurement precisions, work in different environ-
ments, and suffer from different external disturbances, and
so on. Considering all these factors, a type-based modeling
parameter selection criterion is proposed. Then, the same
type of sensor can be grouped together to train a PCAmodel.
As a result, the foregoing mentioned influence factors can be
minimized.

All the proposed criteria are tested and evaluated in
Section 4 to get an optimal modeling parameter selection
criterion.

3.3. Fault Detection and Isolation Stage. Based on data pre-
processing and modeling parameter selection, a false alarm
reducing method is further applied to improve the accuracy
and reliability of the PCA model in the fault detection stage.
Meanwhile, the detected abnormal behavior is analyzed in
principal and residual space simultaneously in order to locate
the faulty sensor more accurately in the fault isolation stage.

The false alarm reducing method defines another confi-
dence limit to further reduce the false alarms of 𝑇2 and 𝑄
statistics. If 𝑄𝛼 or 𝑇2𝛼 is called the first confidence limit, this
new confidence limit is called the second confidence limit for𝑇2 and 𝑄 statistics.

Suppose that the false alarm probability for 𝑇2 or 𝑄
statistics is 𝛼, which is usually set between 0 and 0.05 accord-
ing to the experience in process industries [40]. Selecting 𝑛
as the length of a basic observation window, the allowable
maximum 𝑚, namely, the second confidence limit, can be
derived from the following formula:

𝐹 (𝑚; 𝛼, 𝑛) = 𝑚∑
𝑗=0

𝑃 (𝑚; 𝛼, 𝑛) = 𝑚∑
𝑗=0

𝐶𝑗𝑛𝛼𝑗 (1 − 𝛼)𝑛−𝑗 < 𝛽, (12)

where 𝛽 is also an experience value which is determined
based on the model precision. Usually, it is set between 0.98
and 1 according to the experience in process industries [40].
If the number of false alarms for 𝑇2 or 𝑄 statistics exceeds𝑚
in an observation window before 𝑥𝑖, then 𝑥𝑖 will be defined
as a true faulty state.

After 𝑄 or 𝑇2 statistics exceed the second confidence
limit, an abnormality is detected.Then, an abnormal behavior
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is analyzed in principal and residual space simultaneously
to locate the faulty sensor more accurately in the fault
isolation stage. Since 𝑇2 and 𝑄 statistics represent the total
variation in principal and residual space, respectively, thus
the contributions of sensors to 𝑇2 and𝑄 statistics are applied
simultaneously to identify the faulty sensor [30].

Suppose that a testing vector 𝑥 is expressed as 𝑥 =[𝑥1, 𝑥2, . . . , 𝑥𝑚] and 𝑚 is the number of sensors in 𝑥. The
contribution of sensor 𝑥𝑖 to the total variation in residual
subspace (represented by 𝑄 statistic) is defined as

𝑄𝑥𝑖 =
𝑥𝑖 (𝐼 − 𝑃𝑃𝑇)𝑥 (𝐼 − 𝑃𝑃𝑇) = 𝑒2𝑖𝑒21 + 𝑒22 + ⋅ ⋅ ⋅ + 𝑒2𝑚 × 100%. (13)

The contribution of sensor 𝑥𝑖 to the total variation in princi-
pal subspace (represented by 𝑇2 statistic) can be calculated as
the following steps.(1) Calculate the contribution of 𝑥𝑖 to score vector𝑡𝑗:

𝐶𝑅𝑗,𝑥𝑖 = 𝑡𝑗𝑝𝑗,𝑖𝜆𝑗 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑚) , (14)

where 𝑝𝑗,𝑖 is the 𝑖th element of vector 𝑝𝑗.(2) Calculate the contribution of 𝑥𝑖 to 𝑇2 statistic:
𝑇2𝑥𝑖 = 𝑘∑

𝑗=1

𝐶𝑅𝑗,𝑥𝑖 = 𝑘∑
𝑗=1

(𝑡𝑗𝑝𝑗,𝑖𝜆𝑗 𝑥𝑖) 𝑖 = 1, 2, . . . , 𝑚. (15)

