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Compressive strength of concrete has been predicted using evolutionary artificial neural networks (EANNs) as a combination of
artificial neural network (ANN) and evolutionary search procedures, such as genetic algorithms (GA). In this paper for purpose
of constructing models samples of cylindrical concrete parts with different characteristics have been used with 173 experimental
data patterns. Water-cement ratio, maximum sand size, amount of gravel, cement, 3/4 sand, 3/8 sand, and coefficient of soft sand
parameters were considered as inputs; and using the ANN models, the compressive strength of concrete is calculated. Moreover,
usingGA, the number of layers and nodes andweights are optimized inANNmodels. In order to evaluate the accuracy of themodel,
the optimized ANN model is compared with the multiple linear regression (MLR) model. The results of simulation verify that the
recommended ANNmodel enjoys more flexibility, capability, and accuracy in predicting the compressive strength of concrete.

1. Introduction

In the last decade, a lot of attention has been paid to the appli-
cation of artificial neural networks (ANNs) in determining
the compressive strength of concrete [1–9]. It is proper to note
that thereweremostly conventional applications ofANNsnot
disrupted in facing inaccurate data and information for this
purpose.That is why many researchers used the combinatory
models [10–12], such of ANN and fuzzy logic [13], which
demonstrated strong potential for prediction of long-term
effects of ground granulated blast furnace slag on compressive
strength of concrete. In reducing the cost and saving time in
the class of compressive strength’s determination problems,
cascade correlation type of ANN offered quick learning with
slightly accurate performance for capturing the intrinsically
nonlinear nature of patterns in the concrete properties [14].
Presenting substantial results in performance, combinatorial
formations of ANN and meta-heuristic search algorithms
have been increasing in utilization for encountering complex
structural engineering problems. For instance, hybrid multi-
layer perceptron (HMLP) network with centre-unified par-
ticle swarm optimization was assigned for determination of

the compressive strength of concrete related to the deep
beams connected to the sheared walls and provided news-
worthy results involved in significant efficiency [15]. In a
similar area, compressive strength of self-compacting con-
crete, which encompassed polypropylene fiber and mineral
additives, impressed by high temperature, was estimated by
ANN [16]. According to [17] evolutionary artificial neural
networks (EANNs) can be considered as a combination of
artificial neural network (ANN) and evolutionary search
procedures, such as genetic algorithms (GA). Basic principles
of EANN were explained in [18]. The identification of defect
in the structure and compressive strength of concrete is
intrinsically a pattern-study issue, and for this purpose the
EANNs have acted very powerfully [19, 20].

The main objective of this study is to determine the
compressive strength of concrete using EANN as a replace-
ment method for mathematical models and destructive tests
so that more accurate results are obtained with the mini-
mum cost. Similar data were previously analysed by using
Self-Organization Feature Map (SOFM) systems and Koho-
nen training network and the 𝑅2 coefficients in training,

Hindawi Publishing Corporation
Advances in Materials Science and Engineering
Volume 2015, Article ID 849126, 8 pages
http://dx.doi.org/10.1155/2015/849126

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194238949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Advances in Materials Science and Engineering

Table 1: Characteristics of cylindrical samples.

Number Parameters Unit Maximum Minimum Standard deviation Mean
1 Compressive strength of concrete kg/cm2 394.00 173.00 54.98 279.27
2 Water-cement ratio — 0.50 0.24 0.19 0.43
3 Maximum size of sand mm 50.00 5.12 14.25 23.89
4 Gravel kg 1050.00 559.00 95.71 779.13
5 Cement kg 549.00 243.00 72.70 385.55
6 Sand 3/8 kg 523.00 303.00 64.45 427.05
7 Sand 3/4 kg 693.00 365.00 90.06 563.31
8 Coefficient of soft sand — 9.20 2.40 1.30 3.27

Table 2: Number of patterns used in ANN.

Number Number of patterns Compressive strength of concrete
1 2 150–175
2 11 175–200
3 25 201–225
4 24 226–250
5 20 251–275
6 22 276–300
7 34 301–325
8 15 326–350
9 17 351–375
10 3 376–400
Total of the number of patterns 173

validation, and testing phases were equal to 0.880, 0.993, and
0.946, respectively [21].

