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Entropy measure is an important topic in the fuzzy set theory and has been investigated by many researchers from different points
of view. In this paper, two new entropymeasures based on the cosine function are proposed for intuitionistic fuzzy sets and interval-
valued intuitionistic fuzzy sets. According to the features of the cosine function, the general forms of these two kinds of entropy
measures are presented. Compared with the existing ones, the proposed entropy measures can overcome some shortcomings and
be used to measure both fuzziness and intuitionism of these two fuzzy sets; as a result, the uncertain information of which can be
describedmore sufficiently.These entropymeasures have been applied to assess the experts’ weights and to solvemulticriteria fuzzy
group decision-making problems.

1. Introduction

SinceZadeh introduced fuzzy set theory [1], some generalized
forms have been proposed and studied to treat imprecision
and uncertainty [2–10]. Atanassov proposed the notions
of intuitionistic fuzzy sets (IFSs) [2] and interval-valued
intuitionistic fuzzy sets (IVIFSs) [3]; Gau and Buehrer [4]
introduced the notion of vague sets. And some authors [5–
7] pointed out that the IFS theory and the vague set theory
are equivalent to the interval-value fuzzy set (IVFS) theory
proposed by Zadeh [11].

As two important topics in the FS theory, entropy mea-
sures and similarity measures of fuzzy sets have been inves-
tigated widely by many researchers from different points of
view.The entropy of a fuzzy set describes the fuzziness degree
of the fuzzy set. de Luca and Termini [12] introduced some
axioms which captured people’s intuitive comprehension to
describe the fuzziness degree of a fuzzy set. Kaufmann [13]
proposed a method for measuring the fuzziness degree of
a fuzzy set by a metric distance between its membership
function and the membership function of its nearest crisp
set. Yager [14] suggested the entropymeasure being expressed

by the distance between a fuzzy set and its complement.
Chiu and Wang [15] gave simple calculation for entropies
of fuzzy numbers in addition and extension principle. They
[16] also investigated the entropy relationship between the
original fuzzy set and the image fuzzy set. Hong and Kim
[17] introduced a simple method for calculating the entropy
of the image fuzzy set without calculating its membership
function. Zeng and Li [18] showed that similarity measures
and entropies of fuzzy sets can be transformed to each other
based on their axiomatic definitions.

Aimed at these important numerical indexes in the fuzzy
set theory, some researchers extended these concepts to the
IVFS theory and IFS theory and investigated their related
topics from different points of view [19–24]. We review
some generalization study on entropy measure. Burillo and
Bustince [25] introduced the notions of entropy on IVFSs and
IFSs to measure the degree of intuitionism of an IVFS or an
IFS. Szmidt and Kacprzyk [26] proposed a nonprobabilistic-
type entropy measure with a geometric interpretation of
IFSs. Hung and Yang [27] gave their axiomatic definitions
of entropies of IFSs and IVFSs by exploiting the concept
of probability. Farhadinia [20] generalized some results on
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the entropy of IVFSs based on the intuitionistic distance
and its relationship with similarity measure. After that, many
authors also proposed different entropy formulas for IFSs
[27–31], IVFSs [32, 33], and vague sets [34]. For IVIFSs, Liu
et al. in [35] proposed a set of axiomatic requirements for
entropy measures, which extended Szmidt and Kacprzyk’s
axioms formulated for entropy of IFSs [26]. Wei et al. in
[36] extended the entropy measure of IFSs proposed in
[26] to IVIFSs and gave an approach to construct similarity
measures by entropy measures of IVIFSs. By this approach,
the proposed entropy measure can yield a similarity measure
of IVIFSs, which has been applied in the context of pattern
recognition, multiple-criteria fuzzy decision-making, and
medical diagnosis. For entropy measures of IVIFSs, we refer
to [37–39].

In [31], Vlachos and Sergiadis revealed an intuitive and
mathematical connection between the notions of entropy for
FSs and IFSs in terms of fuzziness and intuitionism. They
pointed out that entropy for FSs is indeed a measure of fuzzi-
ness, while for IFSs, entropy can measure both fuzziness and
intuitionism. Recall that the fuzziness is dominated by the
difference between membership degree and nonmembership
degree, and the intuitionism is dominated by the hesitation
degree. Hence it is very interesting to construct entropy
formulas measuring both fuzziness and intuitionism. We
propose an entropy measure, as well as its general form, for
IFSs and then generalize it to IVIFSs. Our entropy measures
are compared with some existing ones in [29–31, 37]. As
an application in multicriteria fuzzy group decision-making,
we propose a method to assess the experts’ weights by the
proposed entropy measures.