When a NPP is operating under normal conditions,𝑇2 and 𝑄 statistics should be within the confidence limits,
and the contributions of each sensor to 𝑇2 and 𝑄 statistics
should be almost equal theoretically. If a fault occurs on the
monitored sensors,𝑇2 and/or𝑄 statistics will be beyond their
confidence limits, and then𝑄𝑥𝑖 and𝑇2𝑥𝑖 can be directly used to
locate the faulty sensor. Furthermore, if the fault that occurs
on themonitored sensors is just a small glitch, such as a small
drift which may not be detected by 𝑇2 and 𝑄 statistics, these
two fault isolation indexes will also be beneficial both in the
detection and in the isolation of this small fault. However, an
evident increasing trend still can be seen in𝑄𝑥𝑖 and/or𝑇2𝑥𝑖 for
the drift sensor, although𝑇2 and𝑄 statisticsmay be incapable
of detecting the small drifts on sensors.

Small drifts on sensors may not result in severe accidents,
but if the drift sensor participates in important control
processes in the NPP, this may lead to operation deviation
from the optimal condition.The consequence of the deviation
operation is potential decline of the plant economy. Even
if small drifts appear on sensors which do not participate
in important control processes and just serve monitoring
purposes, these two fault isolation indexes can also contribute
to the CBM strategy in a NPP. Since a higher index value
usually indicates unknown degradation on the sensor, thus
sensors can be calibrated,maintained, or repaired as required,
and excessive calibration andmaintenancemanipulations for
sensors can be avoided.

4. Simulation Tests and Results

In order to test the functionality of the optimized PCA
method, sensor measurements are acquired from a real
NPP under normal operating conditions with full power to
carry out the simulations. Since a large number of sensors
are included in the database of a NPP, thus the sensors
are numbered separately in Arabic numerals in order to
demonstrate the simulation results more conveniently. To
verify the performance of PCAmodelswith variousmodeling
parameter selection criteria, five PCA models are given
based on the proposed criteria, which are described in the
following. Meanwhile, in order to verify the fault detection
and isolation performance of the optimized PCA model,
failures with different degrees are imposed sequentially to the
measurements of coolant outlet temperature sensor (which
is exactly marked 1# sensor in the database). The reason of
introducing failures to this sensor is that 1# sensor is included
in all the five PCA models mentioned above.

The five proposed PCAmodels are determined as follows.

(1) PCA Model with Modeling Parameter Selection Criterion
of Type. Since 1# sensor is confirmed to be contained in all
the five PCA models, thus sensors with the same type are
selected to train the PCAmodel.Then, based on themodeling
parameter selection criterion of type, the following sensors in
the database are selected to train the PCA model, including[1 2 3 4 5 6 7 8 9]. And the Arabic numerals represent
the positions of the selected sensors in the database.

(2) PCA Model with Modeling Parameter Selection Criterion
of Standard Deviation. Similarly, 1# sensor is also included in
this PCA model. Firstly, the standard deviation of all sensors
in the database is calculated based on (7). Then, based on the
modeling parameter selection criterion of standard deviation,
sensors in the database with the most similar standard
deviation to 1# sensor are selected out to train this PCA
model. This way, the PCA model with modeling parameter
selection criterion of standard deviation is determined. And
the positions of the selected sensors in this PCA model are[1 21 13 43 130 132 146 24 45], which are ordered by
the similarity of standard deviation to 1# sensor from large to
small. Likewise, the Arabic numerals represent the positions
of selected sensors in the database.

(3) PCA Model with Modeling Parameter Selection Criterion
of Volatility Degree. In the same way, the volatility degree
of sensors in the database is calculated firstly based on (8),
and then sensors with the most similar volatility degree to
1# sensor are selected as the modeling parameters in this
PCA model. Thus, the PCA model with modeling parameter
criterion of volatility degree is determined. The selected
sensors in this PCAmodel are with the following positions in
the database: [1 47 55 61 80 130 149 102 112], which
are ordered by the similarity of volatility degree to 1# sensor
from large to small.

