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Thepaper studies the coopetition of the downstreamdifferent carriers by providing complementary transport services in intermodal
freight transport chain. Considering different information structure, a two-stage dynamic gamemodelwith simultaneous actions on
investment and price is first formulated. Equilibria show both parties havemotivation to select coopetition even if the agreement for
cooperation investment is reached in advance. When both firms agree on the specific allocation, the new coopetition with higher
efficiency would be emerged. Moreover, we analyze the complexity and evolution of coopetition by repeated pricing game with
finitely and infinitely time horizon. In the finitely repeated pricing game, both firms have incentive to reach a tacit understanding
to alternate choosing price cooperation and competition after setting suitable allocation scheme; the repeated periods 𝑡 are then
going to be an issue. In the infinitely repeated pricing game, the perfect cooperation is realized by designing the suitable trigger
strategy.

1. Introduction

With the development of modern networked economy, the
traditional competition concept of business is giving way to
the new idea of coopetition. Coopetition is a new kind of
perspective that both competition and cooperation coexist
together. Competing elements always breed conflicts when
either of the party’s needs are not compatible for the existence
of opportunistic and exploitative behavior. Cooperative ele-
ments can nourish joint payoff creation through exploiting
complementary resources cooperatively. Therefore, in order
to get better development in the marketplace, more coop-
erative elements are taken into consideration by firms to
maximize inter-firms profits.

These developments have motivated the academic com-
munity to explore the coopetition strategy for interfirms.
Coopetition is mentioned in the literature for the first time
in 1913 [1]. In 1996 Brandburger and Nalebuff [2] gave
a comprehensive theoretical research on coopetition; they
argued that the competing and collaborating elements were
entailed simultaneously to the interdependence in course of
maximizing their individual profits. The complementarity
to separate firms is an outstanding feature to induce the
coopetition.

The role of cooperation with respect to equilibria has
been extensively addressed in the literature for a long time.
Most current studies focus on how to realize coordination
under the competitive setting in product supply chain but are
rarely related to transport industry especially to intermodal
operations. In a decentralized supply chain, the supplier coor-
dinates the downstream behaviors by designing inventive
mechanism such that all numbers align their objectives with
system objective. A variety of effective contract coordination
mechanisms have been studied to improve the decentralized
system efficiency in supply chain (e.g., [3–6]). Gurnani et al.
[7] studied the impact of product pricing and timing of
investment decisions on supply chain coopetition; the result
shows the incentives of the coopetition partners and the
investment levels are mainly governed by the cost structure
and the level of uncertainty in demand. In fact, the situation
where two firms both compete and cooperate is frequently
found in the transport industry. An example is in intermodal
freight market, segment carriers that compete on tariffs
and complement each other by feeding freights for further
transport to the other provider.

Intermodal is a kind of modern transportation organi-
zation method with which container combined many other
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transportation means [8]. In order to provide an integra-
tion and effective seamless door-to-door service, more than
two separate firms providing sequential or simultaneous
services are involved to form a logistics intermodal services
chain. Clark et al. [9] argued that complementarity between
transport modes can take place in different geographical
markets, different transport markets, and different levels of
service.These criteria can clearly be transferred to intermodal
transport. Zhang et al. [10] examined the effect of multi-
modal integration on the rivalry between a forwarder-airline
alliance and an integrator; they found an improvement in
multimodal integration by a forwarder airline alliance, and
it would not increase the alliance’s output but improve both
consumer surplus and total surplus. Liu et al. [11] studied the
coordination between the separate carriers providing com-
plementary services in intermodal freight market. By setting
suitable penalty schemes the user equilibrium and system
optimum can be simultaneously satisfied in an incomplete
market.

In this paper, we focus on the nature of coopetition
between two segment carriers in an intermodal logistics ser-
vices chain. We consider two firms offering complementary
and integrative transportation services in their respective
local market. Two predominant factors of influencing inter-
modal transport demand are considered, namely, investment
and price. For instance, in the transport industry, the invest-
ment on new type vehicle and collaborative networks would
be beneficial to improve leading time and delivery rate; the
demand was then stimulated to grow fast [12]. Due to the
spillover effect, investment in technology or infrastructure by
either firm would not only improve their transport service
quality, but also benefit both logistics chain’s partners by
developing the potential intermodal market. Generally, the
investment in infrastructure is a foundation work and often
need to be committed before final demand information is
revealed. Therefore, in our setting, such investments are
considered before demand uncertainty is resolved.Moreover,
the price decisions are subsequently made by separate firms
independently to maximize their profits.

We first analyze a basic two-stage perfect game modal
with simultaneous actions to explore coopetition behaviors.
Equilibria are calculated and show that coopetition exists
widely and is beneficial to both parties.We further discuss the
nature of coopetition by finitely and infinitely repeated price
game, and managerial insights are proposed subsequently.

The rest of the paper is organized as follows. Section 2
describes business background and sets up our basic model.
The conditions of equilibria under different forms of coopeti-
tion are deduced subsequently. Section 3 provides the analysis
with focus on the complexity and evolution of coopetition
and the way to realize perfect cooperation. In Section 4, a
case study is used to testify the propositions. In the end, some
concluding remarks are presented in Section 5.

2. The Model

2.1. Scenario and Notation. We consider a simple intermodal
network, as depicted in Figure 1; the network consists of

Firm 1 Firm 2

Local market AB Local market BC
Intermodal marker AC

CBA

Figure 1: An intermodal market network.

three nodes, namely, A, B, and C. Consequently, there are
three origin-destination markets, namely, AB, BC, and AC.
there are two separate local carriers, denoted by firm 1 and
firm 2. The two firms both control transport infrastructure
and provide freight transportation services in AB and BC
transport market separately. Whilst AC involves two firms
cooperation and may be referred to as a potential intermodal
market. After market research, the two firms wish to make
cooperation to develop long haul intermodal freight services.
In order to ensure success the investment on development of
infrastructure should be made first, and, then, the compli-
cated price decisions to their segment market are dominated
the debate subsequently.

The following notations are defined in this paper. For the
AC market, the demand function 𝑞may be written as

𝑞 = 𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀, (1)

where 𝐷 denotes the market size of AC market; 𝑝
𝑖
is the

transport price to local market by firm 𝑖, 𝑖 = 1, 2; 𝑝
1
+

𝑝
2
is the final payment by shipper; 𝐼

𝑖
is the investment on

infrastructure to develop intermodal services by firm 𝑖, 𝑖 =
1, 2; 𝜃

𝑖
measures the influence of investment by firm 𝑖 to

demand 𝑖 = 1, 2; 𝜀 is the error term on demand with mean
0 and standard deviation 𝜎.