The rest of the paper is organized as follows. Section 2
reviews some necessary concepts of IFSs and IVIFSs. In
Section 3, we propose a new entropy measure and its general
form for IFSs. Then we compare the proposed entropy
measure with some existing ones and give some conditions
under which these existing entropy measures may not work
as desired, while the proposed entropy measure can do
well. In Section 4, we extend the entropy measures defined
in Section 3 to IVIFSs and propose entropy measures for
IVIFSs. These entropy measures are compared with the ones
defined by Ye in [37]. Section 5 gives the application of
the proposed entropy measures in assessing the weights of
experts. Concluding remarks are drawn in Section 6.

2. Preliminaries

Some basic concepts of intuitionistic fuzzy sets and interval-
valued intuitionistic fuzzy sets are reviewed from Atanassov
[2], Atanassov and Gargov [3], and Xu [40].

Definition 1 (see [2]). Let 𝑋 be a universe of discourse. An
intuitionistic fuzzy set in𝑋 is an object having the form

𝐴 = {⟨𝑥, 𝑢
𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where

𝑢
𝐴
: 𝑋 → [0, 1] , V

𝐴
: 𝑋 → [0, 1] (2)

with the condition

0 ≤ 𝑢
𝐴 (𝑥) + V

𝐴 (𝑥) ≤ 1, ∀𝑥 ∈ 𝑋. (3)

The numbers 𝑢
𝐴
(𝑥) and V

𝐴
(𝑥) denote the degree of member-

ship and nonmembership of 𝑥 to 𝐴, respectively.

For convenience of notations, we abbreviate “intuitionis-
tic fuzzy set” to IFS and denote by IFS(𝑋) the set of all IFSs
in𝑋.

For each IFS 𝐴 in 𝑋, we call 𝜋
𝐴
(𝑥) = 1 − 𝑢

𝐴
(𝑥) − V

𝐴
(𝑥)

the intuitionistic index of 𝑥 in𝐴, which denotes the hesitancy
degree of 𝑥 to 𝐴. The complementary set of 𝐴 is defined as

𝐴
𝐶
= {⟨𝑥, V

𝐴 (𝑥) , 𝑢𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} . (4)

Definition 2 (see [2]). For two IFSs 𝐴 = {⟨𝑥, 𝑢
𝐴
(𝑥), V
𝐴
(𝑥)⟩ |

𝑥 ∈ 𝑋} and 𝐵 = {⟨𝑥, 𝑢
𝐵
(𝑥), V
𝐵
(𝑥)⟩ | 𝑥 ∈ 𝑋}, their relations

are defined as follows:
(1) 𝐴 ⊆ 𝐵 if and only if 𝑢

𝐴
(𝑥) ≤ 𝑢

𝐵
(𝑥), V
𝐴
(𝑥) ≥ V

𝐵
(𝑥), for

each 𝑥 ∈ 𝑋;
(2) 𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.

Consider that, sometimes, it is not approximate to assume
that the membership degrees for certain elements of an IFS
are exactly defined, but a value range can be given. In such
cases, Atanassov and Gargov [3] introduced the following
notion of interval-valued intuitionistic fuzzy sets.

Definition 3 (see [3]). Let 𝑋 be a universe of discourse and
int(0, 1) denote all closed subintervals of the interval [0, 1].
An interval-valued intuitionistic fuzzy set 𝐴 in𝑋 is an object
having the form

𝐴 = {⟨𝑥, 𝑢
𝐴 (𝑥) , V𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (5)

where

𝑢
𝐴
: 𝑋 → int (0, 1) , V

𝐴
: 𝑋 → int (0, 1) (6)

with the condition

0 ≤ sup (𝑢
𝐴 (𝑥)) + sup (V

𝐴 (𝑥)) ≤ 1. (7)

The intervals 𝑢
𝐴
(𝑥) and V

𝐴
(𝑥) denote the degree of member-

ship and nonmembership of 𝑥 to 𝐴, respectively.

