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We consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many
areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the stratified flows of the rotational
compressible magnetohydrodynamic flows with the well-prepared initial data and the tool of proof is based on the relative entropy.
Furthermore, the convergence rates are obtained.

1. Introduction

Magnetohydrodynamic flows arise in science and engineer-
ing in a variety of practical applications such as in plasma
confinement, liquid-metal cooling of nuclear reactors, and
electromagnetic casting. The fundamental concept behind
MHD flows is that magnetic fields can induce currents in a
moving conductive fluid, which in turn polarizes the fluid
and reciprocally changes the magnetic field itself. The set
of equations that describe MHD flows are a combination of
the Navier-Stokes equations of fluid dynamics and Maxwell’s
equations of electromagnetism. These differential equations
must be solved simultaneously, either analytically or numer-
ically. Here we consider the viscous rotational compressible
magnetohydrodynamic flows in the 2-dimensional whole
space Ω fl R2:

𝜕𝑡󰜚𝜀 + div (󰜚𝜀u𝜀) = 0, (1)

𝜕𝑡 (󰜚𝜖u𝜖) + div (󰜚𝜖u𝜖 ⊗ u𝜖) + 1
𝜀2𝛾∇󰜚𝛾𝜖 +

1
𝜀 󰜚𝜖u⊥𝜖

= 𝜇𝜀Δu𝜖 + (𝜇𝜀 + 𝜆𝜀) ∇ (div u𝜖) + (B𝜀 ⋅ ∇)B𝜀
− 1
2∇ 󵄨󵄨󵄨󵄨B𝜀󵄨󵄨󵄨󵄨2 + 1

𝜀 󰜚𝜖∇𝐺,
(2)

𝜕𝑡B𝜀 + (div u𝜖)B𝜀 + (u𝜖 ⋅ ∇)B𝜀 − (B𝜀 ⋅ ∇)u𝜖 = ]𝜀ΔB𝜀, (3)

whereu𝜖 is the vector field, 󰜚𝜖 is the density,B𝜀 is themagnetic
field, 𝛾 > 3/2, and 𝐺 ∈ 𝐶3𝑐 (Ω), and we also assume that

𝜇𝜀 = 𝜀𝜃,
]𝜀 = 𝜀𝜎,
𝜆𝜀 󳨀→ 0,

(4)

with 𝜃, 𝜎 > 0, as 𝜀 tends to 0.
We first notice that the global-in-time existence solutions

for systems ((1)–(3)), supplemented with physically relevant
constitutive relations, has been studied by Hu and Wang [1].

It should be pointed out that the incompressible inviscid
limit problems to the compressible Navier-Stokes equations
and related models are very interesting. For the case without
rotational force,Masmoudi [2] proved the convergence of the
weak solution of isentropic Navier-Stokes equations to the
strong solution of the incompressible Euler equations in the
2-dimensional whole spaceR2 and the space case by applying
the related entropy method. Later, his result was extended
to the isentropic compressible magnetohydrodynamic equa-
tions [3, 4]. Feireisl and Novotný [5] studied the inviscid
incompressible limit to the full Navier-Stokes-Fourier system
in the whole space.

In this paper, we derive a rigorous quasi-geostrophic
equation from the stratified flow of rotational compressible
magnetohydrodynamic flows ((1)–(3)) on the 2-dimensional
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whole space with the well-prepared initial data. Our con-
tribution of this paper is physically to derive a rigorous
quasi-geostrophic equation from the stratified flows of the
rotational compressible magnetohydrodynamic equations
based on the relative entropy method. Recently, Feireisl and
Novotný [6] have studied the asymptotic limit for the models
with a rotational term originating from a Coriolis force with
the mild stratification and with the well-prepared initial
data. This result is based on their paper, but it is more
a developed version than their result because we derive a
quasi-geostrophic equation from a global weak solution of
compressible MHD flows.

Let the density 󰜚 be the solution of the static problem

∇󰜚𝛾𝜀 = 𝛾𝜀󰜚𝜀∇𝐺, 󰜚𝜀 (𝑥) 󳨀→ 1 as |𝑥| 󳨀→ ∞, (5)

where we have

󵄨󵄨󵄨󵄨󰜚𝜀 (𝑥) − 1󵄨󵄨󵄨󵄨 ≤ 𝜀 |𝐺 (𝑥)| ,
󵄨󵄨󵄨󵄨∇󰜚𝜀 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝜀 |∇𝐺 (𝑥)| ,

󰜚𝜀 ∈ 𝐶3 (Ω) , 𝑥 ∈ Ω.
(6)

Assume that the initial data have the following property at
infinity:

󰜚𝜖 (𝑥) 󳨀→ 1,
u𝜖 (𝑥) 󳨀→ 0,
B𝜀 (𝑥) 󳨀→ 0

as |𝑥| 󳨀→ ∞.
(7)

Formally, we will investigate the limit

󰜚𝜖 − 󰜚𝜀𝜀 󳨀→ 𝑞,
√󰜚𝜖u𝜖 󳨀→ k,

B𝜀 󳨀→ B,
(8)

as 𝜖 tends to 0 in the suitable sense such that the given limits(𝑞,B) represent the unique local smooth strong solution of
the following system on [0, 𝑇]: for 𝑞0 ∈ 𝐻𝑘+1(Ω) and B0 ∈𝐻𝑘(Ω), 𝑘 ≥ 3,

k = ∇⊥𝑞,
𝜕𝑡 (Δ𝑞 − 𝑞) + (∇⊥𝑞 ⋅ ∇) Δ𝑞 + ∇⊥𝑞 ⋅ ∇𝐺

= div⊥ [(B ⋅ ∇)B] ,
𝑞 (0, ⋅) = 𝑞0
𝜕𝑡B + (∇⊥𝑞 ⋅ ∇)B − (B ⋅ ∇) ∇⊥𝑞 = 0,
B (0, ⋅) = B0,

(9)

where the notations are defined as follows:

k⊥ = (−V2, V1) ,
∇⊥𝑔 = (− 𝜕𝑔

𝜕𝑥2 ,
𝜕𝑔
𝜕𝑥1) ,

div⊥k = − 𝜕V1𝜕𝑥2 +
𝜕V2𝜕𝑥1 .

(10)

Note that the existence of global strong solution of system (9)
can be proven with the same method of [7].