The firm 𝑖’s profit function is 𝑅
𝑖
= (𝑝
𝑖
− 𝑐
𝑖
)𝑞 − 1/2𝛽

𝑖
𝐼
2

𝑖
+ 𝜀,

where 𝑐
𝑖
is variable cost for firm 𝑖, 𝑖 = 1, 2. A convex total

investment cost is defined to be 1/2𝛽
𝑖
𝐼
2

𝑖
, where 𝛽

𝑖
measures

the influence to total investment cost, 𝑖 = 1, 2.
In this paper, we will first consider a basic two-stage

dynamic game model with simultaneous actions on invest-
ment and pricing sequential decision, and then an extended
analysis is produced to disclose the nature of coopetition.
Similar demand model has been used in the marketing
literatures (e.g., [13–15]). Different from earlier studies, taking
price and investment the focus of this paper will be directed
towards firms with providing complementary services.

The timing of events is as follows: in stage one, two
firms decide investment simultaneously. The improvement
of infrastructure is necessary conditions for providing inter-
modal services; therefore two firms objective is to maximize
their joint profit in this stage. Based on the results of stage
one, two firms select price strategies by maximizing their
individual profit in stage two.

We consider different information structures for two
stages. Generally, investment on improvement of infrastruc-
ture often needs to be committed before final demand infor-
mation for the intermodal services are revealed. Therefore,
uncertainty in transport demand exists in stage one. On the
other hand, price decisions can be postponed until after final
demand potential is observed.



Discrete Dynamics in Nature and Society 3

The following assumptions are adopted in this paper.

(1) The two firms are all rational, and all parameters in
model are common knowledge to both firms.

(2) In order to guarantee the nonnegativity of profit
functions, the inequalities 9𝛽

1
−8𝜃
2

1
> 0, 9𝛽

2
−8𝜃
2

2
> 0

are satisfied. The two inequalities imply the unit of
investment is more sensitive to the total cost than to
the demand.

(3) The initial investment is necessary to forming inter-
modal services chain, so the two firms have a strong
motivation to cooperate and high willingness to
cooperate in stage one.

2.2. Basic Model. We first consider four basic strategies,
that is, {cooperate + (cooperate, cooperate)}; {cooperate +

(compete, compete)}; {cooperate + (cooperate, compete)};
{cooperate + (compete, cooperate)}. Each strategy is com-
posed of two parts, that is, connected by “+.” The first part
before “+” represents investment decision in stage one; the
second part after “+” sequential represents two firm’s price
decision.

Strategy 1: {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 + (𝑐𝑜𝑚𝑝𝑒𝑡𝑒, 𝑐𝑜𝑚𝑝𝑒𝑡𝑒)}. In this strategy,
the two firms cooperate on investment and then compete
on price. Using backward induction algorithm to analyze the
dynamic game, in stage two, after realization of investment,
the separate firm’s objective is

max
𝑝
1

𝑅
1
= (𝑝
1
− 𝑐
1
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀) −

1

2𝛽
1
𝐼
2

1

,

max
𝑝
2

𝑅
2
= (𝑝
2
− 𝑐
2
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀) −

1

2𝛽
2
𝐼
2

2

.

(2)

From first order condition, the reaction functions are as
follows:

𝑝
1
(𝑝
2
) =

𝐷 + 𝑐
1
− 𝑝
2
+ 𝐼
1
𝜃
1
+ 𝐼
2
𝜃
2
+ 𝜀

2
;

𝑝
2
(𝑝
1
) =

𝐷 − 𝑐
2
− 𝑝
1
+ 𝐼
1
𝜃
1
+ 𝐼
2
𝜃
2
+ 𝜀

2
.

(3)

We have

𝑝
1
=
2𝑐
1
− 𝑐
2
+ 𝐷 + 𝐼

1
𝜃
1
+ 𝐼
2
𝜃
2
+ 𝜀

3
,

𝑝
2
=
2𝑐
2
− 𝑐
1
+ 𝐷 + 𝐼

1
𝜃
1
+ 𝐼
2
𝜃
2
+ 𝜀

3
.

(4)

In stage one, the objective function is to maximize the
expected joint profit of the two firms:

max
𝐼
1

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] ,

max
𝐼
2

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] .

(5)

Substituting from (4) into (5) and the joint profit is
concave as second condition is satisfied from assumption (2).
Upon simplifying terms, we get

𝐼
1
=

4 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
2
𝜃
1

9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2

,

𝐼
2
=

4 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝜃
2

9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2

,

𝑝
1
= 𝑐
1
+
𝜀

3
+

3 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2

,

𝑝
2
= 𝑐
2
+
𝜀

3
+

3 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2

,

𝑅
1
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

2
(9𝛽
1
− 8𝜃
2

1
)

(9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2
)
2

+
𝜎
2

9
,

𝑅
2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2
𝛽
2

1
(9𝛽
2
− 8𝜃
2

2
)

(9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2
)
2

+
𝜎
2

9
.

(6)

For convenience we let 𝐼1
1
= 𝐼
1
, 𝐼1
2
= 𝐼
2
, 𝑝1
1
= 𝑝
1
, 𝑝1
2
= 𝑝
2
,

𝑅
1

1
= 𝑅
1
, and 𝑅1

2
= 𝑅
2
.

Strategy 2: {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 + (𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒)}. For this
strategy, the two firms cooperate not only on investment
but also on price. The decisions on price are formulated as
follows:

max
𝑝
1

𝑅
1
= (𝑝
1
+ 𝑝
2
− 𝑐
1
− 𝑐
2
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

,

max
𝑝
2

𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
1
− 𝑐
2
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

.

(7)

We have

𝑝
1
+ 𝑝
2
=
𝑐
1
+ 𝑐
2
+ 𝐷 + 𝜃

1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀

2
. (8)
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In stage one, the objective function is to maximize the
expected joint profit of the two firms:

max
𝐼
1

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] ,

max
𝐼
2

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] .