For convenience, let 𝑢
𝐴
(𝑥) = [𝑢

−

𝐴
(𝑥), 𝑢
+

𝐴
(𝑥)], V

𝐴
(𝑥) =

[V−
𝐴
(𝑥), V+
𝐴
(𝑥)], so

𝐴 = {⟨𝑥, [𝑢
−

𝐴
(𝑥) , 𝑢

+

𝐴
(𝑥)] , [V−

𝐴
(𝑥) , V+

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} (8)

with the condition 0 ≤ 𝑢+
𝐴
(𝑥) + V+

𝐴
(𝑥) ≤ 1.

We abbreviate “interval-valued intuitionistic fuzzy set” to
IVIFS and denote by IVIFS(𝑋) the set of all IVIFSs in X.

We call the interval

[1 − 𝑢
+

𝐴
(𝑥) − V+

𝐴
(𝑥) , 1 − 𝑢

−

𝐴
(𝑥) − V−

𝐴
(𝑥)] , (9)

abbreviated by [𝜋−
𝐴
(𝑥), 𝜋
+

𝐴
(𝑥)] or 𝜋

𝐴
(𝑥), the interval-valued

intuitionistic index of 𝑥 in 𝐴, which is a hesitancy degree of
𝑥 to 𝐴.

Clearly, if 𝑢
𝐴
(𝑥) = 𝑢

−

𝐴
(𝑥) = 𝑢

+

𝐴
(𝑥) and V

𝐴
(𝑥) = V−

𝐴
(𝑥) =

V+
𝐴
(𝑥), then the given IVIFS 𝐴 is reduced to an ordinary IFS.



Mathematical Problems in Engineering 3

Definition 4 (see [25]). Let int(0, 1) denote all closed subin-
tervals of the interval [0, 1]. For [𝑎

1
, 𝑏
1
], [𝑎
2
, 𝑏
2
] ∈ int(0, 1), we

define

[𝑎
1
, 𝑏
1
] ≤ [𝑎

2
, 𝑏
2
] if and only if 𝑎

1
≤ 𝑎
2
, 𝑏
1
≤ 𝑏
2
;

[𝑎
1
, 𝑏
1
] ⪯ [𝑎

2
, 𝑏
2
] if and only if 𝑎

1
≤ 𝑎
2
, 𝑏
1
≥ 𝑏
2
;

[𝑎
1
, 𝑏
1
] = [𝑎

2
, 𝑏
2
] if and only if 𝑎

1
= 𝑎
2
, 𝑏
1
= 𝑏
2
.

Definition 5 (see [3]). For two IVIFSs 𝐴 = {⟨𝑥, [𝑢
−

𝐴
(𝑥),

𝑢
+

𝐴
(𝑥)], [V−

𝐴
(𝑥), V+
𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} and 𝐵 = {⟨𝑥, [𝑢

−

𝐵
(𝑥), 𝑢
+

𝐵
(𝑥)],

[V−
𝐵
(𝑥), V+
𝐵
(𝑥)]⟩ | 𝑥 ∈ 𝑋}, their relations and operations are

defined as follows:

(1) 𝐴 ⊆ 𝐵 if and only if [𝑢−
𝐴
(𝑥), 𝑢
+

𝐴
(𝑥)] ≤ [𝑢

−

𝐵
(𝑥), 𝑢
+

𝐵
(𝑥)],

[V−
𝐴
(𝑥), V+
𝐴
(𝑥)] ≥ [V−

𝐵
(𝑥), V+
𝐵
(𝑥)], for each 𝑥 ∈ 𝑋;

(2) 𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴;

(3) 𝐴𝐶 = {⟨𝑥, [V−
𝐴
(𝑥), V+
𝐴
(𝑥)], [𝑢

−

𝐴
(𝑥), 𝑢
+

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋}.

In [40], 𝛼 = ([𝑎, 𝑏], [𝑐, 𝑑]) is called an interval-valued
intuitionistic fuzzy value (IVIFV), where [𝑎, 𝑏] ∈ int(0, 1),
[𝑐, 𝑑] ∈ int(0, 1), and 𝑏 + 𝑑 ≤ 1. Let Θ be the universal set of
IVIFVs.