Theorem 1. Let Ω be the 2-dimensional whole space R2. For
the given initial 𝑞0 ∈ 𝐻𝑘+1(Ω) andB0 ∈ 𝐻𝑘(Ω), 𝑘 ≥ 3, there is𝑇 > 0 such that system (9) has the unique local smooth solution(𝑞,B) on [0, 𝑇], verifying the following regularity:

𝑞 ∈ 𝐶 ([0, 𝑇] ;𝐻𝑘+1 (Ω;R))
∩ 𝐶1 ([0, 𝑇] ;𝐻𝑘 (Ω;R)) , (11)

B ∈ 𝐶 ([0, 𝑇] ;𝐻𝑘 (Ω;R2))
∩ 𝐶1 ([0, 𝑇] ;𝐻𝑘−1 (Ω;R2)) . (12)

The outline of this article is as follows. In Section 2,
we present the rigorous result for (8) and (9). In Section 3,
we derive a rigorous proof of the rotational compressible
magnetohydrodynamic flows ((1)–(3)).

Definition 2. Wesay that a quantity {󰜚,u,B} is aweak solution
of the magnetohydrodynamic (MHD) flows ((1)–(3)) sup-
plemented with the initial data {󰜚0, u0,B0} provided that the
following hold:

(i) The density 󰜚 is a nonnegative function, where 󰜚 −1 ∈ 𝐿∞(0, 𝑇; (𝐿𝛾 + 𝐿2)(Ω)), the velocity field u ∈𝐿2(0, 𝑇;𝑊1,2(Ω;R2)), 󰜚|u|2 ∈ 𝐿∞(0, 𝑇; 𝐿1(Ω)), and u
represents a renormalized solution of equation (1) on(0, 𝑇) × Ω; that is, the integral identity

∫
Ω
(󰜚 + 𝑏 (󰜚)) 𝜑 (𝑇, ⋅) d𝑥 − ∫

Ω
(󰜚0 + 𝑏 (󰜚0)) 𝜑 (0, ⋅) d𝑥

= ∫𝑇
0
∫
Ω
[(󰜚 + 𝑏 (󰜚)) 𝜕𝑡𝜑 + (󰜚 + 𝑏 (󰜚)) u ⋅ ∇𝜑

+ (𝑏 (󰜚) − 𝑏󸀠 (󰜚) 󰜚) div u𝜑] d𝑥 d𝑡
(13)

holds for any test function 𝜑 ∈ D([0, 𝑇) ×Ω) and any𝑏 such that

𝑏 ∈ 𝐶1 [0,∞) , 𝑏󸀠 (𝑟) = 0 whenever 𝑟 ≥ 𝑟𝑏. (14)
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(ii) The balance of momentum holds in distributional
sense; namely,

∫
Ω
󰜚u ⋅ 𝜑⃗ (𝑇, ⋅) d𝑥 − ∫

Ω
(󰜚u)0 ⋅ 𝜑⃗ (0, ⋅) d𝑥

= ∫𝑇
0
∫
Ω
(󰜚u ⋅ 𝜕𝑡𝜑⃗ + 󰜚u ⊗ u : ∇𝜑⃗ + 1

𝜖2𝛾󰜚𝛾div 𝜑⃗

+ [(B ⋅ ∇)B − 1
2∇ |B|2] ⋅ 𝜑⃗) d𝑥 d𝑡

− ∫𝑇
0
∫
Ω
(1𝜀 󰜚u⊥ ⋅ 𝜑⃗ − 𝜇𝜀∇u : ∇𝜑⃗

− (𝜇𝜀 + 𝜆𝜀) div u div 𝜑⃗ + 1
𝜀 󰜚∇𝐺 ⋅ 𝜑⃗) d𝑥 d𝑡,

(15)

for any test function 𝜑⃗ ∈ D([0, 𝑇) × Ω;R2).
(iii) The total energy of the system holds:

∫
Ω
(1
2󰜚 |u|2 +

1
2 |B|2

+ 1
𝛾 (𝛾 − 1) 𝜀2 (󰜚𝛾 − 󰜚𝛾𝜀 − 𝛾󰜚𝛾−1𝜀 (󰜚 − 󰜚𝜀)))

⋅ (𝑡, ⋅) d𝑥 + ∫𝑡
0
∫
Ω
𝜇𝜀 |∇u|2 + (𝜇𝜀 + 𝜆𝜀) (div u)2

+ ]𝜀 |∇B|2 d𝑥 d𝑡 ≤ 𝐸0,𝜖

(16)

holds for a.e. 𝑡 ∈ (0, 𝑇), where
𝐸0,𝜖 = ∫

Ω
(1
2󰜚0 󵄨󵄨󵄨󵄨u0󵄨󵄨󵄨󵄨

2 + 1
2 󵄨󵄨󵄨󵄨B0󵄨󵄨󵄨󵄨2

+ 1
𝛾 (𝛾 − 1) 𝜀2 (󰜚𝛾0 − 󰜚𝛾𝜀 − 𝛾󰜚𝛾−1𝜀 (󰜚0 − 󰜚𝜀))) d𝑥.

(17)

(iv) The Maxwell equation (3) with divB = 0 and the
regularity B ∈ 𝐿2(0, 𝑇;𝑊1,2(Ω)) ∩ 𝐿∞(0, 𝑇; 𝐿2(Ω))
verifies

∫
Ω
B ⋅ 𝜑⃗ (𝑇, ⋅) d𝑥 − ∫

Ω
(B)0 ⋅ 𝜑⃗ (0, ⋅) d𝑥 = ∫𝑇

0
∫
Ω
B

⋅ 𝜕𝑡𝜑⃗ d𝑥 d𝑡 − ∫𝑇
0
∫
Ω
((u × B) ⋅ (∇ × 𝜑⃗)

− (]∇ × B) ⋅ (∇ × 𝜑⃗)) d𝑥 d𝑡,

(18)

for all 𝜑⃗ ∈ D([0, 𝑇) × Ω;R2).
2. Main Results

In this section, we introduce the main results.