(4) PCA Model with Modeling Parameter Selection Criterion
of Correlation Coefficients. In order to determine this PCA
model, correlation coefficients between 1# sensor and all the
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Figure 5: 𝑄 statistics with original data in 5 PCA models.

other sensors in the database are calculated first based on (11).
And then the first eight sensors with the largest correlation
coefficients to 1# sensor are selected as the modeling parame-
ters of this PCA model. The positions of the selected sensors
in the database are [1 47 55 61 80 130 149 102 112],
which are ordered by the correlation coefficients to 1# sensor
from large to small. This way, the PCA model with modeling
parameter selection criterion of correlation is determined.

(5) PCA Model with Modeling Parameter Selection Criterion
of Random. For comparison, this PCA model is developed in
this paper. The selected modeling parameters in the model
are [1 47 55 61 80 130 149 102 112], which cover dif-
ferent types and different orders of magnitude on standard
deviation, volatility degree, and correlation coefficients of
sensors.

It can be seen that not only is the 1# sensor a common
item in the foregoing five PCA models, but also nine sensors
are included in each PCA model. In this context, failures
can be imposed to the mutual 1# sensor measurements for
every PCAmodel, and themodel performanceswith different
modeling parameter selection criteria can be evaluated with
reasonable preconditions.

4.1. Simulations with Normal Measurements. 1000 original
samples are used to train the five PCA models and another
1000 original samples are selected as the testing data to carry
out the simulation tests. The results of 𝑇2 and 𝑄 statistics
in the five PCA models are shown in Figures 5 and 6,
respectively. Red dotted lines in the figures are the confidence
limits for 𝑇2 and 𝑄 statistics. It can be seen that 𝑄 statistics
present false alarms in all the five PCAmodels under normal
operating conditions. For 𝑇2 statistics, it is relatively better

that false alarms only occur in PCA models with parameter
selection criteria of random and standard deviation.

If the original samples are preprocessed with themethods
proposed in this paper, then the preprocessed data are used
to train the five PCA models. In this context, the simulation
results of 𝑇2 and 𝑄 statistics in the five PCA models
are shown in Figures 7 and 8. Since singular points and
random fluctuations in the original samples are eliminated
by statistical and sliding window method, the false alarms of𝑇2 and 𝑄 statistics are reduced to some extent.

Thus, on the basis of the data preprocessing, the second
confidence limit for 𝑇2 and 𝑄 statistics is proposed to
further reduce the false alarms of 𝑇2 and 𝑄 statistics. With
the application of the second confidence limit, the detailed
false alarm probability of 𝑇2 and 𝑄 statistics in the five
PCA models is summarized in Table 1. Obviously, the false
alarms of 𝑇2 and 𝑄 statistics in all the five PCA models are
reduced to lower levels with the application of the false alarm
reducing method. As a result, the data preprocessing method
to original data and false alarm reducing method to 𝑇2 and𝑄 statistics really contributes to false alarm reduction of 𝑇2
and𝑄 statistics under normal operating conditions.Then, the
model performance is really improved in this way.

From Table 1, it can be seen that the PCA model with
parameter selection criterion of correlation shows optimal
performance on sensor fault detection compared with the
other four PCA models. False alarms of 𝑇2 and 𝑄 statistics
are reduced to 0 and 0.2%, respectively, in this PCA model,
which are lower than that in the other four PCA models.

Due to the influence of model precision and external
environments, the contributions of sensors to𝑇2 and𝑄 statis-
tics in a PCA model are not equal under normal operating
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Figure 6: 𝑇2 statistics with original data in 5 PCA models.
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Figure 7: 𝑄 statistics with preprocessed data in 5 PCA models.

condition as the results in Figure 9. Thus, two samples are
selected from the 1000 samples (namely, the 600th and 1000th
samples) as a contrast to show the condition monitoring
results. Then, contributions of sensors to 𝑇2 and 𝑄 statistics
in the five PCAmodels are calculated at the 600th and 1000th
sample points, which are illustrated in Figures 9(a), 9(b), and
9(c). 𝑇2 statistics in the PCAmodel with parameter selection

criterion of random in Figure 9(a) are taken as an example
for explanation. At the 600th sample point, the contribution
of 1# sensor to 𝑇2 statistics is about 14%; meanwhile, the
contribution of 130# sensor to 𝑇2 statistics is about 7%. It
is clear that there is a large contribution difference between
these two sensors, which should indicate unknown failures
in the monitored sensors in theory. However, at 1000th
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Figure 8: 𝑇2 statistics with preprocessed data in 5 PCA models.