Based on two functions, Xu [40] provided a method to
compare two IVIFVs.

Definition 6 (see [40]). Let 𝛼 = ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝛽 =

([𝑎
2
, 𝑏
2
], [𝑐
2
, 𝑑
2
]) be two IVIFVs. Let 𝑠(𝛼) = (1/2)(𝑎

1
− 𝑐
1
+

𝑏
1
−𝑑
1
) and 𝑠(𝛽) = (1/2)(𝑎

2
−𝑐
2
+𝑏
2
−𝑑
2
) be the score degrees

of 𝛼 and 𝛽, respectively; let ℎ(𝛼) = (1/2)(𝑎
1
+𝑏
1
+𝑐
1
+𝑑
1
) and

ℎ(𝛽) = (1/2)(𝑎
2
+ 𝑏
2
+ 𝑐
2
+ 𝑑
2
) be the accuracy degrees of 𝛼

and 𝛽, respectively. Then we have the following.

(1) If 𝑠(𝛼) < 𝑠(𝛽), then 𝛼 is smaller than 𝛽, denoted by
𝛼 < 𝛽.

(2) If 𝑠(𝛼) = 𝑠(𝛽), then the following hold:

(a) if ℎ(𝛼) = ℎ(𝛽), then𝛼 is indifferent to𝛽, denoted
by 𝛼 ∼ 𝛽;

(b) if ℎ(𝛼) < ℎ(𝛽), then 𝛼 is smaller than 𝛽, denoted
by 𝛼 < 𝛽;

(c) if ℎ(𝛼) > ℎ(𝛽), then 𝛼 is bigger than 𝛽, denoted
by 𝛼 > 𝛽.

Definition 7 (see [40]). Let 𝛼 = ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝛽 =

([𝑎
2
, 𝑏
2
], [𝑐
2
, 𝑑
2
]) be two IVIFVs. Then three operational laws

of IVIFVs are given as follows:

(1) 𝛼 ⊕ 𝛽 = ([𝑎
1
+ 𝑎
2
− 𝑎
1
𝑎
2
, 𝑏
1
+ 𝑏
2
− 𝑏
1
𝑏
2
], [𝑐
1
𝑐
2
, 𝑑
1
𝑑
2
]);

(2) 𝜆𝛼 = ([1 − (1 − 𝑎
1
)
𝜆
, 1 − (1 − 𝑏

1
)
𝜆
], [𝑐
𝜆

1
, 𝑑
𝜆

1
]), 𝜆 ≥ 0;

(3) 𝛼𝐶 = ([𝑐
1
, 𝑑
1
], [𝑎
1
, 𝑏
1
]).

With the thorough research of IVIFS theory and the
continuous expansion of its application scope, it is more and
more important to aggregate intuitionistic fuzzy information
effectively. Xu [40] proposed interval-valued intuitionistic
fuzzy weighted averaging operator to aggregate the interval-
valued intuitionistic fuzzy information.

Definition 8 (see [40]). Let 𝛼
𝑖

= ([𝑎
𝑖
, 𝑏
𝑖
], [𝑐
𝑖
, 𝑑
𝑖
]) (𝑖 =

1, 2, . . . , 𝑛) be a collection of IVIFVs. An interval-valued
intuitionistic fuzzy weighted averaging (IVIFWA) operator is
a mapping Θ𝑛 → Θ, such that

IVIFWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= 𝑤
1
𝛼
1
⊕ 𝑤
2
𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑤

𝑛
𝛼
𝑛

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑎
𝑗
)
𝑤𝑗
, 1 −

𝑛

∏

𝑗=1

(1 − 𝑏
𝑗
)
𝑤𝑗]

]

,

[

[

𝑛

∏

𝑗=1

𝑐
𝑗

𝑤𝑗 ,

𝑛

∏

𝑗=1

𝑑
𝑗

𝑤𝑗]

]

) ,

(10)

where𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weighting vector of 𝛼

𝑖
(𝑖 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

In Definition 8, if 𝑎
𝑖
= 𝑏
𝑖
and 𝑐
𝑖
= 𝑑
𝑖
(𝑖 = 1, 2, . . . , 𝑛), then

IVIFVs 𝛼
𝑖
reduce to IFVs and the IVIFWA operator reduces

the IFWA operator.
In many practical problems, such as, multicriteria

decision-making, the study objects are finite. So in the rest of
the paper, we assume that the universe 𝑋 is a finite set, listed
by {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}.