Theorem 3. Let Ω = R2 be the 2-dimensional whole space
and let (󰜚𝜖, u𝜖,B𝜀) be a weak solution to ((1)–(3)) in the sense

of Definition 2, verifying viscosity (4) with 0 < 𝜃 + 𝜎 < 2 and
the initial data:

󵄩󵄩󵄩󵄩𝑞0,𝜀 − 𝑞0󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶𝜀,
󵄩󵄩󵄩󵄩𝐻𝜀 (𝑞0,𝜀) − 𝑞0󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶𝜀, (19)

󵄩󵄩󵄩󵄩󵄩√󰜚0,𝜀u0,𝜀 − ∇⊥𝑞0󵄩󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶𝜀,
󵄩󵄩󵄩󵄩B0,𝜀 − B0

󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶𝜀,
(20)

where

󰜚0,𝜀 = 󰜚𝜀 + 𝜀𝑞0,𝜀,
𝑞0,𝜀 ∈ 𝐿2 ∩ 𝐿∞ (Ω) , 𝑞0 ∈ 𝐻𝑘+1 (Ω) ,

k0,B0 ∈ 𝐻𝑘 (Ω;R3) ,
(21)

for 𝑘 ≥ 3. Then, one has

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
󰜚𝜖 − 󰜚𝜀𝜀 − 𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿1(𝐾)) ≤ 𝐶 (𝐾) 𝜀𝜅

󵄩󵄩󵄩󵄩√󰜚𝜖u𝜀 − k󵄩󵄩󵄩󵄩2𝐿∞(0,𝑇;𝐿2(Ω;R2)) ≤ 𝐶𝜀𝜅
󵄩󵄩󵄩󵄩B𝜀 − B󵄩󵄩󵄩󵄩2𝐿∞(0,𝑇;𝐿2(Ω)) ≤ 𝐶𝜀𝜅

(22)

for sufficiently small 0 < 𝜀 < 1, any 𝑇 < 𝑇∗, and any
compact 𝐾 ⊂⊂ R2 such that (𝑞,B) verifies (9). Furthermore,
the numbers 𝜅 are defined by

𝜅 = min{1, 2𝛾 , 1 −
𝜃 + 𝜎
2 , 53 − 𝜃

2 , 𝜃, 𝜎} . (23)

3. Proof of Theorem 3

In this section, we are going to give the rigorous proof of
Theorem 3.

Step 1. In this part, we are going to derive some estimates on
the sequence {󰜚𝜖, u𝜖,B𝜀}𝜖>0.

From the energy inequality (16), we obtain

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩√󰜚𝜖u𝜖 (𝑡)󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶, (24)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩󰜚𝛾𝜖 − 󰜚𝛾𝜀 − 𝛾󰜚𝛾−1𝜀 (󰜚𝜖 − 󰜚𝜀)󵄩󵄩󵄩󵄩󵄩𝐿1(Ω) ≤ 𝜖2𝐶, (25)

󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩𝐿2((0,𝑇)×Ω) ≤ 𝐶𝜀−𝜃/2, (26)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩B𝜀 (𝑡)󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶,
󵄩󵄩󵄩󵄩∇B𝜀󵄩󵄩󵄩󵄩𝐿2((0,𝑇)×Ω) ≤ 𝐶𝜀−𝜎/2.

(27)
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We consider the properties of convex function:

󰜚𝛾𝜖 − 󰜚𝛾𝜀 − 𝛾 (󰜚𝜖 − 󰜚𝜀) ≥ 𝐶 󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨2 if 𝛾 ≥ 2, (28)

󰜚𝛾𝜖 − 󰜚𝛾𝜀 − 𝛾 (󰜚𝜖 − 󰜚𝜀) ≥ 𝐶 󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨2 if 𝛾 < 2, 𝑥 ≤ 𝑅, (29)

󰜚𝛾𝜖 − 󰜚𝛾𝜀 − 𝛾 (󰜚𝜖 − 󰜚𝜀) ≥ 𝐶 󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨𝛾 if 𝛾 < 2, 𝑥 ≥ 𝑅, (30)

󰜚𝛾𝜖 − 󰜚𝛾𝜀 − 𝛾 (󰜚𝜖 − 󰜚𝜀) ≥ 𝐶 (𝛿) 󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨𝛾
if 󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨 > 𝛿 > 0, (31)

where we can see these properties in [8]. Following (28) and
(29) together with (25), we get

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[
󰜚𝜖 − 󰜚𝜀𝜖 1|󰜚𝜖−󰜚𝜀|≤1/2]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶. (32)

Using (31), we also derive

ess sup
𝑡∈(0,𝑇)

∫
Ω
[󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨𝛾𝜖2 1|󰜚𝜖−󰜚|≥1/2] d𝑥 ≤ 𝐶, (33)

which gives

ess sup
𝑡∈(0,𝑇)

∫
Ω
[1 + 󰜚𝛾𝜖 ] 1|󰜚𝜖−󰜚𝜀|≥1/2d𝑥 ≤ 𝜀2𝐶. (34)

Note that 󵄩󵄩󵄩󵄩󵄩󵄩󵄩√󰜚𝜖 − √󰜚𝜀󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω)) ≤ 𝜀𝐶, (35)

while using (28)–(31) implies that

∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨√󰜚𝜖 − √󰜚𝜀󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

d𝑥 = ∫
|󰜚𝜖−󰜚|≤1/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨√󰜚𝜖 − √󰜚𝜀󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

d𝑥

+ ∫
|󰜚𝜖−󰜚|≥1/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨√󰜚𝜖 − √󰜚𝜀󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

d𝑥

≤ 𝐶∫
|󰜚𝜖−󰜚|≤1/2

󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨2 d𝑥

+ 𝐶∫
|󰜚𝜖−󰜚|≥1/2

󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚𝜀󵄨󵄨󵄨󵄨𝛾 d𝑥
≤ 𝜀2𝐶.

(36)

The Sobolev embedding also gives
󵄩󵄩󵄩󵄩u𝜖󵄩󵄩󵄩󵄩2𝐿2 ≤ 𝐶 + 𝐶𝜀4/3 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩2𝐿2 , (37)

and the proof is provided in [9].

Step 2. We introduce the relative entropy in the version of the
magnetohydrodynamic flows. Let us set

ℎ (󰜚) = 1
𝛾 (𝛾 − 1) (󰜚𝛾 − 󰜚𝛾𝜀 − 𝛾󰜚𝛾−1𝜀 (󰜚 − 󰜚𝜀)) ,

𝐻𝜀 (𝑞𝜀) = √2
𝜀 sign (𝑞𝜀)√ℎ (󰜚𝜀 + 𝜀𝑞𝜀),

󰜚𝜖 = 󰜚𝜀 + 𝜀𝑞𝜀,

(38)

where

sign (𝑞𝜀) =
{{{{{{{{{

1, if sign (𝑞𝜀) > 0,
0, if sign (𝑞𝜀) = 0,
−1, if sign (𝑞𝜀) < 0.