(9)

Substituting (8) into (9), we have

𝑝
1
+ 𝑝
2
= 𝑐
1
+ 𝑐
2
+
𝜀

2
+

(𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

2𝛽
1
𝛽
2
− 𝜃
2

1
𝛽
2
− 𝛽
1
𝜃
2

2

,

𝐼
1
=

(𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
1
𝛽
2

2𝛽
1
𝛽
2
− 𝜃
2

1
𝛽
2
− 𝛽
1
𝜃
2

2

, 𝐼
2
=

(𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
2
𝛽
1

2𝛽
1
𝛽
2
− 𝜃
2

1
𝛽
2
− 𝛽
1
𝜃
2

2

,

𝑅
1
+ 𝑅
2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

4𝛽
1
𝛽
2
− 2𝜃
2

1
𝛽
2
− 2𝛽
1
𝜃
2

2

+
𝜎
2

4
.

(10)

Let 𝐼2
1
= 𝐼
1
, 𝐼2
2
= 𝐼
2
, 𝑝2
1
= 𝑝
1
, 𝑝2
2
= 𝑝
2
, 𝑅2
1
= 𝑅
1
, and

𝑅
2

2
= 𝑅
2
.

Strategy 3: {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 + (𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒, 𝑐𝑜𝑚𝑝𝑒𝑡𝑒)}. In this strat-
egy, the two firms cooperate on investment in stage one.
In stage two, firm 1 selects price cooperation and firm 2
selects price competition simultaneously. Firm 1’s objective
is to maximize the joint expected profit. Firm 2’s objective
is to maximize its own profit. The decisions of stage two are
formulated as follows:
max
𝑝
1

𝑅
1
= (𝑝
1
+ 𝑝
2
− 𝑐
1
− 𝑐
2
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

,

max
𝑝
2

𝑅
2
= (𝑝
2
− 𝑐
2
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
) −

1

2𝛽
2
𝐼
2

2

.

(11)

We have

𝑝
1
= 𝑐
1
, 𝑝

2
=
𝐷 + 𝑐
2
− 𝑐
1
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀

2
. (12)

In stage one, the objectives are

max
𝐼
1

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] ,

max
𝐼
2

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] .

(13)

Substituting from (12) into (13) we get

𝑝
1
= 𝑐
1
; 𝑝

2
= 𝑐
2
+

(𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2

+
𝜀

2
,

𝐼
1
=

(𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
1
𝛽
2

2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2

; 𝐼
2
=

(𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
2
𝛽
1

2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2

,

𝑅
1
= −

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

2
𝜃
2

1

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2
,

𝑅
2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
(2𝛽
2
− 𝜃
2

2
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
.

(14)

Let 𝐼3
1
= 𝐼
1
, 𝐼3
2
= 𝐼
2
, 𝑝3
1
= 𝑝
1
, 𝑝3
2
= 𝑝
2
, 𝑅3
1
= 𝑅
1
, and

𝑅
3

2
= 𝑅
2
.

Strategy 4: {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒+(𝑐𝑜𝑚𝑝𝑒𝑡𝑒, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒)}. Different from
strategy 3, in stage two, firm 2 competes and firm 1 cooperates
on price. The decisions are formulated as follows:

max
𝑝
1

𝑅
1
= (𝑝
1
− 𝑐
1
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀) −

1

2𝛽
1
𝐼
2

1

,

max
𝑝
2

𝑅
2
+ 𝑅
1
= (𝑝
1
+ 𝑝
2
− 𝑐
1
− 𝑐
2
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

.

(15)

Solving (15), we have

𝑝
1
=
𝐷 + 𝑐
1
− 𝑐
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀

2
, 𝑝

2
= 𝑐
2
. (16)

From (15) the following investment decisions in stage one
are made:

max
𝐼
1

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] ,
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Table 1: A game matrix.

Firm I Firm II
Cooperate + compete Cooperate + cooperate

Cooperate + compete
𝑅
1

1
=
(𝐷 − 𝑐

1
− 𝑐
2
)
2
𝛽
1
𝛽
2

2
(9𝛽
1
− 8𝜃
2

1
)

(9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2
)
2

+
𝜎
2

9
,

𝑅
1

2
=
(𝐷 − 𝑐

1
− 𝑐
2
)
2

𝛽
2
𝛽
2

1
(9𝛽
2
− 8𝜃
2

2
)

(9𝛽
1
𝛽
2
− 4𝛽
2
𝜃
2

1
− 4𝛽
1
𝜃
2

2
)
2

+
𝜎
2

9

𝑅
4

1
=
(𝐷 − 𝑐

1
− 𝑐
2
)
2
𝛽
1
𝛽
2

2
(2𝛽
1
− 𝜃
2

1
)

2(2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
,

𝑅
4

2
=

− (𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
𝜃
2

2

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

Cooperate + cooperate
𝑅
3

1
=

−(𝐷 − 𝑐
1
− 𝑐
2
)
2
𝛽
1
𝛽
2

2
𝜃
2

1

2(2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2
,

𝑅
3

2
=
(𝐷 − 𝑐

1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
(2𝛽
2
− 𝜃
2

2
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4

𝑅
2

1
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2
𝛽
1
𝛽
2

4𝛽
1
𝛽
2
− 2𝜃
2

1
𝛽
2
− 2𝛽
1
𝜃
2

2

+
𝜎
2

4
− 𝐾,

𝑅
2

2
= 𝐾

max
𝐼
2

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
2
− 𝑐
1
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] .

(17)

Solving and simplifying terms we get

𝑝
1
= 𝑐
1
+
𝜀

2
+

(𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2

, 𝑝
2
= 𝑐
2
,

𝐼
1
=

(𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
1
𝛽
2

2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2

, 𝐼
2
=

(𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
2
𝛽
1

2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2

,

𝑅
1
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

2
(2𝛽
1
− 𝜃
2

1
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
,

𝑅
2
= −

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
𝜃
2

2

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2
.

(18)

Let 𝐼4
1
= 𝐼
1
, 𝐼4
2
= 𝐼
2
, 𝑝4
1
= 𝑝
1
, 𝑝4
2
= 𝑝
2
, 𝑅4
1
= 𝑅
1
, and

𝑅
4

2
= 𝑅
2
.

2.3. Equilibrium. In Table 1, a game matrix is formulated
based on aforementioned results. As noted by Table 1, there
are two strategic choices in stage two for each player:
cooperation or compete. We only got 𝑅2

1
+ 𝑅
2

2
in strategy 2

from (10). Consequently, a parameter 𝐾 (0 ≤ 𝐾 ≤ 𝑅
2

1
+ 𝑅
2

2
)

is denoted, which represents a reasonable profit distribution
scheme. Under the allocations 𝐾, the two firms profits are
𝑅
2

1
= (𝐷 − 𝑐

1
− 𝑐
2
)
2
𝛽
1
𝛽
2
/(4𝛽
1
𝛽
2
− 2𝜃
2

1
𝛽
2
− 2𝛽
1
𝜃
2

2
) + 𝜎
2
/4 − 𝐾

and 𝑅2
2
= 𝐾 separately.