3. Entropy Measures for IFSs

In this section we will propose a concrete entropy measure
for IFSs and demonstrate its efficiency through comparisons
with some existing entropy measures in [28–31].

3.1. A New Entropy Measure for IFSs. Szmidt and Kacprzyk
[26] extended the axioms of de Luca and Termini [12] to
propose the following definition of an entropy measure for
IFSs.

Definition 9 (see [26]). A real-valued function 𝐸: IFS(𝑋) →
[0, 1] is called an entropy measure for IFSs if it satisfies the
following axiomatic requirements:

(E1) 𝐸(𝐴) = 0 if and only if𝐴 is a crisp set; that is, 𝑢
𝐴
(𝑥
𝑖
) =

1 or 𝑢
𝐴
(𝑥
𝑖
) = 0 for any 𝑥

𝑖
∈ 𝑋;

(E2) 𝐸(𝐴) = 1 if and only if 𝑢
𝐴
(𝑥
𝑖
) = V
𝐴
(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋;

(E3) 𝐸(𝐴) = 𝐸(𝐴𝐶);
(E4) 𝐸(𝐴) ≤ 𝐸(𝐵) if 𝑢

𝐴
(𝑥
𝑖
) ≥ 𝑢
𝐵
(𝑥
𝑖
) and V

𝐵
(𝑥
𝑖
) ≥ V
𝐴
(𝑥
𝑖
)

for 𝑢
𝐵
(𝑥
𝑖
) ≥ V
𝐵
(𝑥
𝑖
) or 𝑢

𝐴
(𝑥
𝑖
) ≤ 𝑢

𝐵
(𝑥
𝑖
) and V

𝐵
(𝑥
𝑖
) ≤

V
𝐴
(𝑥
𝑖
) for 𝑢

𝐵
(𝑥
𝑖
) ≤ V
𝐵
(𝑥
𝑖
) for any 𝑥

𝑖
∈ 𝑋.

In this subsection, we introduce a new entropy measure
for IFSs. For each 𝐴 ∈ IFS(𝑋), define 𝐸(𝐴) by

1

𝑛

𝑛

∑

𝑖=1

cos
𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

2 (1 + 𝜋
𝐴
(𝑥
𝑖
))

𝜋. (11)

Then we have the following theorem.
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Theorem 10. The mapping 𝐸, defined by (11), is an entropy
measure for IFSs.

Proof. It is sufficient to show that the mapping 𝐸(⋅), defined
by (11), satisfies the conditions (E1)–(E4) in Definition 9.

Let 𝐸
𝑖
(𝐴) = cos((𝑢

𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
))/2(1 + 𝜋

𝐴
(𝑥
𝑖
)))𝜋 for

𝑖 = 1, 2, . . . , 𝑛. From 0 ≤ 𝑢
𝐴
(𝑥
𝑖
) ≤ 1, 0 ≤ V

𝐴
(𝑥
𝑖
) ≤ 1, and

0 ≤ 𝜋
𝐴
(𝑥
𝑖
) ≤ 1, we have −𝜋/2 ≤ ((𝑢

𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
))/2(1 +

𝜋
𝐴
(𝑥
𝑖
)))𝜋 ≤ 𝜋/2. Thus 0 ≤ 𝐸

𝑖
(𝐴) ≤ 1.

(E1) Let 𝐴 be a crisp set; that is, 𝑢
𝐴
(𝑥
𝑖
) = 0, V

𝐴
(𝑥
𝑖
) = 1,

or 𝑢
𝐴
(𝑥
𝑖
) = 1, V

𝐴
(𝑥
𝑖
) = 0 for any 𝑥

𝑖
∈ 𝑋. No matter in which

case, we have 𝐸
𝑖
(𝐴) = 0. Hence 𝐸(𝐴) = 0.