(39)

We define the relative entropy:

E𝜀 (𝜏)
= 1
2 ∫
Ω
(󰜚𝜖 󵄨󵄨󵄨󵄨u𝜖 − k󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝐻𝜀 (𝑞𝜀) − 𝑞󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨B𝜀 − B󵄨󵄨󵄨󵄨2) d𝑥,

(40)

where we put k fl ∇⊥𝑞. Adapting k as a test function to the
moment equation (2) provides

− ∫
Ω
(󰜚𝜖u𝜖 ⋅ k) (𝜏) d𝑥 = −∫

Ω
(󰜚0,𝜀u0,𝜀) ⋅ k0d𝑥

+ ∫𝜏
0
∫
Ω

1
𝜀 󰜚𝜖u⊥𝜖 ⋅ k d𝑥 d𝑡 − ∫𝜏

0
∫
Ω
[󰜚𝜖u𝜖 ⊗ u𝜖 : ∇k

+ (B𝜀 ⋅ ∇)B𝜀 ⋅ k − 𝜇𝜀∇u𝜖 : ∇k] d𝑥 d𝑡
− ∫𝜏
0
∫
Ω
󰜚𝜖u𝜖 ⋅ 𝜕𝑡k d𝑥 d𝑡 − 1

𝜀 ∫
𝜏

0
∫
Ω
󰜚𝜖∇𝐺

⋅ k d𝑥 d𝑡.

(41)

We also use 𝑞 as a test function to the continuity equation (1)
to deduce that

−∫
Ω
𝑞𝜀𝑞 d𝑥 = −∫

Ω
𝑞0,𝜀𝑞0d𝑥 − ∫𝜏

0
∫
Ω
𝑞𝜀𝜕𝑡𝑞 d𝑥 d𝑡

− ∫𝜏
0
∫
Ω

1
𝜀 󰜚𝜖u𝜖 ⋅ ∇𝑞 d𝑥 d𝑡.

(42)

To compute the relative entropy, we also use B as a test
function to the magnetic field equation (3) and insert (9),
which yields

− ∫
Ω
(B𝜀 ⋅ B) (𝜏) d𝑥 = −∫

Ω
B0,𝜀 ⋅ B0d𝑥 + ∫𝜏

0
∫
Ω
B𝜀

⋅ [(k ⋅ ∇)B − (B ⋅ ∇) k] d𝑥 d𝑡
+ ∫𝜏
0
∫
Ω
[(div u𝜖)B𝜀 + (u𝜖 ⋅ ∇)B𝜀 − (B𝜀 ⋅ ∇) u𝜖]

⋅ B d𝑥 d𝑡 + ∫𝜏
0
∫
Ω
]𝜀∇B𝜀 : ∇B d𝑥 d𝑡.

(43)

Adding (16), (41), (42), and (43) derives the following inequal-
ity:

E𝜀 (𝜏) + ∫𝜏
0
∫
Ω
(𝜇𝜀 󵄨󵄨󵄨󵄨∇u𝜖󵄨󵄨󵄨󵄨2 + (𝜇𝜀 + 𝜆𝜀) 󵄨󵄨󵄨󵄨div u𝜖󵄨󵄨󵄨󵄨2

+ ]𝜀
󵄨󵄨󵄨󵄨∇B𝜀󵄨󵄨󵄨󵄨2) d𝑥 d𝑡 ≤

7∑
𝑗=1

𝐴𝑗,
(44)
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where

𝐴1 = E𝜀 (0) + ∫
Ω
𝑞0 (𝐻𝜀 (𝑞0,𝜀) − 𝑞0,𝜀) d𝑥 − 1

2 ∫
Ω
(󰜚0,𝜀

− 󰜚𝜀) 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞0󵄨󵄨󵄨󵄨󵄨2 d𝑥
𝐴2 = 1

2 ∫
Ω
(󰜚𝜖 − 󰜚𝜀) 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞󵄨󵄨󵄨󵄨󵄨2 d𝑥 − ∫

Ω
𝑞 (𝐻𝜀 (𝑞𝜀)

− 𝑞𝜀) d𝑥
𝐴3 = 1

2 ∫
Ω
(󰜚𝜀 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞󵄨󵄨󵄨󵄨󵄨2 − 󰜚𝜀 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞0󵄨󵄨󵄨󵄨󵄨2 + 𝑞2 − 𝑞20 + |B|2

− 󵄨󵄨󵄨󵄨B0󵄨󵄨󵄨󵄨2) d𝑥
𝐴4 = ∫𝜏

0
∫
Ω
(𝜇𝜀∇u𝜖 : ∇k + ]𝜀∇B𝜀 : ∇B) d𝑥 d𝑡

𝐴5 = −∫𝜏
0
∫
Ω
󰜚𝜖u𝜖 ⋅ 𝜕𝑡k d𝑥 d𝑡 − ∫𝜏

0
∫
Ω
[󰜚𝜖u𝜖

⊗ u𝜖 : ∇k] d𝑥 d𝑡 − ∫𝜏
0
∫
Ω
𝑞𝜀𝜕𝑡𝑞 d𝑥 d𝑡 − 1

𝜀
⋅ ∫𝜏
0
∫
Ω
󰜚𝜖∇𝐺 ⋅ k d𝑥 d𝑡

𝐴6 = −∫𝜏
0
∫
Ω
(B𝜀 ⋅ ∇)B𝜀 ⋅ k + ∫𝜏

0
∫
Ω
B𝜀 ⋅ [(k ⋅ ∇)B

− (B ⋅ ∇) k] d𝑥 d𝑡
𝐴7 = ∫𝜏

0
∫
Ω
[(div u𝜖)B𝜀 + (u𝜖 ⋅ ∇)B𝜀 − (B𝜀 ⋅ ∇) u𝜖]

⋅ B d𝑥 d𝑡.