Proposition 1. In a two-stage dynamic game model with
simultaneous actions on investment and price for two
complementary transport firms, the strategy: {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 +

(𝑐𝑜𝑚𝑝𝑒𝑡𝑒, 𝑐𝑜𝑚𝑝𝑒𝑡𝑒)} is unique pure strategy Nash equilibrium.

Proof. To prove that the equilibrium is unique, we need to
prove the strategy: {cooperate + (compete, compete)}, that is,
investments cooperate in stage one and price competes in
stage two for two firms, is a unique dominant strategy. As
depicted in Table 1,When the strategy: (cooperate+compete)
is given to firm 1, then the dominant strategy for firm 2 is
(cooperate + compete).

When the strategy: (cooperate+ cooperate) is adopted by
firm 1, then the profit of strategy: (cooperate + compete) by
firm 2 is

𝑅
3

2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
(2𝛽
2
− 𝜃
2

2
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
. (19)

For any given allocation 𝐾 to firm 2, comparing strategy
2 and strategy 3 we find

𝑅
3

1
+ 𝑅
3

2
= 𝑅
2

1
+ 𝑅
2

2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

4𝛽
1
𝛽
2
− 2𝜃
2

1
𝛽
2
− 2𝛽
1
𝜃
2

2

+
𝜎
2

4
. (20)

Moreover, 𝑅3
1
< 0 and we have

𝑅
3

2

𝑅
2

2

= (

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
(2𝛽
2
− 𝜃
2

2
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
) ⋅ 𝐾
−1
> 1.

(21)

That means that 𝑅
3

2
> 𝑅

2

2
. Hence, the strategy:

(cooperate + compete) to firm 2 is always a unique dominant
strategy in view of the response of firm 1.

Similar proof is taken and shows the strategy: (cooperate+
compete) is also unique dominant strategy to firm 1 in view
of the response of firm 2.

Consequently, the strategy: {cooperate + (compete,
compete)} is a unique pure strategy Nash equilibrium.

As indicated in Proposition 1, in the two-stage game, both
parties would not insist on cooperation from beginning to
end for opportunistic behavior, even cooperative agreement
of stage one is reached by both carriers in advance. They
always cooperate in particular stage and compete in others;
therefore, the coopetition is essentially dynamic with that
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cooperate and compete are emerged alternatively in different
situations.

From reaction functions (2), the prices are strategic
substitutes (𝜕𝑝

𝑖
/𝜕𝑝
𝑗
) < 0 and the prices for investments

are strategic complements (𝜕𝑝
𝑖
/𝜕𝐼
𝑗
) > 0. An increase in its

own or opponent investment gives the reaction functions a
positive shift, while increasing opponent price has opposite
effect. We further denote a sensitivity coefficient of invest-
ment 𝜇

𝑖
= 𝜃
𝑖
/𝛽
𝑖
(𝑖 = 1, 2), which measures the sensitivity of

investment on demand and on investment cost. Meanwhile,
we find 𝐼

1
/𝐼
2

= 𝜇
1
/𝜇
2
, which implies that the decisions

on investment depend on their sensitivity of investment, if
investment by separate firms is more sensitive to demand
than to cost and the firm will select higher investments.
After considering the given price elastic, the rate 𝜇

1
/𝜇
2
can

also be used to measure the degree of complementarity
between the transport services offered by the two firms.
Under the competition setting, some studies have been done
on the degree of complementarity [9, 16–18], but all focus
on calculating parameters by comparing different commod-
ity’s output, rarely focus on the complementary degree of
complementary elements for one commodity. In intermodal
market, the transport services are provided by successive
segments transport services and the shipping fare consists of
segments transport fares; therefore, the services are perfect
complements. However, after considering investment, the
services are not always perfect complements. The degree of
complementarity is influenced by investment elasticity not
only to demand but to total investment cost.

The equilibriumprice (see (6)) is composed of three parts.
The first part is marginal cost, the second part is marginal
profit, and the third part is risk compensation of demand
uncertainty. In the equilibrium the two firms have identical
marginal profit and risk compensation. We also note from
Table 1 that the level of demand uncertainty of equilibria is
𝜎
2
/9 and other strategies are 𝜎

2
/4. The expected profit of

the two separate firms of equilibria is the least affected from
demand uncertainty. Hence, coopetition will help to reduce
the impact of uncertainty for both parties substantially.

At the beginning of the paper, we assume the two parties
are rational and cooperate in investment; that is, the objective
is to maximize joint expected profit in stage one. Next we are
going to testify if both parties really want to cooperate in stage
one.

As contrast with equilibrium, we consider a new strategy
5: {compete + (compete, compete)}, which means the two
firms compete not only on investment but also on price.That
is a perfect competition setting. Without loss of generality,
the same information structure for two stages as aforemen-
tioned is considered. Using backward induction approach to
analyze the two-stage dynamic model, in stage two, the price
decisions are formulated as follows:

max
𝑝
1

𝑅
1
= (𝑝
1
− 𝑐
1
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀) −

1

2𝛽
1
𝐼
2

1

,

max
𝑝
2

𝑅
2
= (𝑝
2
− 𝑐
2
) (𝐷 − 𝑝

1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀) −

1

2𝛽
2
𝐼
2

2

.

(22)

We have

𝑝
1
=
2𝑐
1
− 𝑐
2
+ 𝐷 + 𝐼

1
𝜃
1
+ 𝐼
2
𝜃
2
+ 𝜀

3
;

𝑝
2
=
2𝑐
2
− 𝑐
1
+ 𝐷 + 𝐼

1
𝜃
1
+ 𝐼
2
𝜃
2
+ 𝜀

3
.

(23)

And the decisions in stage one are

max
𝐼
1

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
1
− 𝑐
2
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] ,

max
𝐼
2

𝐸[𝑅
1
+ 𝑅
2
= (𝑝
1
+ 𝑝
2
− 𝑐
1
− 𝑐
2
)

⋅ (𝐷 − 𝑝
1
− 𝑝
2
+ 𝜃
1
𝐼
1
+ 𝜃
2
𝐼
2
+ 𝜀)

−
1

2𝛽
1
𝐼
2

1

−
1

2𝛽
2
𝐼
2

2

] .