Conversely, suppose now that 𝐸(𝐴) = 0. Since 0 ≤

𝐸
𝑖
(𝐴) ≤ 1, it follows that 𝐸

𝑖
(𝐴) = 0. Also since −𝜋/2 ≤

((𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
))/2(1 + 𝜋

𝐴
(𝑥
𝑖
)))𝜋 ≤ 𝜋/2, we have ((𝑢

𝐴
(𝑥
𝑖
) −

V
𝐴
(𝑥
𝑖
))/2(1 + 𝜋

𝐴
(𝑥
𝑖
)))𝜋 = 𝜋/2 or ((𝑢

𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
))/2(1 +

𝜋
𝐴
(𝑥
𝑖
)))𝜋 = −𝜋/2. Thus we can obtain 𝑢

𝐴
(𝑥
𝑖
) = 1, V

𝐴
(𝑥
𝑖
) = 0

or 𝑢
𝐴
(𝑥
𝑖
) = 0, V

𝐴
(𝑥
𝑖
) = 1. So 𝐴 is a crisp set.

(E2) Let 𝑢
𝐴
(𝑥
𝑖
) = V
𝐴
(𝑥
𝑖
) for each 𝑥

𝑖
∈ 𝑋. Applying this

condition to (11), we easily obtain 𝐸(𝐴) = 1.
Conversely, we suppose that 𝐸(𝐴) = 1. From (11) and 0 ≤

𝐸
𝑖
(𝐴) ≤ 1, we obtain that 𝐸

𝑖
(𝐴) = 1 for each 𝑥

𝑖
∈ 𝑋. Also

from −𝜋/2 ≤ ((𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
))/2(1 + 𝜋

𝐴
(𝑥
𝑖
)))𝜋 ≤ 𝜋/2, we

have 𝑢
𝐴
(𝑥
𝑖
) = V
𝐴
(𝑥
𝑖
) for each 𝑥

𝑖
∈ 𝑋.

(E3) For 𝐴𝐶 = {⟨𝑥
𝑖
, V
𝐴
(𝑥
𝑖
), 𝑢
𝐴
(𝑥
𝑖
)⟩ | 𝑥

𝑖
∈ 𝑋}, we can

easily get that 𝐸(𝐴𝐶) = 𝐸(𝐴).
(E4) Suppose that 𝑢

𝐴
(𝑥
𝑖
) ≥ 𝑢

𝐵
(𝑥
𝑖
) and V

𝐵
(𝑥
𝑖
) ≥ V

𝐴
(𝑥
𝑖
)

for 𝑢
𝐵
(𝑥
𝑖
) ≥ V

𝐵
(𝑥
𝑖
). Since 1 − 𝑢

𝐴
(𝑥
𝑖
) ≥ 0 and V

𝐴
(𝑥
𝑖
) − 1 ≤

0, we have V
𝐵
(𝑥
𝑖
)(1 − 𝑢

𝐴
(𝑥
𝑖
)) ≥ V

𝐴
(𝑥
𝑖
)(1 − 𝑢

𝐴
(𝑥
𝑖
)) and

𝑢
𝐵
(𝑥
𝑖
)(V
𝐴
(𝑥
𝑖
) − 1) ≥ 𝑢

𝐴
(𝑥
𝑖
)(V
𝐴
(𝑥
𝑖
) − 1). Thus

V
𝐵
(𝑥
𝑖
) (1 − 𝑢

𝐴
(𝑥
𝑖
)) + 𝑢

𝐵
(𝑥
𝑖
) (V
𝐴
(𝑥
𝑖
) − 1)

≥ V
𝐴
(𝑥
𝑖
) (1 − 𝑢

𝐴
(𝑥
𝑖
)) + 𝑢

𝐴
(𝑥
𝑖
) (V
𝐴
(𝑥
𝑖
) − 1) .

(12)

It follows that

V
𝐵
(𝑥
𝑖
) (1 − 𝑢

𝐴
(𝑥
𝑖
)) + 𝑢

𝐵
(𝑥
𝑖
) (V
𝐴
(𝑥
𝑖
) − 1)

+ 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
) ≥ 0.

(13)

Thus

(𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)) (2 − 𝑢

𝐵
(𝑥
𝑖
) − V
𝐵
(𝑥
𝑖
))

≥ (𝑢
𝐵
(𝑥
𝑖
) − V
𝐵
(𝑥
𝑖
)) (2 − 𝑢

𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)) ,

(14)

which implies that (𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
))/(1 + 𝜋

𝐴
(𝑥
𝑖
)) ≥ (𝑢

𝐵
(𝑥
𝑖
) −

V
𝐵
(𝑥
𝑖
))/(1 + 𝜋

𝐵
(𝑥
𝑖
)). Thus 𝐸

𝑖
(𝐴) ≤ 𝐸

𝑖
(𝐵).