2. Materials and Methods

2.1. Database. Compressive strength of concrete (𝑓󸀠
𝐶
) is in

fact the 28-day strength of cylindrical concrete sample. In
this study, cylindrical samples with a diameter of 15 cm and
a height of 30 cm are used. In addition, parameters such as
the amount of 3/4 sand, 3/8 sand, cement, silt in kilograms,
maximumsand size inmillimeter, coefficient of fine sand, and
water-cement ratio are used to determine the compressive
strength of concrete. In the lab, using a hydraulic jack 25
blows are pounded on each sample of the concrete, and data
related to the intended parameters towards determination
of compressive strength are recorded. The characteristics of
used data have been illustrated in Table 1 based on the data
presented in the literature [22, 23].

Moreover, in Table 2, the number of patterns used in
ANN has been shown based on compressive strength of
concrete separately.

2.2. Research Methodology. The data were collected from the
literature [22, 23] and have not been previously used in
numerical modelling presented [21]. In the first step, several
different mix designs are used to determine the compressive
strength. Then Multi Layer (MLP), Feed Forward (FF),
Radial Basis Function (RBF) andTime Lag RecarentNetwork
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Figure 1: Structure of EANN.

(TLRN) were selected and the estimation of the compressive
strength parameter have been carried out. Then the optimal
geometric structure of the intended ANN along with optimal
weights is tentatively determined by genetic algorithm (GA).
In the next step, a multiple linear regression (MLR) model
is employed in determining the compressive strength of
concrete. Finally, the performance of the MLR model and
the proposed EANN structure in predicting the compressive
strength of concrete is studied and comparison between
obtained models has been performed. In ANN models, the
number of inputs is seven parameters and the number of
outputs is one, which has been shown in Figure 1. Out of 173
data patterns, 80% (139 patterns) have been used for training,
10% (17 patterns) for cross validation, and 10% (17 pat-
terns) for network test. Various transfer functions consisting
of LinearSigmoidAxon, BiasAxon, TanhAxon, LinearAxon,
SigmoidAxon, LinearTanhAxon, and various training algo-
rithms consisting of Momentum, Levenberg Marquat, Delta
Bar Delta, Quickprop, and Step were considered to determine
the best structure in the ANN [24]. In order to determine
the number of nodes in the hidden layer, in addition to the
software presupposition, the following experimental formula
was used [25]:

𝑁
𝐻
≤ 2𝑁
𝐼
+ 1, (1)

where 𝑁
𝐻
is the maximum number of nodes in the hidden

layer and 𝑁
𝐼
is the number of inputs. With regard to the
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Table 3: Optimal structure of MLP, FF, RBF, and TLRN models obtained from GA.

GA for all models Learning
algorithm Transfer function

Number of
hidden
neuron

Number of
hidden
layer

Number
of

output

Number
of input Model Number

Crossover One point Momentum TanhAxon 4 1

1 7

MLP 1
Crossover
probability 0.9 Step LinearAxon 15 1 FF 2

Mutation
probability 0.01 Delta Bar Delta LinearSigmoidAxon 4 4 2 RBF 4

Generation 100 Momentum TanhAxon 5 10 2 TLRN 3

fact that the number of obtained effective inputs is equal
to 7, maximum number of nodes in the hidden layer is 15
(𝑁
𝐻
≤ 15). To determine the optimal structure of each ANN

model togetherwith the number of hidden layers, the number
of nodes in the hidden layers, the network-learning algorithm
and transfer function the in Neuro Solutions ver5.0 software
has been used. Table 3 shows the optimal structure of each
of the models and their various characteristics obtained from
GA. In addition, Table 4 illustrates the results obtained from
training, validation concurrent with training, and test of each
model with the optimal structure obtained in Table 3. For
the performance of the models, and to determine the best
model, NMSE criterion and the coefficient of determination
(𝑟) resulting from test of models are compared with one
another. As seen in Table 4, MLP model has the highest
correlation (𝑟) for the data regarding compressive strength of
the concrete in all stages compared to the other three models.