Table 1: False alarm probability of 𝑇2 and 𝑄 statistics in 5 PCA models.

Random Type Standard deviation Volatility degree Correlation𝑇2 0.7% 0 2.6% 0 0𝑇2 (preprocess) 0.4% 0 0 0 0𝑇2 (second confidence) 0 0 0 0 0𝑄 4.0% 5.2% 5.1% 4.2% 4.7%𝑄 (preprocess) 2.7% 2.6% 2.9% 0.7% 3.8%𝑄 (second confidence) 0.4% 0.3% 0.4% 0.3% 0.2%

sample point, the contribution of 1# sensor to 𝑇2 statistics
in this PCA model is still around 14%, and also that of the
130# sensor is still around 7%. Similar results also can be
seen on the other sensors in this PCA model. That is, the
contributions of all sensors in a PCA model to 𝑇2 or 𝑄
statistics are not equal at a single sample point; however, the
contributions of each sensor at different sample points almost
keep unchanged. Then, it can be inferred that no failures
occur in the monitored sensors; the contribution differences
among various sensorsmay result fromunknownuncertainty
factors in the PCA model, not from the failures on sensors.
In the other four PCA models, similar results also can be
obtained.

From the contribution figures, we also can get such a
fact that the PCA model with parameter selection criterion
of correlation shows better performance on fault isolation
under normal operating conditions. The contributions of
sensors to 𝑇2 statistics are almost equal, which best accords
with the theoretical analysis. Meanwhile, the contributions of
sensors to 𝑄 statistics in this PCA model also agree more
with the theoretical analysis compared with the other four
PCA models. On the other hand, from Figure 9, it also

can be seen that the PCA model with random parameter
selection criterion presents the worst performance on this
point. Whether to 𝑇2 or 𝑄 statistics, the contributions of
sensors are quite different in this case.

4.2. Simulations with Abnormal Measurements. Meanwhile,
in order to verify the fault detection and isolation ability of
the proposed PCA model, two artificial drifts (ramps) are
imposed to the coolant outlet temperature sensor (namely, 1#
sensor in the database) at the 400th sample point. One drift
simulates a common problem that affects process sensors and
may result from aging. The simulated drift is a ramp that
grows to 0.45∘C for 1# sensor measurements. This small drift
corresponds to a maximum 0.15% change of the measure-
ments, which is imperceptible in the time profile. Another
drift is relatively bigger, which represents a common issue that
may result from mechanical failures. This simulated drift is
also a ramp that grows to 3.5∘C for 1# sensor measurements.
And it is equivalent to a maximum 1.15% change which also
can be seen in the time profile.

It can be seen that 𝑇2 statistics in all five PCA models
cannot detect the small drift that occurred on 1# sensor,
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Figure 9: Contributions of sensors to 𝑄 and 𝑇2 statistics in 5 PCA models under normal condition.

which is shown in Figure 10. In Figure 11, increasing trends
of 𝑄 statistics can be seen at the last period of the tests;
however, the trends are not significant and with higher
volatility, which are representative of uncertain results. Then,
the contributions of sensors are further required to help
detect the small failure on 1# sensor, which are illustrated
in Figure 12. For explanation, the PCA model with ran-
dom parameter selection in Figure 12(a) is taken as an
example.

From Figure 12(a), the contribution of 1# sensor to 𝑄
statistics is about 22% at the 600th sample point, and it almost
reaches 30% at the 1000th sample point. A big contribution
increase is present on the 1# sensor, which is different

from the situation under normal conditions (contributions
keep unchanged between the 600th and 1000th points). In
contrast, the contribution of 80# sensor to𝑄 statistics is about
20% at the 600th sample point and reduced to 18% at the
1000th sample point. A small contribution decrease appears
between the 600th and 1000th sample points, which is the
same on the other sensors (47#, 55#, 61#, 130#, 149#, 102#, and
112#) in this PCA model; the contributions of these sensors
almost remain unchanged or presentminor decreasing trends
with the drift developing on 1# sensor. However, no evident
contribution differences of 𝑇2 statistics appear on any sensor
in this PCA model between the 600th and 1000th sample
points. It can be explained in Figure 10, where 𝑇2 statistics
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Figure 10: 𝑇2 statistics with a small drift in 5 PCA models.