Similarly, when 𝑢
𝐴
(𝑥
𝑖
) ≤ 𝑢
𝐵
(𝑥
𝑖
) and V

𝐵
(𝑥
𝑖
) ≤ V
𝐴
(𝑥
𝑖
) for

𝑢
𝐵
(𝑥
𝑖
) ≤ V
𝐵
(𝑥
𝑖
), we can also prove that 𝐸

𝑖
(𝐴) ≤ 𝐸

𝑖
(𝐵). Hence

we have 𝐸(𝐴) ≤ 𝐸(𝐵).

Analyzing the features of the cosine function, we give the
following general form of the entropy measure 𝐸 defined in
(11), which is suggested by the referee.

Theorem 11. Let 𝑓 : [−1, 1] → [0, 1] be an even function
such that 𝑓 is strictly monotone increasing on [0, 1], 𝑓(−1) =
𝑓(1) = 0, and 𝑓(0) = 1. For an IFS 𝐴 = {⟨𝑥

𝑖
, 𝑢
𝐴
(𝑥
𝑖
), V
𝐴
(𝑥
𝑖
)⟩ |

𝑥
𝑖
∈ 𝑋}, let

𝐸
𝑓 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

𝑓(
𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

1 + 𝜋
𝐴
(𝑥
𝑖
)

) . (15)

Then 𝐸
𝑓
is an entropy measure for IFSs.

Proof. The process of the proof is similar to that for
Theorem 10. We omit it.

There are many functions, for example, 𝑓(𝑥) = 1 −

|𝑥|, 𝑓(𝑥) = 1 − 𝑥
2, or 𝑓(𝑥) = cos(𝑥/2), satisfying the

requirements in Theorem 11. Clearly, different functions give
rise to different entropy measures for IFSs.

3.2. Comparison with Existing Entropy Measures. For an IFS
𝐴 in 𝑋, Ye [29] proposed two entropy measures 𝐽

1
(𝐴) and

𝐽
2
(𝐴):

𝐽
1 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

{[sin
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ sin
1 − 𝑢
𝐴
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1]

×
1

√2 − 1

} ,

𝐽
2 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

{[cos
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ cos
1 − 𝑢
𝐴
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1]

×
1

√2 − 1

} .

(16)

The following proposition shows that these two formulas
are the same.

Proposition 12. For each 𝐴 = {⟨𝑥
𝑖
, 𝑢
𝐴
(𝑥
𝑖
), V
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋}

in IFS(𝑋), let

𝐽 (𝐴) =
1

𝑛

𝑛

∑

𝑖=1

{[√2 cos
𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1] ×

1

√2 − 1

} .

(17)

Then 𝐽
1
(𝐴) = 𝐽

2
(𝐴) = 𝐽(𝐴).
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Proof. By the properties of trigonometric functions, we have,
for each 𝐴 = {⟨𝑥

𝑖
, 𝑢
𝐴
(𝑥
𝑖
), V
𝐴
(𝑥
𝑖
)⟩ | 𝑥
𝑖
∈ 𝑋},

𝐽
1 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

{[sin
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ cos(𝜋
2
−
1 − 𝑢
𝐴
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
)

4
𝜋) − 1]

×
1

√2 − 1

}

=
1

𝑛

𝑛

∑

𝑖=1

{[sin
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ cos
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1]

×
1

√2 − 1

} ,

𝐽
2 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

{[cos
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ sin(𝜋
2
−
1 − 𝑢
𝐴
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
)

4
𝜋) − 1]

×
1

√2 − 1

}

=
1

𝑛

𝑛

∑

𝑖=1

{[sin
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ cos
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1]

×
1

√2 − 1

} .