(24)

Solving and simplifying terms we get

𝐼
1
=

2 (𝐷 − 𝑐
1
− 𝑐
2
) 𝜃
1
𝛽
2

9𝛽
1
𝛽
2
− 2𝛽
2
𝜃
2

1
− 2𝛽
1
𝜃
2

2

;

𝐼
2
=

2 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝜃
2

9𝛽
1
𝛽
2
− 2𝛽
2
𝜃
2

1
− 2𝛽
1
𝜃
2

2

,

𝑝
1
= 𝑐
1
+

3 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

9𝛽
1
𝛽
2
− 2𝛽
2
𝜃
2

1
− 2𝛽
1
𝜃
2

2

+
𝜀

3
;

𝑝
2
= 𝑐
2
+

3 (𝐷 − 𝑐
1
− 𝑐
2
) 𝛽
1
𝛽
2

9𝛽
1
𝛽
2
− 2𝛽
2
𝜃
2

1
− 2𝛽
1
𝜃
2

2

+
𝜀

3
,

𝑅
1
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

2
(9𝛽
1
− 2𝜃
2

1
)

(9𝛽
1
𝛽
2
− 2𝛽
2
𝜃
2

1
− 2𝛽
1
𝜃
2

2
)
2

+
𝜎
2

9
;

𝑅
2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2
𝛽
2

1
(9𝛽
2
− 2𝜃
2

2
)

(9𝛽
1
𝛽
2
− 2𝛽
2
𝜃
2

1
− 2𝛽
1
𝜃
2

2
)
2

+
𝜎
2

9
.

(25)

Let 𝐼5
1
= 𝐼
1
, 𝐼5
2
= 𝐼
2
, 𝑝5
1
= 𝑝
1
, 𝑝5
2
= 𝑝
2
, 𝑅5
1
= 𝑅
1
, and

𝑅
5

2
= 𝑅
2
.

It is easy to find that 𝐼5
1
< 𝐼
1

1
, 𝐼
5

2
< 𝐼
1

2
, 𝑝
5

1
< 𝑝
1

1
, 𝑝
5

2
< 𝑝
1

2

by comparing (25) with (6). However, we cannot compare 𝑅5
1

with 𝑅1
1
, 𝑅1
2
with 𝑅5

2
in direct. After considering the transport

market with symmetric firms and let 𝛽
1
= 𝛽
2
= 𝛽, 𝜃

1
= 𝜃
2
=

𝜃, we get 𝑅5
1
< 𝑅
1

1
, 𝑅
5

2
< 𝑅
1

2
. Apparently, both parties will

benefit from coopetition. Based on the analyzing above, we
summarize the following proposition.

Proposition 2. In a two-stage dynamic game model with
simultaneous actions on investment and price for two comple-
mentary symmetric transport firms, the investment is positively



Discrete Dynamics in Nature and Society 7

correlated to the sensitivity coefficient of investment. Both
parties have motivation to cooperation in investment.

Proposition 2 shows that, apart from price, in the one-
shot market game, investment is another complementary
element. The degree of complementarity can be measured
by sensitivity coefficient of separate firms. Moreover, even
without the restriction of contracts or regulations, coope-
tition aims always exist innately because of the existing of
complementary elements which are underlying incentive for
either firm to pursue higher return by increasing joint profit.

2.4. Extend Analysis. Furthermore, from Table 1, such fol-
lowing equalities and inequality are held; that is, 𝑅2

1
+ 𝑅
2

2
=

𝑅
3

1
+ 𝑅
3

2
= 𝑅
4

1
+ 𝑅
4

2
> 𝑅
1

1
+ 𝑅
1

2
. That implies that the final

coopetition equilibrium: {cooperate + (compete, compete)}
is not Pareto efficiency and the two firms are in prisoner’s
dilemma.We already knew from game theory [19] the perfect
cooperation cannot be realized in the competition market.
Hence, strategy 2 is not easy to attain. For the strategy 3 and
strategy 4, we find even either party who unilateral deviates
cooperate would obtains excess return and another party thus
gets minus return (In certain cases, one firm sets low price
(equalsmarginal cost) thatwill facilitate to enlarge the “pie” of
market. That is a kind of cooperate to enlarge system benefits
by sacrificing partial benefits.) for inequalities 𝑅4

1
(𝑅
3

2
) > 𝑅
2

1
+

𝑅
2

2
, 𝑅3
1
< 0 and 𝑅4

2
< 0 holding, but the total system profits

are then improved (𝑅2
1
+ 𝑅
2

2
= 𝑅
3

1
+ 𝑅
3

2
= 𝑅
4

1
+ 𝑅
4

2
> 𝑅
1

1
+ 𝑅
1

2
).

That implies new equilibrium (strategy 3 or 4) with higher
efficiency would be realized to substitute initial equilibrium
(strategy 1) by setting suitable incentives.

For the strategy 3 (strategy 4), firm 1 (firm 2) that selects
price cooperation would set price according to his marginal
cost, at the same time the excess benefits would be gained
by firm 2 (firm 1) for deviating price cooperation unilaterally
to set higher price. Assume both firms reach agreement on
allocation 𝑊, either firm which earn excess benefits would
compensate 𝑊 to the partner’s cooperation behaviors. The
payoffs of two firms in strategy 3 and 4 are changed as follows,
and then we have Proposition 3:

𝑅
3

1
= 𝑊 −

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

2
𝜃
2

1

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2
;

𝑅
3

2
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
(2𝛽
2
− 𝜃
2

2
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
−𝑊,

𝑅
4

1
=

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
1
𝛽
2

2
(2𝛽
1
− 𝜃
2

1
)

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2

+
𝜎
2

4
−𝑊;

𝑅
4

2
= −

(𝐷 − 𝑐
1
− 𝑐
2
)
2

𝛽
2

1
𝛽
2
𝜃
2

2

2 (2𝛽
1
𝛽
2
− 𝛽
2
𝜃
2

1
− 𝛽
1
𝜃
2

2
)
2
+𝑊.

(26)

Proposition 3. In the investment and pricing two-stage game
with simultaneous actions, if the two firms reach agree-
ment on allocation 𝑊 in advance and when the conditions
𝑅
4

2
> 𝑅
1

2
, 𝑅
3

2
> 𝑅
2

2
, 𝑅
3

1
> 𝑅
1

1
, 𝑅
4

1
> 𝑅
2

1
are satisfied,

then the strategies: {𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 + (𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒, 𝑐𝑜𝑚𝑝𝑒𝑡𝑒)} and
{𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒+(𝑐𝑜𝑚𝑝𝑒𝑡𝑒, 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒)} are twoNash equilibriums.