(45)

Step 3. From (19), it is easily seen that it shows that

𝐴1 ≤ 𝐶𝜀. (46)

Indeed, using (6), (19), and (21), we get

󵄩󵄩󵄩󵄩󵄩√󰜚0,𝜀 (u0,𝜀 − ∇⊥𝑞0)󵄩󵄩󵄩󵄩󵄩2𝐿2(Ω)
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩√󰜚0,𝜀u0,𝜀 − ∇⊥𝑞0󵄩󵄩󵄩󵄩󵄩2𝐿2(Ω)

+ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩(√󰜚0,𝜀 − √󰜚𝜀)∇⊥𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐿2(Ω)

+ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩(√󰜚𝜀 − 1)∇⊥𝑞0󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐿2(Ω)
≤ 𝐶𝜀,

(47)

where ‖∇⊥𝑞0‖𝐿∞(Ω) ≤ 𝐶 and the constant depends on the
support of 𝐺, and we also have

󵄩󵄩󵄩󵄩𝐻 (𝑞0,𝜀) − 𝑞0󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶 󵄩󵄩󵄩󵄩𝐻 (𝑞0,𝜀) − 𝑞0,𝜀󵄩󵄩󵄩󵄩2𝐿2(Ω)
+ 𝐶 󵄩󵄩󵄩󵄩𝑞0,𝜀 − 𝑞0󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶𝜀, (48)

where we have used (21). Similarly, we get

󵄩󵄩󵄩󵄩𝑞0 (𝐻 (𝑞0,𝜀) − 𝑞0)󵄩󵄩󵄩󵄩2𝐿2(Ω) ≤ 𝐶𝜀,
󵄩󵄩󵄩󵄩󵄩󵄩(󰜚0,𝜀 − 󰜚𝜀) 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞0󵄨󵄨󵄨󵄨󵄨2󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿2(Ω)
≤ 𝐶𝜀. (49)

By the regularity of 𝑞 in (11) and (34), we can estimate the first
term of 𝐴2 as follows:

∫
Ω
(󰜚𝜖 − 󰜚𝜀) 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞󵄨󵄨󵄨󵄨󵄨2 d𝑥
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩(󰜚𝜖 − 󰜚𝜀) 1|󰜚𝜖−󰜚𝜀|≤1/2󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω))

+ 𝐶 󵄩󵄩󵄩󵄩󵄩(󰜚𝛾𝜖 + 1) 1|󰜚𝜖−󰜚𝜀|≥1/2󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω))
≤ 𝐶 (𝜀 + 𝜀2) ,

(50)

where the Sobolev imbedding theorem𝐻2 ⊂ 𝐿∞ implies that∇⊥𝑞 ∈ 𝐿∞(Ω).The estimate of the second term of 𝐴2 is also
given in [10] such that

∫
Ω
𝑞 (𝐻𝜀 (𝑞𝜀) − 𝑞𝜀) d𝑥 ≤ 𝐶𝜀2/𝛾. (51)

To handle 𝐴3, we multiply 𝑞 to system (9), which yields

1
2 ∫
Ω
(󵄨󵄨󵄨󵄨󵄨∇⊥𝑞󵄨󵄨󵄨󵄨󵄨2 + 𝑞2) d𝑥 − 1

2 ∫
Ω
(󵄨󵄨󵄨󵄨󵄨∇⊥𝑞0󵄨󵄨󵄨󵄨󵄨2 + 𝑞20) d𝑥

= ∫𝜏
0
∫
Ω
(B ⋅ ∇)B ⋅ k d𝑥 d𝑡,

(52)

while
1
2 ∫𝜏
0
∫
Ω
∇⊥𝑞 ⋅ ∇𝐺𝑞 d𝑥 d𝑡 = 0. (53)

Multiplying B to the magnetic field equation, we obtain the
following energy equation:

1
2 ∫
Ω
|B|2 d𝑥 − 1

2 ∫
Ω

󵄨󵄨󵄨󵄨B0󵄨󵄨󵄨󵄨2 d𝑥
= −∫𝜏
0
∫
Ω
(B ⋅ ∇)B ⋅ k d𝑥 d𝑡.

(54)

Adding (52) and (54), it follows that

𝐴3 = 1
2 ∫
Ω
(󰜚𝜀 − 1) (󵄨󵄨󵄨󵄨󵄨∇⊥𝑞󵄨󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨󵄨∇⊥𝑞0󵄨󵄨󵄨󵄨󵄨2) d𝑥 ≤ 𝐶𝜀, (55)

where we have used (6). Let us next show that the viscosity
term 𝐴4 vanishes:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫

𝜏

0
∫
Ω
(𝜇𝜀∇u𝜖 : ∇k + ]𝜀∇B𝜀 : ∇B) d𝑥 d𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜇𝜀2 ∫𝜏

0
∫
Ω

󵄨󵄨󵄨󵄨∇u𝜖󵄨󵄨󵄨󵄨2 d𝑥 d𝑡 + ]𝜀2 ∫𝑡
0
∫
Ω

󵄨󵄨󵄨󵄨∇B𝜀󵄨󵄨󵄨󵄨2 d𝑥 d𝑡
+ 𝐶 (𝜇𝜀 + ]𝜀) ,

(56)

where we have here used (4) and (11).
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Step 4. For this part, we need to estimate the convective term
of 𝐴5 and the term can be expressed in the following form:

− ∫𝜏
0
∫
Ω
󰜚𝜖 (u𝜖 − k) ⊗ (u𝜖 − k) : ∇k d𝑥 d𝑡

− ∫𝜏
0
∫
Ω
󰜚𝜖k ⊗ u𝜖 : ∇k d𝑥 d𝑡

− ∫𝜏
0
∫
Ω
󰜚𝜖u𝜖 ⊗ k : ∇k d𝑥 d𝑡

+ ∫𝜏
0
∫
Ω
󰜚𝜖k ⊗ k : ∇k d𝑥 d𝑡 fl 4∑

𝑗=1

𝐼𝑗.