In Figure 2 the comparison of observed compressive
strength of concrete calculated by EANN models in the
training stage has been presented. From Figure 2 it can be
concluded that MLP and FF models in the training stage are
closer to real data than other models. It can be also seen
that TLRN model is the worst one during training stage. As
presented in Figure 3 there is similar situation for testing and
validation. The values predicted by MLP and FF seem to be
the optimum. As it has been presented in Table 4, in MLP
model, coefficients 𝑅2 for compressive strength of concrete
parameter in the training, validation, and test stages are equal
to 0.910, 0.935, and 0.899, respectively. In addition, the slope
of the straight line for this parameter is 0.9061, 0.9043, and
0.9039. These values are similar to the ones achieved in [21].
Therefore, MLP model has a higher correlation compared
to the other three models. As a result, MLP model with a
topology of (7-4-1) is the best EANNmodel with the structure
presented in Figure 1.

2.3. Analysis of Sensitivity of Outputs of EANN Model in rela-
tion to Input Parameters. As you are training a network, you
may want to know the effect that each of the network inputs
is having on the network output.This provides feedback as to
which input channels are the most significant. From there,
you may decide to prune the input space by removing the
insignificant channels. This will reduce the size of the net-
work, which in turn reduces the complexity and the training
times. Sensitivity analysis is amethod for extracting the cause
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Figure 2: Comparison of observed compressive strength of concrete
calculated by EANNmodels in the training stage.

and effect relationship between the inputs and outputs of
the network. The network learning is disabled during this
operation such that the network weights are not affected.The
basic idea is that the inputs to the network are shifted slightly
and the corresponding change in the output is reported
as either a percentage or a raw difference. The activation
control component generates the input data for the sensitivity
analysis by temporarily increasing the input by a small value
(dither).The corresponding change in output is the sensitivity
data, which is reported by the ErrorCriteria component
and displayed by an attached probe [24]. To determine the
amount of effect of input parameters on the output parameter,
sensitivity analysis technique is used. This technique is to
determine to which input parameters the output parameter
in the intended network is more sensitive so that which index
is themost effective on the output of network is specified.The
results obtained from the output sensitivity analysis of MLP
model in relation to input parameters have been mentioned
in Figure 4. With regard to Figure 4, water-cement ratio and
3/8 sandparameters have themost and the least effect onMLP
model output, respectively.

2.4. Comparison between Selected EANN (MLP) Model and
Multiple Linear Regression (MLR). The statistical model used
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Table 5: Coefficients of MLR model.

𝑃 𝑇 SE coef. Coef. Predictor Number
−600 108 −5.55 0 Constant Constant parameter 1
0.1685 0.1601 1.05 0.295 𝑥

1
Water-cement ratio 2

0.1762 0.3456 0.51 0.611 𝑥
2

Maximum size of sand 3
0.20611 0.05862 3.52 0.001 𝑥

3
Gravel 4

1.01053 0.06292 16.06 0 𝑥
4

Cement 5
0.4264 0.2541 1.68 0.096 𝑥

5
Sand 3/8 6

0.2452 0.1705 1.44 0.153 𝑥
6

Sand 3/4 7
−0.529 1.756 −0.3 0.764 𝑥

7
Coefficient of soft sand 8
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Figure 3: Comparison of observed compressive strength of concrete calculated by EANNmodels in testing (a) and validation (b) stage.
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Figure 4: Sensitivity analysis of compressive strength of concrete for
input parameters in MLP model.

in this research is the MLR, in which two or several indepen-
dent variables have major effects on the dependent variable,
and its equation is as follows:

𝑦 = 𝑓 (𝑥
1
, 𝑥
2
, . . .) 󳨀→ 𝑦 = 𝑎

0
+ 𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
+ ⋅ ⋅ ⋅ , (2)

where 𝑦 is the dependent variable, 𝑥
1
, 𝑥
2
, . . . are independent

variables, and 𝑎
1
, 𝑎
2
, 𝑎
3
, . . . are the equation coefficients of

the regression type. In this study, for input and output
variables various MLR models have been studied using
MINITABver14.0 software. The most suitable coefficients for
the MLR model are in Table 5. In this table, the numbers
in Coef. column show the MLR model coefficients and the
standard error of each of the estimates has been shown in
SE coef. column. In order to obtain the confidence interval,
1.96 is to be multiplied by 95% of these numbers, and the
result is algebraically added to the coefficients. In addition,
the numbers in 𝑇 column are the division of Coef. by SE
coef., which is used for the calculation of 𝑃 probability. In the
assumption test this probability helps us accept or reject the
answer. In principle, there is the probability of type 1 error.
This type of error means, if less than 𝑎 = 0.005, that the
relationship between these two parameters of independent
and dependent is statistically very remarkable.