Proof. First we assume the two firms reach following agree-
ment: both parties commit price cooperation; otherwise
either firm who unilateral deviates cooperation will compen-
sate𝑊 to another firm.

Nextwe calculate the newNash equilibriums based on the
assumptions.

When condition 𝑅
4

2
> 𝑅
1

2
holds, for the given strategy:

(cooperate + compete) to firm 1 then strategy: (cooperate +
cooperate) is dominant strategy to firm 2.When firm 1 selects
strategy: (cooperate + cooperate) then strategy: (cooperate +
compete) is the dominant strategy to firm 2 for 𝑅3

2
> 𝑅
2

2

holding.
Similarly, when firm 2 selects strategy: (cooperate +

compete) then strategy: (cooperate + cooperate) is dominant
strategy to firm 1 for 𝑅3

1
> 𝑅
1

1
holding. When firm 2 selects

strategy: (cooperate + cooperate) then strategy: (cooperate +
compete) is the dominant strategy to firm 1 for 𝑅4

1
> 𝑅
2

1

holding.
Therefore equilibriums {cooperate + (cooperate,

compete)} and {cooperate + (compete, cooperate)} are two
Nash equilibriums in the game.

Proposition 3 shows the following.

(1) Under the competition setting, setting low price (gen-
erally, the marginal cost of transport service is very
low. Corresponding studies see Mayeres et al. [20],
Jara-Diaz et al. [21], and Voltes-Dorta and Lei [22])
at their marginal cost and reaching an agreement on
allocation𝑊 are two kinds of cooperation behaviors
to two separate firms. That implies that if more
cooperation is taken into consideration by both firms,
the original unique pure Nash equilibrium would be
replacedwith new equilibriums, those are new sorts of
coopetition with higher system efficiency. Therefore,
the natures of coopetition are diversity and potential,
dynamic, and very broad in scope.

(2) The system Pareto efficiency would be realized for
existing of new multiple Nash equilibrium after set-
ting suitable allocations. As long as both firms agree
on the allocation𝑊, the new coopetition would ben-
efit both parties. Comparing with the traditional win-
lose scenarios, the new coopetition is looking for win-
win scenarios in which firms strive to enlarge the size
of the total pie which they can divide up. Meanwhile,
how to design a suitable inventive mechanism will be
a new critical issue.

3. Evolution of Coopetition

From the prospective of life cycle, the infrastructure invest-
ment always occurs at a certain time and advances to the
price stage. Actually one-shot game is a rare occurrence
in reality; the repeated interactions on pricing are always
happen after investment stage. In this section, the finite and
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infinite repeated pricing game will be explored to study the
equilibrium and the evolution of coopetition.

3.1. Finitely Repeated Pricing Game. Based on the results of
aforementioned two-stage game, we first consider a finitely
repeated pricing game with simultaneous actions in every
stage. That means the cooperative investment decision is
made firstly and then the repeated pricing decisions are
made for finite time horizon subsequently. In reality, the
repeated game is always played with finite time horizon.
Based on the fork theorem [19], we have learned if stage
game had unique Nash equilibrium then finitely repeated
game had unique subgame perfect Nash equilibrium (SPNE).
Moreover, the SPNE is just the repetition of the stage game
Nash equilibrium. Therefore, as discussed in Section 2.3, the
repetitive price competition for two firms is a unique SPNE
with low efficiency.

Next we will discuss the nature of the specific SPNE
with higher efficiency. From the result of Proposition 3,
we knew that, under setting the suitable allocation 𝑊,
the new multiple Nash equilibrium with higher efficiency
that is, strategies: {cooperate + (cooperate, compete)} and
{cooperate + (compete, cooperate)} are then attained,
where pricing strategy: (cooperation, competition) and
(competition, cooperation) are multiple stage game Nash
equilibrium. Considering the finitely repeated pricing game
with simultaneous actions, lots of SPNE paths are formulated
for the existing of multiple stage game Nash equilibrium.
That includes repeating strategies of (cooperate, compete),
(compete, cooperate), and alternately selecting cooperation
and competition by two firms. For the sake of fairness, we
consider the SPNE route that both firms select cooperation
and competition alternately in each stage. The following
two strategies are SPNE; that is, {(investment cooperation +
price cooperation+ price competition+ price cooperation+
⋅ ⋅ ⋅ ), (investment cooperation + price competition + price
cooperation + price competition + ⋅ ⋅ ⋅ )} and {(invest-
ment cooperation+ price competition+ price cooperation+
price competition + ⋅ ⋅ ⋅ ), (investment cooperation + price
cooperation + price competition + price cooperation, + ⋅ ⋅ ⋅ )}
are SPNE (different from the “tit-for-tat” strategy in
prisoner’s dilemma repeated game [19], in this paper, both
firms select cooperation and competition alternately are
SPNE, however, “tit-for-tat” strategy is not SPNE). Some
results are summarized as Proposition 4.

Proposition 4. For the given SPNE with alternate selecting
price cooperation and price competition for two firms, the
preferred price strategy to the first stage is affected by repeated
periods 𝑡.

(i) When repeated periods 𝑡 is an odd number, the
sequence to choosing price competition and price coop-
eration is immaterial. The final total profits are𝑀

1
𝑡/2

and𝑀
2
𝑡/2 to two firms separately.

(ii) When repeated periods 𝑡 are an even number, if the final
price stage gameNash equilibrium is that firm 1 chooses
price competition and firm 2 chooses price cooperation,
then the final profits to both firms are𝑀

1
(𝑡−1)/2+𝑅

4

1

and𝑀
2
(𝑡 − 1)/2 + 𝑅

4

2
. Otherwise, if price stage game

Nash equilibrium is that firm 1 choose price cooperation
and firm 2 choose price competition, the final total
profits are 𝑀

1
(𝑡 − 1)/2 + 𝑅

3

1
and 𝑀

2
(𝑡 − 1)/2 + 𝑅

3

2

to two firms separately,

where 𝑅4
1
+ 𝑅
3

1
= 𝑀
1
, 𝑅
4

2
+ 𝑅
3

2
= 𝑀
2
.