2
4
6

Ra
nd

om

Q statistics with a 0.15% drift

2
4
6
8

10

Ty
pe

2
4
6
8

10

St
an

da
rd

2
4
6
8

10
12

V
ol

at
ili

ty

0 200 400 600 800 1000
t

2
4
6
8

10

Co
rr

el
at

io
n

Q(x)

Q

Figure 11: 𝑄 statistics with a small drift in 5 PCA models.

of 1# sensor almost have no obvious changes during the test
either.

Based on the analysis of𝑄 statistics and the contributions
to 𝑄 statistics, it can be inferred that 1# sensor behaves
abnormally. That is, it is entirely within the capacity of the
PCA models to detect and isolate sensors with this level of

drift. Meanwhile, from Figure 11, it also can be seen that
the PCA model with correlation parameter selection is more
sensitivity on fault detection compared with the other four
PCAmodels, since the small drift on 1# sensor can be detected
by this PCA model more quickly. The PCA models with
modeling parameter selection criteria of standard deviation
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Figure 12: Contributions of variables to 𝑄 and 𝑇2 statistics in 5 PCA models with a small drift on 1# sensor.

and volatility degree are in the second and third order, and
the PCA model with random parameter selection criterion
shows the worst performance of fault detection in this case.

From Figure 12, it can also be concluded that the PCA
model with correlation parameter selection shows better
performance on the small fault isolation. The contributions
of 1# sensor to 𝑄 statistics at the 1000th sample point in the
five PCA models are taken as an example to demonstrate the
foregoing conclusion.

Since the failure imposed on 1# sensor is a ramp func-
tion, thus the failure will develop over time. Similarly, the
contribution of 1# sensor to 𝑄 statistics will become large
with the developing of the failure over time. It can be seen
that the contributions of 1# sensor to 𝑄 statistics at the
1000th sample point have reached about 30%, 30%, 35%, 40%,
and 60%, respectively, in the PCA models with parameter
selection criterion of random, standard deviation, volatility

degree, type, and correlation. Obviously, the contribution of
1# sensor to 𝑄 statistics in the PCA model with parameter
selection criterion of correlation is significantly larger than
that in the other four PCAmodels, which is very beneficial to
the isolation of the drift on 1# sensor among the monitored
sensors.Thus, comparedwith the other four PCAmodels, the
PCA model with parameter selection criterion of correlation
shows the best performance on sensor fault isolation with
small drifts.

In contrast, the conditionmonitoring results with a larger
drift on 1# sensor are described in Figures 13 and 14. The
figures indicate that both 𝑇2 and 𝑄 statistics in all the five
PCAmodels can detect the failure during the test.That is, the
PCA method has enough sensitivity to this kind of failures
that occurred on the monitored sensors.

In this case, the contributions of sensors to 𝑇2 and 𝑄
statistics in the five PCA models are shown in Figure 15.
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Figure 13: 𝑇2 statistics with a larger drift in 5 PCA models.
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Figure 14: 𝑄 statistics with a larger drift in 5 PCA models.

In each PCA model, the contribution of 1# sensor to 𝑇2 or𝑄 statistics at the 1000th sample point is significantly larger
than that at the 600th sample point, which corresponds to
theoretical analysis. Meanwhile, due to the larger drift on 1#
sensor, the contributions of 1# sensor are also significantly
greater than that in Figure 12. As a result, based on the
contribution distribution of sensors, the failure on 1# sensor
is located.

Meanwhile, from Figure 15, it also can be seen that the
PCAmodel with randomparameter selection criterion shows
theworst performance comparedwith the other PCAmodels.
Only in this PCA model is the contribution of 1# sensor to𝑄 statistics below 50% either at the 600th or at the 1000th
sample point. However, the contributions are all greatly larger
than 50% in the other four PCAmodels whether at the 600th
or at the 1000th testing point, which presents more effective
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Figure 15: Contributions of sensors to 𝑄 and 𝑇2 statistics in 5 PCA models with a larger fault on 1# sensor.

fault detection and isolation abilities during the test. Thus,
it can be concluded that the PCA models with parameter
selection criteria of standard deviation, volatility degree, type,
and correlation all show quite good performance on the fault
isolation of sensors with larger failures.