The bestMLRmodel, which has themost correlationwith
compressive strength of concrete, has been mentioned in

𝑌 = −600 + 0.168𝑥
1
+ 0.176𝑥

2
+ 0.206𝑥

3
+ 1.01𝑥

4

+ 0.426𝑥
5
+ 0.245𝑥

6
− 0.53𝑥

7
.

(3)

𝑌 is the compressive strength of concrete, with regard to
(3), and using data obtained from training, the amount of
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Figure 5: Comparison of observed compressive strength of concrete
that calculated one with regression model.

compressive strength of concrete can be calculated. In the
MLRmodel, 𝑅2 coefficient for 𝑦 dependent parameter equals
0.794. In addition, the slope of the straight line for this
parameter equals 0.794, which is suitable for this model. The
amount of 𝑅2 and the slope of the straight line for (3) have
been illustrated in Figure 5.

In order to validate the performance of MLP optimal
model in the prediction of compressive strength of concrete,
the results obtained from it are comparedwith those obtained
from MLR model. For this purpose, and in order to make
predictions, ten laboratory samples have been used with
the two models. Among the most important advantages of
these samples is that none of them has been used in the
training, validation, and test stages. Figure 6 illustrates a
comparison between the amounts of observed and calculated
compressive strength of concrete as obtained from the two
models. Moreover, the prediction of compressive strength
of concrete with EANN (MLP) and MLR models has been
presented in Figure 7.

With regard to the equations of regression lines on the
amounts of calculated and observed compressive strength of
concrete in each model in Figure 6 and the determination
coefficient, it can be realized that the EANN (MLP) model
determines the compressive strength of concrete more pre-
cisely than the MLR model does. In addition, with regard
to the prediction of compressive strength of concrete by the
two models in Figure 7, it can be realized that EANN (MLP)
model has higher flexibility and accuracy compared to the
multiple linear regressionmodel.These results originate from
the adaptable and learning capabilities of ANN in the nonlin-
ear dynamic estimation of problems and complicatedmodels.
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Figure 6: Comparison of observed compressive strength of concrete
and estimated compressive strength by EANN (MLP) and MLR
regression model.
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Figure 7: Prediction of compressive strength of concrete with
EANN (MLP) and MLR regression model.

3. Conclusion

In this study, in order to economize on the time and cost
that laboratorymethods have in determining the compressive
strength of concrete, the model suggested by the ANN,
which has special capability in nonlinear mapping, was used.
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Various geometric structures along with various learning
algorithms were suggested for network architecture.

In order to obtain the required accuracy towards deter-
mining compressive strength, the optimal evolutionary arti-
ficial neural networks (EANNs) structures consisting of
optimal geometry in the number of hidden neurons and
layers along with optimal learning algorithm relying on the
high power of GA were presented. In addition, the linear
regression statisticalmodel was used to estimate the compres-
sive strength and to compare its results for the validation of
suggested EANNperformance based onGA.The comparison
of the results, whether qualitative or quantitative, was made
between the statistical model and the optimized EANN.

On the basis of performance criteria like normalized
mean square error, coefficient of determination, and corre-
lation coefficient, it clearly confirms the superiority of EANN
from the point of accuracy, correctness, and eye-catching
flexibility of this structure in facing multidimensional, non-
linear, complicated problems like estimation of compressive
strength parameter. These obtained values of correlation
coefficient 𝑅2 for compressive strength of concrete parameter
in the training, test, and validation stages were achieved equal
to 0.910, 0.935, and 0.899, respectively, and are similar to the
ones achieved in [21]. In addition, the slope of the straight
line for this parameter is 0.9061, 0.9043, and 0.9039. Based
on these results, which are proof of reliability of suggested
strategy in this study, the generalization property of EANN
has also been used in predicting the amounts of compressive
strength based on unused collected data.
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