Proof. Based on Proposition 3, the strategy that two firms
alternately select price cooperation and price competition
at stage game is SPNE. After taking into account individual
rationality the conditions 𝑅4

1
> 𝑅
3

1
or 𝑅3
2
> 𝑅
4

2
are satisfied,

assuming 𝑅4
1
+ 𝑅
3

1
= 𝑀
1
, 𝑅4
2
+ 𝑅
3

2
= 𝑀
2
; then the odd-

even character of repeated periods 𝑡 would impact the first
best strategy for both parties’ stage game.

When repeated periods 𝑡 are an even number, the
sequence of pricing strategy in stage game to separate firm
is immaterial. The final individual profit of separate firm’s
is 𝑀
𝑖
𝑡/2, (𝑖 = 1, 2) regardless of the one who chooses

competition strategy and the other who choose cooperation
at the first stage game.

When repeated periods 𝑡 are an odd number, two firms
consider the difference between strategies 3 and 4; the
sequence on selecting price competition or price cooperation
will impact their individual final profit in direct.

If the first price stage game equilibrium is (compete,
cooperate) then firm 1’s profit in the given SPNE is 𝑀

1
(𝑡 −

1)/2 + 𝑅
4

1
, and firm 2’s profit in the given SPNE is 𝑀

2
(𝑡 −

1)/2+𝑅
4

2
. Otherwise, if price stage game Nash equilibrium is

(cooperate, compete) then firm 1’s profit is𝑀
1
(𝑡 − 1)/2 + 𝑅

3

1
,

and firm 2’s profit is𝑀
2
(𝑡 − 1)/2 + 𝑅

3

2
.

Proposition 4 shows that the final SPNE is a dynamic
and complicated coopetition, which further extends the
perspective that the natures of coopetition are diversity and
potential, dynamic, and very broad in scope. On the one
hand, under setting the suitable allocation scheme both
parties will escape the prisoners’ dilemma challenge even
by finitely repeated pricing game, but on the other the new
conflict will emerge for the changing of repeated periods 𝑡.
Either firm will select stage game equilibrium of advantage
for themselves. Moreover, the offering sequence will depend
on their individual market power and especially depend on
exogenic force such as bargaining power. Meanwhile, setting
the effective negotiation mechanism is necessary to improve
cooperation.

3.2. Infinitely Repeated Game. In this section, we consider
a repeated price game with infinite time horizon. As
depicted in Table 1, the pure strategy Nash equilibrium
of basic two-stage game with simultaneous actions
is coopetition strategy 1: {investment cooperation +

price (competition, competition)}, which is not system
Pareto efficiency for holding that 𝑅2

1
+𝑅
2

2
> 𝑅
1

1
+𝑅
1

2
. Different

from strategy 1, the strategy 2 implies perfect cooperation
with Pareto efficiency; therefore, our aim is how to make
perfect cooperation a SPNE.

Without loss of generality, assuming the two firms have
the same discount rate 𝛿 (0 ≤ 𝛿 ≤ 1), which measures
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their patience in the repeated game.𝐾 denotes the joint profit
allocation to firm 2. As we have known from fork theorem
[19] that if players are patient enough then SPNE can achieve
“any” reasonable payoffs.

Designing such following trigger strategy: from the first
period of price repeated game, the two firms play price
cooperation strategy unconditionally, if both parties play
cooperation strategy until the 𝑡 − 1 period then any firm will
continue to play cooperation strategy, or else one firm who
cooperates at 𝑡−1periodwill deviate to play competition from
𝑡 phase and last forever.

Proposition 5. In the investment and infinitely repeated
pricing game, for a given discount rate 𝛿 (0 ≤ 𝛿 ≤ 1), if
inequalities (i) (𝑀 − 𝐾)/(1 − 𝛿) > 𝑅

4

1
+ 𝑅
1

1
𝛿/(𝑀 − 𝐾)/(1 − 𝛿)

and (ii) 𝐾/(1 − 𝛿) > 𝑅
3

2
+ 𝑅
1

2
𝛿/(1 − 𝛿) are satisfied, then

the perfect cooperation strategy: {𝐼𝑛V𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 +

𝑝𝑟𝑖𝑐𝑒 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑}will be chosen by both parties,
that is, SPNE.

Proof. We first deduce the sufficient conditions which stimu-
late two firms to choose cooperation simultaneously at each
stage game, that is, SPNE. Without loss of generality, assume
the two firms have same discount rate 𝛿 (0 ≤ 𝛿 ≤ 1) and
𝑅
2

1
+ 𝑅
2

2
= 𝑀.

There are two kinds of subgames: (1) subgame following
a history in which no firm has ever price competition; (2) any
other game.

For case (1) suppose up to period 𝑡, the strategy price
competition has never been played, firm 𝑖’s (𝑖 = 1, 2) payoff
looking forward are as follows.

Play price cooperation: firm 1’s profit is𝑀−𝐾+(𝑀−𝐾)𝛿+

⋅ ⋅ ⋅ = (𝑀 − 𝐾)/(1 − 𝛿), and firm 2’s profit is𝐾/(1 − 𝛿). When
firm 1 unilateral deviates cooperation then its profit is 𝑅4

1
+

𝑅
1

1
𝛿/(1−𝛿).Therefore, when (𝑀−𝐾)/(1−𝛿) > 𝑅

4

1
+𝑅
1

1
𝛿/(1−𝛿),

the deviation is not profitable to firm 1.Whenfirm2unilateral
deviates cooperation then its profit is 𝑅3

2
+𝑅
1

2
𝛿/(1−𝛿). When

the condition𝐾/(1−𝛿) > 𝑅
3

2
+𝑅
1

2
𝛿/(1−𝛿) is satisfied then firm

2 would never first unilateral deviate cooperation to choose
competition.

For case (2) price competition is played at certain period
before 𝑡, since (price competition, price competition) is the
Nash equilibrium of the static game; meanwhile, there is no
profitable deviation for any discount rate 𝛿 (0 ≤ 𝛿 ≤ 1).

Therefore, under setting the trigger strategy, the strategy:
{investment cooperation + price cooperation per period} is
SPNE.

Proposition 5 shows that under the incentive of given
trigger strategy, both firms have no motivation to deviate
cooperation unilaterally.The perfect cooperation with Pareto
efficiency will be SPNE. Meanwhile, any gains from oppor-
tunistic behaviors are trivial. All participants wish not only to
cooperate, but also to penalize any deviate behaviors.