(57)

The first term 𝐼1 can be controlled by

𝐼1 ≤ 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡, (58)

where, by (11), ∇k ∈ 𝐻2(Ω) together with the Sobolev
embedding, which implies that

‖∇k‖𝐿∞(Ω) ≤ 𝐶. (59)

𝐼2 is reformulated by

𝐼2 = −∫𝜏
0
∫
Ω
󰜚𝜖u𝜖 ⋅ ((k ⋅ ∇) k) d𝑥 d𝑡. (60)

For 𝐼3, employing the estimates of (32) and (34) together with
the continuity equation (1), we get

𝐼3 = −12 ∫𝜏
0
∫
Ω
󰜚𝜖u𝜖 ⋅ ∇ |k|2 d𝑥 d𝑡

= 1
2 ∫𝜏
0
∫
Ω
(𝜌𝜖 − 𝜌𝜀) 𝜕𝑡 |v|2 d𝑥 d𝑡

− 1
2 ∫
Ω
(󰜚𝜖 − 󰜚𝜀) |k (𝜏)|2 d𝑥

+ 1
2 ∫
Ω
(󰜚0,𝜀 − 󰜚𝜀) 󵄨󵄨󵄨󵄨k0󵄨󵄨󵄨󵄨2 d𝑥 ≤ 𝐶 (𝜀 + 𝜀2) .

(61)

To handle 𝐼4, we use div k = 0 to obtain
𝐼4 = −∫𝜏

0
∫
Ω
(󰜚𝜖 − 󰜚𝜀) (k ⋅ ∇) k ⋅ k d𝑥 d𝑡

− ∫𝜏
0
∫
Ω
(󰜚𝜀 − 1) (k ⋅ ∇k) ⋅ k d𝑥 d𝑡 ≤ 𝐶 (𝜀 + 𝜀2) ,

(62)

where we have used (32) and (33). Thus, 𝐴5 is written by

𝐴5 ≤ −∫𝜏
0
∫
Ω
(󰜚𝜖u𝜖 ⋅ (𝜕𝑡k + (k ⋅ ∇) k) + 𝑞𝜀∇𝐺 ⋅ k

+ 𝑞𝜀𝜕𝑡𝑞) d𝑥 d𝑡 + 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀

+ 𝜀2) ,
(63)

where

− 1
𝜀 ∫
𝜏

0
∫
Ω
󰜚𝜖∇𝐺 ⋅ k d𝑥 d𝑡

= −∫𝜏
0
∫
Ω

󰜚𝜀𝜀 ∇𝐺 ⋅ k d𝑥 d𝑡 + ∫𝜏
0
∫
Ω
𝑞𝜀∇𝐺 ⋅ k d𝑥 d𝑡

= ∫𝜏
0
∫
Ω
𝑞𝜀∇𝐺 ⋅ k d𝑥 d𝑡

(64)

together with using (5) and div k = 0.To handle (63), we need
the following lemma.

Lemma4. Let (󰜚𝜖, u𝜖,B𝜀) be global weak solutions of (1)–(3) in
the sense of Definition 2.Then, one has the following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝜏

0
∫
Ω
(󰜚𝜖u𝜖 − ∇⊥𝑞𝜀) ⋅ 𝜓 d𝑥 d𝑡󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝜀 (65)

for any test function 𝜓.
Proof. We use the test function 𝜓⊥ to the moment equation
(2) to deduce

∫𝜏
0
∫
Ω
(󰜚𝜖u𝜖 − ∇⊥𝑞𝜀) ⋅ 𝜓 d𝑥 d𝑡 = 𝜀 ∫

Ω
(󰜚𝜖u𝜖) (𝜏)

⋅ 𝜓⊥ (𝜏) d𝑥 − 𝜀∫
Ω
(󰜚0,𝜀u0,𝜀) ⋅ 𝜓⊥0 d𝑥

+ 𝜀∫𝜏
0
∫
Ω
(󰜚𝜖u𝜖) ⋅ 𝜕𝑡𝜓⊥d𝑥 d𝑡

+ 𝜀 ∫𝑡
0
∫
Ω
(󰜚𝜖u𝜖 ⊗ u𝜖) : ∇𝜓⊥d𝑥 d𝑡

+ 𝜀 ∫𝜏
0
∫
Ω

1
𝜀2𝛾 (󰜚𝛾𝜖 − 󰜚𝛾𝜀 − 𝛾󰜚𝛾−1𝜀 (󰜚𝜖 − 󰜚𝜀))

⋅ div𝜓⊥d𝑥 d𝑡 − 𝜀 ∫𝜏
0
∫
Ω

󰜚𝜖 − 󰜚𝜀𝜀 ∇𝐺 ⋅ 𝜓⊥d𝑥 d𝑡
− 𝜀𝜇𝜀 ∫

𝜏

0
∫
Ω
∇u𝜖 : ∇𝜓⊥d𝑥 d𝑡 − 𝜀 (𝜇𝜀 + 𝜆𝜀)

⋅ ∫𝑡
0
∫
Ω
div u𝜖div𝜓⊥d𝑥 d𝑡 + 𝜀 ∫𝜏

0
∫
Ω
(B𝜀 ⋅ ∇)B𝜀

⋅ 𝜓⊥ + 𝜀
2 ∫𝑡
0
∫
Ω

󵄨󵄨󵄨󵄨B𝜀󵄨󵄨󵄨󵄨2 div𝜓⊥d𝑥 d𝑡.

(66)

In virtue of the estimates in (19)–(21) and (24)–(27), the terms
of the right-hand side in (66) can be controlled and so it
proved (65).
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Making use of Lemma 4 together with k = ∇⊥𝑞 and 𝜓 =𝜕𝑡∇⊥𝑞+ (∇⊥𝑞 ⋅∇)∇⊥𝑞 and integrating by parts, we obtain that
𝐴5 = −∫𝜏

0
∫
Ω
󰜚𝜖u𝜖 ⋅ (𝜕𝑡∇⊥𝑞 + (∇⊥𝑞 ⋅ ∇) ∇⊥𝑞) d𝑥 d𝑡

− ∫𝜏
0
∫
Ω
𝑞𝜀 (𝜕𝑡𝑞 + ∇𝐺 ⋅ ∇⊥𝑞) d𝑥 d𝑡

+ 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀 + 𝜀2)

≤ ∫𝜏
0
∫
Ω
𝑞𝜀 [𝜕𝑡 (Δ𝑞 − 𝑞) + (∇⊥𝑞 ⋅ ∇) Δ𝑞 + ∇𝐺

⋅ ∇⊥𝑞] d𝑥 d𝑡 + 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀 + 𝜀2)

= ∫𝜏
0
∫
Ω
𝑞𝜀div⊥ [(B ⋅ ∇)B − 1

2∇ |B|2] d𝑥 d𝑡
+ 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀 + 𝜀2) ≤ −∫𝜏