Based on the foregoing simulations, the following conclu-
sions can be obtained:(1) The proposed data preprocessing and false alarm
reducing methods are proved to be effective in the reduction
of false alarms of 𝑇2 and 𝑄 statistics in a PCA model, which
is equivalent to the improvement of model performance.(2) Simulations under normal and abnormal conditions
show that the PCAmodel withmodeling parameter selection
criterion of correlation presents better performance both on

the fault detection and on the fault isolation, compared with
the other four PCA models.

5. Conclusions and Perspectives

An optimized PCA framework for sensor condition moni-
toring is proposed in this paper. The proposed optimizations
are mainly involved in various modeling procedures in the
common PCA method, including data preprocessing stage,
modeling parameter selection stage, and fault detection and
isolation stage. In the data preprocessing stage, singular
points and random fluctuations in the original data are elim-
inated with various techniques. In the modeling parameter
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selection stage, various parameter selection criteria are pro-
posed to get optimalmodel performance of the PCAmethod.
In the last fault detection and isolation stage, a statistics-based
method is further applied to reduce the false alarms of𝑇2 and𝑄 statistics on the basis of data preprocessing. Meanwhile,
the confirmed faulty state is discussed in the principal and
residual space simultaneously to locate the faulty sensormore
precisely.

Data from a real NPP are used to test the optimized
PCA method in this paper. According to the simulation
results under normal conditions, false alarms of 𝑇2 and 𝑄
statistics really can be greatly reduced with the application of
data preprocessing and false alarm reducing method. Based
on the simulations with faulty data, the optimized PCA
method proves to be effective in sensor fault detection and
isolation, whether with small or major failures. Meanwhile,
it can be concluded that the PCA model with parameter
selection criterion of correlation shows better performance
either under normal or under abnormal operating condition.

Although valuable improvements have been made in this
paper, there is still much work to do in the future. How to
further process the remaining false alarms and how to best
reconstruct the faulty data will be analyzed on the basis of
the done effort in this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Theauthors acknowledge the financial support of the national
project of “Research on Online Monitoring and Operation
Support Techniques in a Nuclear Power Plant” to the present
research.

References

[1] J. P. Ma and J. Jiang, “Applications of fault detection and
diagnosis methods in nuclear power plants: a review,” Progress
in Nuclear Energy, vol. 53, no. 3, pp. 255–266, 2011.

[2] Li. Jiang, Sensor fault detection and isolation using system
dynamic identification techniques [Ph.D. thesis], The University
of Michigan, 2011.

[3] G. Betta and A. Pietrosanto, “Instrument fault detection and
isolation: State of the art and new research trends,” IEEE
Transactions on Instrumentation and Measurement, vol. 49, no.
1, pp. 100–107, 2000.

[4] R. Dorr, F. Kratz, J. Ragot, F. Loisy, and J.-L. Germain,
“Detection, isolation, and identification of sensor faults in
nuclear power plants,” IEEE Transactions on Control Systems
Technology, vol. 5, no. 1, pp. 42–60, 1997.

[5] J. W. Hines and D. R. Garvey, “Development and application of
fault detectability performance metrics for instrument calibra-
tion verification and anomaly detection,” Journal of Pattern
Recognition Research, vol. 1, no. 1, pp. 2–15, 2006.

[6] H. M. Hashemian, “On-line monitoring applications in nuclear
power plants,” Progress in Nuclear Energy, vol. 53, no. 2, pp. 167–
181, 2011.

[7] A. Messai, A. Mellit, I. Abdellani, and A. Massi Pavan, “On-line
fault detection of a fuel rod temperaturemeasurement sensor in
a nuclear reactor core using ANNs,” Progress in Nuclear Energy,
vol. 79, pp. 8–21, 2015.