4. Numerical Study

We introduce a numerical example to simulate the formation
and characteristics of coopetition in intermodal industry.

2336 2605

1616

2114K

W

Figure 2: Appropriate allocation.

As depicted in Figure 1, we adopt the same scenario as in
Section 2.1. There are two transport firms with complemen-
tary transport modal to develop intermodal services. After
considering investment and price, a two-stage game modal
with simultaneous actions is played between the two firms.
All parameters are given: 𝐷 = 120, 𝑐

1
= 8, 𝑐

2
= 6, 𝜀 ∼

𝑁(0, 10
2
), 𝛽
1
= 1, 𝛽

2
= 0.9, 𝜃

1
= 0.5, and 𝜃

2
= 0.5.

Firstly, a two-stage basic game with simultaneous
actions on investment and pricing decisions is played. It
is easy to prove the strategy: {investment cooperation +

price (competition, competition)} is a unique pure Nash
equilibrium. That implies that both parties would not
cooperate completely and coopetition is the final equilibrium.
All those are consistent with the conclusions of Proposition 1.

It is easy to know that the realized equilibrium is low
system efficiency. Assuming the two firms agree on such
allocation which either firm whose unilateral deviates coop-
eration will pay 𝑊 to the other. Therefore, we have 𝑅4

1
=

4561−𝑊, 𝑅4
2
= 𝑊−720, 𝑅3

1
= 𝑊−648, and 𝑅3

2
= 4489−𝑊.

After calculation we get the following solution set {(𝐾,𝑊) |

𝑊 + 𝐾 < 4489,𝑊 − 𝐾 < 720,𝑊 > 2336}. As described
in Figure 2, the shaded area is the feasible domain, in which
strategies 3 and 4 are new Nash equilibrium. Further analysis
shows that all of them are new kinds of coopetition.

We further explore the complexity and evolution of
coopetition by finitely repeated game. Defining𝐾 = 1800 and
𝑊 = 2400, the strategy of alternating offer cooperation and
competition by two firms would be a SPNE. When repeated
periods 𝑡 is an odd number, let 𝑡 = 2; whatever any firm
first selects as a price competition strategy, their final profits
are 3913 and 3769 separately. When repeated periods 𝑡 are an
even number, let 𝑡 = 3; any firm who has more bargaining
power in market will first select price competition at the first
stage and therefore benefit more in the repeated game. If
firm 1 has more bargaining power, then price competition
strategy is to be preferred to firm 1; the final stage equilibrium
(6074, 5449) for two firms would be reached. Otherwise, firm
2first chooses price competition in stage one of price repeated
game, the final stage equilibrium are (5665, 5858).

Those results testify the conclusions of Propositions 3 and
4 and show that the natures of coopetition are diversity and
potential, dynamic, and very broad in scope.The new coope-
tition with higher efficiency would be realized by designing
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suitable allocation scheme. During the finitely repeated game
process, the sequence of alternating offerwould correlatewith
the repeated periods and separate firm’s bargaining power in
market.

Finally, let𝑀 = 3841 and 𝐾 = 1800; after calculation, we
can know when discount rate 𝛿 satisfies 0.6 < 𝛿 < 1, then
perfect cooperation in each stage game is SPNE. Both parties
never deviate from cooperation under the incentive of trigger
strategy. The results testify the valid of Proposition 5.

5. Conclusions

In this paper, a coopetition behavior analysis of the down-
stream separate carriers in intermodal freight services chain
is studied. Our primary objective is to explore the basic
theory concerning cooperation and competition behavior
in intermodal freight market. We consider nature of coop-
eration between firms in making investments to improve
demand potential, as well as the competition between firms
in making their pricing decisions. After considering different
information structure and the level of uncertainty in themar-
ket, a basic two-stage dynamic game model on cooperation
investment and price strategies with simultaneous actions is
first formulated, and repeated game with infinite periods and
finite periods are then analyzed, respectively. Our results can
be summarized as follows.

(i) In the basic two-stage game, the coopetition strategy:
{investment cooperate + price (compete, compete)}
is unique pure strategy Nash equilibrium, both par-
ties have motivation to select coopetition even if
the agreement for cooperation investment has been
reached in advance.

(ii) Under setting the suitable allocation 𝑊 the new
Nash equilibriums with higher efficiency would be
emerged. Those are new kinds of coopetition.

(iii) During the finitely repeated game the strategy of
alternating price competition by two firms is SPNE,
the sequence of choosing competition would be
affected by repeated periods. When repeated periods
are an even number, the sequence of which one first
choosing price competition for stage game is imma-
terial. Otherwise, either firm who compete firstly will
depends on their individual bargaining power in the
market.

(iv) For the infinitely repeated game the investment coop-
eration and subsequent price cooperation in every
stage game is SPNE by setting suitable trigger strategy.

Our analysis indicates the interactions between two
firms with complementary transport services are not simplex
cooperation or competition, but a kind of new complex
relationship of alternate cooperation and competition, that
is, coopetition. In the equilibrium state both two firms
will increase profit and decrease the effect of the demand
uncertainty. Meanwhile, we observe if either firm insists
price cooperation regardless of unilateral deviating by the
opponents, then the opponents not only can get free ride but

also Pareto efficiency of the total system is therefore realized.
However, such strategies are not Nash equilibrium; either
firm has no motivation to deviate competition unless setting
suitable incentives. By setting suitable allocation the new
coopetition with higher efficiency would be realized. That
implies the coopetition is diversity and potential, dynamic,
and very broad in scope.

The further study shows that, even in the finitely repeated
pricing game, both firms have incentive to reach a tacit
understanding to alternate choosing price cooperation and
competition after setting suitable allocation scheme. As the
factor of exogenous the repeated periods 𝑡 is then going to be
an issue; the higher profit will lead to competition preferences
for two firms.When repeated periods 𝑡 is an odd number, the
decisions are affected by their individual bargaining power
in market. As such, the nature of competition between firms
affects the level of cooperation they provide to each other.
Themore the cooperation considered by separate firms is, the
more it will facilitate the realization of collective rationality.
In infinitely repeated pricing game, after satisfying conditions
the trigger strategy is a SPNE. Meanwhile, any gains from
opportunistic behaviors are trivial. All participants have
willingness not only to build a reputation on cooperation, but
also to penalize any deviate behaviors.

The contribution of this paper is to study the complexity
and evolution of coopetition by two firms’ game. In future
research, we plan to study the optimal form of coopetition
including the bargaining power or information asymmetry
in cost.
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