0
∫
Ω
󰜚𝜖𝑢𝜖

⋅ [(B ⋅ ∇)B − 1
2∇ |B|2] d𝑥 d𝑡

+ 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀 + 𝜀2) ,

(67)

wherewe have used𝜓 = (B⋅∇)B−(1/2)∇|B|2 as a test function
on the last line of (67). Thus, the relative entropy gives

E𝜀 (𝜏) + 1
2 ∫𝜏
0
∫
Ω
(𝜇𝜀 󵄨󵄨󵄨󵄨∇u𝜖󵄨󵄨󵄨󵄨2 + (𝜇𝜀 + 𝜆𝜀) 󵄨󵄨󵄨󵄨div u𝜖󵄨󵄨󵄨󵄨2

+ ]𝜀
󵄨󵄨󵄨󵄨∇B𝜀󵄨󵄨󵄨󵄨2) d𝑥 d𝑡 ≤ −∫𝜏

0
∫
Ω
(B𝜀 ⋅ ∇)B𝜀

⋅ k + ∫𝜏
0
∫
Ω
B𝜀 ⋅ [(k ⋅ ∇)B − (B ⋅ ∇) k] d𝑥 d𝑡

+ ∫𝜏
0
∫
Ω
[(div u𝜖)B𝜀 + (u𝜖 ⋅ ∇)B𝜀 − (B𝜀 ⋅ ∇)u𝜖]

⋅ B d𝑥 d𝑡 − ∫𝜏
0
∫
Ω
󰜚𝜖u𝜖 ⋅ [(B ⋅ ∇)B

− 1
2∇ |B|2] d𝑥 d𝑡 + ∫𝜏

0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀

+ 𝜀2/𝛾 + 𝜀2 + 𝜀𝜃 + 𝜀𝜎) .

(68)

Step 5. Finally, we now handle the part of magnetic field. We
apply the integration by parts and the facts divB𝜀 = 0, divB =0, and div k = 0 to obtain

E𝜀 (𝑡) + 1
2 ∫𝜏
0
∫
Ω
𝜇𝜀 󵄨󵄨󵄨󵄨∇𝑥u𝜖󵄨󵄨󵄨󵄨2 + (𝜇𝜀 + 𝜆𝜀) 󵄨󵄨󵄨󵄨div u𝜖󵄨󵄨󵄨󵄨2

+ ]𝜀
󵄨󵄨󵄨󵄨∇B𝜀󵄨󵄨󵄨󵄨2 d𝑥 d𝑡 ≤ ∫𝜏

0
∫
Ω
(󰜚𝜀 − 󰜚𝜖) u𝜖

⋅ (B ⋅ ∇)B d𝑥 d𝑡 + 1
2 ∫𝜏
0
∫
Ω
(󰜚𝜀 − 󰜚𝜖) u𝜖

⋅ ∇ |B|2 d𝑥 d𝑡 + ∫𝜏
0
∫
Ω
(1 − 󰜚𝜀) u𝜖

⋅ (B ⋅ ∇)B d𝑥 d𝑡 + 1
2 ∫𝜏
0
∫
Ω
(1 − 󰜚𝜀) u𝜖

⋅ ∇ |B|2 d𝑥 d𝑡 + ∫𝜏
0
∫
Ω
(B𝜀 − B) ⋅ ∇k

⋅ (B𝜀 − B) d𝑥 d𝑡 + ∫𝜏
0
∫
Ω
(B𝜀 − B) ⋅ ∇B

⋅ (u𝜖 − k) d𝑥 d𝑡 − ∫𝜏
0
∫
Ω
(u𝜖 − k) ⋅ ∇B

⋅ (B𝜀 − B) d𝑥 d𝑡 + 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀

+ 𝜀2/𝛾 + 𝜀2 + 𝜀𝜃 + 𝜀𝜎) fl 7∑
𝑗=1

𝐷𝑗 + 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡

+ 𝐶 (𝜀 + 𝜀2/𝛾 + 𝜀2 + 𝜀𝜃 + 𝜀𝜎) .
(69)

For the term 𝐷6, making use of (32), (33), and (37), together
with the Sobolev embedding and Holder’s inequality, it
follows that

∫𝜏
0
∫
Ω
(B𝜀 − B) ⋅ ∇B ⋅ (u𝜖 − k) d𝑥 d𝑡

= ∫𝜏
0
∫
Ω
(B𝜀 − B) ⋅ ∇B ⋅ √󰜚𝜖 (u𝜖 − k) d𝑥 d𝑡

+ ∫𝜏
0
∫
Ω
(√󰜚𝜀 − √󰜚𝜖) (B𝜀 − B) ⋅ ∇B

⋅ (u𝜖 − k) d𝑥 d𝑡 + ∫𝜏
0
∫
Ω
(1 − √󰜚𝜀) (B𝜀 − B)

⋅ ∇B ⋅ (u𝜖 − k) d𝑥 d𝑡 ≤ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩√󰜚𝜖
− √󰜚𝜀󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω)) 󵄩󵄩󵄩󵄩B𝜀󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿6(Ω)) 󵄩󵄩󵄩󵄩u𝜖󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿3(Ω))
+ 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩√󰜚𝜖 − √󰜚𝜀󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω)) (󵄩󵄩󵄩󵄩u𝜖󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))
+ 󵄩󵄩󵄩󵄩B𝜀󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) + 1) + 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩1 − √󰜚𝜀󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω))
⋅ 󵄩󵄩󵄩󵄩B𝜀󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿6(Ω)) 󵄩󵄩󵄩󵄩u𝜖󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿3(Ω)) + 𝐶 󵄩󵄩󵄩󵄩󵄩󵄩󵄩1
− √󰜚𝜀󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿2(Ω)) (󵄩󵄩󵄩󵄩u𝜖󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))
+ 󵄩󵄩󵄩󵄩B𝜀󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) + 1) + 𝐶∫𝜏

0
E𝜀 (𝑡) d𝑡

≤ 𝐶 (𝜀1−(𝜃+𝜎)/2 + 𝜀 + 𝜀5/3−𝜃/2) + 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡,

(70)
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where we have used the assumption of viscosity 0 < 𝜃+𝜎 < 2,
(6), and the Sobolev embedding theorem:

󵄩󵄩󵄩󵄩B𝜀󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿6(Ω)) ≤ 𝐶 󵄩󵄩󵄩󵄩∇B𝜀󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) ,
󵄩󵄩󵄩󵄩u𝜖󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿3(Ω)) ≤ 𝐶 󵄩󵄩󵄩󵄩∇u𝜖󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω)) .