[8] P.Deshpande,N.Warke, P. Khandare, andV.Deshpande, “Ther-
mal power plant analysis using artificial neural network,” in
Proceedings of the 3rdNirmaUniversity International Conference
on Engineering, NUiCONE 2012, India, December 2012.

[9] P. F. Fantoni, “Experiences and applications of PEANO for
online monitoring in power plants,” Progress in Nuclear Energy,
vol. 46, no. 3-4, pp. 206–225, 2005.

[10] A. Ajami and M. Daneshvar, “Data driven approach for fault
detection and diagnosis of turbine in thermal power plant using
IndependentComponentAnalysis (ICA),” International Journal
of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 728–735,
2012.

[11] J. Ding, W. Hines, and B. Rasmussen, Independent component
analysis for redundant sensor validation, Nuclear Engineering
Department. The University of Tennessee, 2003.

[12] K. Salahshoor, M. Kordestani, and M. S. Khoshro, “Fault
detection and diagnosis of an industrial steam turbine using
fusion of SVM (support vector machine) and ANFIS (adaptive
neuro-fuzzy inference system) classifiers,”Energy, vol. 35, no. 12,
pp. 5472–5482, 2010.

[13] K.-Y. Chen, L.-S. Chen,M.-C. Chen, andC.-L. Lee, “Using SVM
basedmethod for equipment fault detection in a thermal power
plant,” Computers in Industry, vol. 62, no. 1, pp. 42–50, 2011.

[14] H. Eliasi, H. Davilu, and M. B. Menhaj, “Adaptive fuzzy model
based predictive control of nuclear steam generators,” Nuclear
Engineering and Design, vol. 237, no. 6, pp. 668–676, 2007.

[15] L. Su and Z. Zhao, “Performance diagnosis of power plant boiler
based on fuzzy comprehensive evaluation,” in Proceedings of the
2nd Annual Conference on Electrical and Control Engineering,
ICECE 2011, pp. 3076–3079, China, September 2011.

[16] Y. K. Kang, H. Kim, G. Heo, and S. Y. Song, “Diagnosis of feed-
water heater performance degradation using fuzzy inference
system,” Expert Systems with Applications, vol. 69, pp. 239–246,
2017.

[17] J. Chen, H. Li, D. Sheng, and W. Li, “A hybrid data-driven
modeling method on sensor condition monitoring and fault
diagnosis for power plants,” International Journal of Electrical
Power & Energy Systems, vol. 71, pp. 274–284, 2015.

[18] F. Jamil, M. Abid, I. Haq, A. Q. Khan, and M. Iqbal, “Fault
diagnosis of Pakistan Research Reactor-2 with data-driven
techniques,” Annals of Nuclear Energy, vol. 90, pp. 433–440,
2016.

[19] M. Daneshvar and F. Rad B, “Data driven approach for fault
detection and diagnosis of boiler system in coal fired power
plant using principal component analysis,” International Review
of Automatic Control, vol. 3, no. 2, pp. 198–208, 2010.

[20] M. L. Rosani and H. J. W. Penha, “Using principal component
analysis modeling to monitor temperature sensors in a nuclear
research reactor,” http://www.engr.utk.edu.

[21] K. Fu, Structure optimized PCA and its application [Ph.D. thesis],
Zhejiang University, 2007.

[22] Y. Hu, Study on the PCA-based sensor fault detection efficiency
of the water-cooled chiller [Ph.D. thesis], Huazhong University
of Science Technology, 2013.

[23] S. Li and J. Wen, “A model-based fault detection and diagnostic
methodology based on PCA method and wavelet transform,”
Energy and Buildings, vol. 68, pp. 63–71, 2014.

http://www.engr.utk.edu


16 Science and Technology of Nuclear Installations

[24] Y. Hu, G. Li, H. Chen, H. Li, and J. Liu, “Sensitivity analysis for
PCA-based chiller sensor fault detection,” International Journal
of Refrigeration, vol. 63, pp. 133–143, 2016.

[25] J. W. Hines and R. Seibert, “Technical review of on-line
monitoring techniques for performance assessment: state-of-
the-Art,” Nuclear Regulatory Commission, NUREG/CR-6895,
2006.

[26] R. Magan-Carrion, J. Camacho, and P. Garciá-Teodoro, “Multi-
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