(71)

Similarly, the term𝐷7 can also be controlled by

𝐷7 ≤ 𝐶∫𝜏
0
E𝜀 (𝑡) d𝑡 + 𝐶 (𝜀1−(𝜃+𝜎)/2 + 𝜀 + 𝜀5/3−𝜃/2) . (72)

Finally, we estimate 𝐷2, 𝐷3, 𝐷4, and 𝐷5 with the same
method. We now rewrite𝐷1 as follows:

𝐷1 = ∫𝜏
0
∫
Ω
(󰜚𝜀 − 󰜚𝜖) u𝜖 ⋅ (B ⋅ ∇)B d𝑥 d𝑡

= ∫𝜏
0
∫
Ω

√󰜚𝜀 (√󰜚𝜀 − √󰜚𝜖) u𝜖 ⋅ (B ⋅ ∇)B d𝑥 d𝑡
+ ∫𝜏
0
∫
Ω
(√󰜚𝜀 − √󰜚𝜖)√󰜚𝜖u𝜖 ⋅ (B ⋅ ∇)B d𝑥 d𝑡.

(73)

Thus, from the estimates of (32), (33), and (37), together with
the estimate of (24), we get

𝐷1 ≤ 𝐶 (𝜀 + 𝜀5/3−𝜃/2) , (74)

where we have again used the assumption of viscosity 0 <𝜃 + 𝜎 < 2 and so
4∑
𝑗=1

𝐷𝑗 ≤ 𝐶 (𝜀 + 𝜀5/3−𝜃/2) . (75)

Consequently, the relative entropy in (69) is given by

E𝜀 (𝜏) + 1
2 ∫𝜏
0
∫
Ω
𝜇𝜀 󵄨󵄨󵄨󵄨∇𝑥u𝜖󵄨󵄨󵄨󵄨2 + (𝜇𝜀 + 𝜆𝜀) 󵄨󵄨󵄨󵄨div u𝜖󵄨󵄨󵄨󵄨2

+ ]𝜀
󵄨󵄨󵄨󵄨∇B𝜀󵄨󵄨󵄨󵄨2 d𝑥 d𝑡 ≤ 𝐶∫𝜏

0
E𝜀 (𝑡) d𝑡

+ 𝐶 (𝜀1−(𝜃+𝜎)/2 + 𝜀 + 𝜀2/𝛾 + 𝜀2 + 𝜀5/3−𝜃/2 + 𝜀𝜃 + 𝜀𝜎) .
(76)

Step 6. Let us apply Grönwall’s inequality to (76) in order to
obtain

E𝜀 (𝜏)
≤ 𝐶 (𝜀1−(𝜃+𝜎)/2 + 𝜀 + 𝜀2/𝛾 + 𝜀2 + 𝜀5/3−𝜃/2 + 𝜀𝜃 + 𝜀𝜎)
≤ 𝐶𝜀𝜅

(77)

for any 𝜏 ∈ [0, 𝑇], where the number 𝜅 is defined in (23). Note
that

∫
𝐾

󵄨󵄨󵄨󵄨𝑞𝜀 − 𝑞󵄨󵄨󵄨󵄨 d𝑥 ≤ ∫
Ω

󵄨󵄨󵄨󵄨𝑞𝜀 − 𝐻𝜀 (𝑞𝜀)󵄨󵄨󵄨󵄨 d𝑥
+ 𝐶∫
𝐾

󵄨󵄨󵄨󵄨𝐻𝜀 (𝑞𝜀) − 𝑞󵄨󵄨󵄨󵄨2 d𝑥

≤ 𝐶∫𝑇
0
E𝜀 (𝑡) d𝑡 + 𝐶𝜀𝜅,

(78)

for any compact subset 𝐾 ⊂ R2 and

∫
Ω

󵄨󵄨󵄨󵄨󵄨√󰜚𝜖u𝜖 − ∇⊥𝑞󵄨󵄨󵄨󵄨󵄨2 d𝑥
≤ ∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨√󰜚𝜖u𝜖 − √󰜚𝜖∇⊥𝑞 + (√󰜚𝜖 − √󰜚𝜀)∇⊥𝑞󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

d𝑥
+ 𝐶∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(√󰜚𝜀 − 1)∇⊥𝑞󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

d𝑥

≤ ∫𝑇
0
E𝜀 (𝑡) d𝑡 + 𝐶𝜀𝜅,

(79)

where𝑇 is the given time inTheorem 1. For themagnetic field,
we obtain

∫
Ω

󵄨󵄨󵄨󵄨B𝜀 − B󵄨󵄨󵄨󵄨2 d𝑥 ≤ ∫𝑇
0
E𝜀 (𝑡) d𝑡. (80)

Using (77), (78), (79), and (80) and passing to the limit for𝜀 → 0, we prove (22). In conclusion, we get the target
equation (9) by passing to the limits as 𝜀 → 0, but it is
sufficient to show that, for any test function 𝜙,

lim
𝜀→0

∫𝑇
0
∫
Ω

1
𝜀 󰜚𝜖∇𝐺 ⋅ ∇⊥𝜙 d𝑥 d𝑡

= ∫𝑇
0
∫
Ω
𝑞∇𝐺 ⋅ ∇⊥𝜙 d𝑥 d𝑡.

(81)

Indeed,

lim
𝜀→0

∫𝑇
0
∫
Ω

1
𝜀 󰜚𝜖∇𝐺 ⋅ ∇⊥𝜙 d𝑥 d𝑡

= lim
𝜀→0

∫𝑇
0
∫
Ω

1
𝜀 (󰜚𝜀 + 𝜀𝑞𝜀) ∇𝐺 ⋅ ∇⊥𝜙 d𝑥 d𝑡

= lim
𝜀→0

∫𝑇
0
∫
Ω

1
𝛾𝜀2∇󰜚𝛾𝜀 ⋅ ∇⊥𝜙 d𝑥 d𝑡

+ lim
𝜀→0

∫𝑇
0
∫
Ω
𝑞𝜀∇𝐺 ⋅ ∇⊥𝜙 d𝑥 d𝑡

= ∫𝑇
0
∫
Ω
𝑞∇𝐺 ⋅ ∇⊥𝜙 d𝑥 d𝑡,

(82)

where we have used div∇⊥ = 0 and (5).
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