(18)

It follows that 𝐽
1
(𝐴) = 𝐽

2
(𝐴). Next, we can simplify it as

follows:

𝐽
1 (𝐴) = 𝐽2 (𝐴)

=
1

𝑛

𝑛

∑

𝑖=1

{[sin
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+ cos
1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1]

×
1

√2 − 1

}

=
1

𝑛

𝑛

∑

𝑖=1

{√2[
√2

2
sin

1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋

+
√2

2
cos

1 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 −

√2

2
]

×
1

√2 − 1

}

=
1

𝑛

𝑛

∑

𝑖=1

{√2[sin
2 + 𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 −

√2

2
]

×
1

√2 − 1

}

=
1

𝑛

𝑛

∑

𝑖=1

{[√2 cos
𝑢
𝐴
(𝑥
𝑖
) − V
𝐴
(𝑥
𝑖
)

4
𝜋 − 1] ×

1

√2 − 1

}

= 𝐽 (𝐴) .

(19)

The following example shows that the entropy measure 𝐽
can produce some counterintuitive cases.

Example 13. Let 𝐴
1
= {⟨𝑥

𝑖
, 0.1, 0.3⟩ | 𝑥

𝑖
∈ 𝑋}, 𝐴

2
=

{⟨𝑥
𝑖
, 0.3, 0.5⟩ | 𝑥

𝑖
∈ 𝑋}, and 𝐴

3
= {⟨𝑥

𝑖
, 0.4, 0.6⟩ | 𝑥

𝑖
∈ 𝑋}

be three IFSs in𝑋. Now we calculate their entropies.

The absolute differences between the membership
degrees and the nonmembership degrees of each 𝑥

𝑖
to 𝐴
1
,

𝐴
2
, and𝐴

3
are the same; thus, by formula (17), we can obtain

that 𝐽(𝐴
1
) = 𝐽(𝐴

2
) = 𝐽(𝐴

3
) = 0.9580. But we can see that

the hesitancy degrees of the element 𝑥
𝑖
to𝐴
1
,𝐴
2
, and𝐴

3
are

different. Intuitively, the uncertain information of𝐴
1
is more

than that of 𝐴
2
, and the uncertain information of 𝐴

3
is the

least. Obviously, the results obtained by using Ye’s formula
are not in accordance with our intuition.

Now, let us calculate the entropies of 𝐴
1
, 𝐴
2
, and 𝐴

3
by

formula (11). We have 𝐸(𝐴
1
) = 0.9808, 𝐸(𝐴

2
) = 0.9659, and

𝐸(𝐴
3
) = 0.9511, so that 𝐸(𝐴

1
) > 𝐸(𝐴

2
) > 𝐸(𝐴

3
). This is

consistent with our intuition according to the above analysis.
The following theorem is a straightforward exercise.

Theorem 14. Let 𝑋 = {𝑥}. For a constant 𝑎 in (0, 1], let F
𝑎

be the set of all IFSs {⟨𝑥, 𝑢
𝐴
(𝑥), V
𝐴
(𝑥)⟩} in 𝑋 with |𝑢

𝐴
(𝑥) −

V
𝐴
(𝑥)| = 𝑎. Then 𝐸 is strictly monotone increasing with respect

to 𝜋
𝐴
(𝑥) onF

𝑎
.

Comparing the entropy measures 𝐸 and 𝐽, we find that
𝐸 could measure not only the degree of fuzziness, but
also the degree of intuitionism of IFSs, which overcomes
the shortcoming that 𝐽 could only measure the degree of
fuzziness of IFSs.The entropy measures in [28–31] could also
measure both fuzziness and intuitionism, but in some cases,
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some of themmay not work well as desired. Next we compare
the entropy measure 𝐸 with them.

We first recall these entropy measures. Xia and Xu [28]
derived a cross-entropy measure 𝐸𝑞

𝑋𝑀
:

𝐸
𝑞

𝑋𝑀
(𝐴) = −

1

𝑛𝑇

𝑛

∑

𝑖=1

{[1 + 𝑞 (1 − 𝑢
𝐴
(𝑥
𝑖
))]

⋅ ln [1 + 𝑞 (1 − 𝑢
𝐴
(𝑥
𝑖
))]

+ [1 + 𝑞 (1 − V
𝐴
(𝑥
𝑖
))]

⋅ ln [1 + 𝑞 (1 − V
𝐴
(𝑥
𝑖
))]

− [1 + 𝑞 (1 − 𝑢
𝐴
(𝑥
𝑖
)) + 1

+𝑞 (1 − V
𝐴
(𝑥
𝑖
))]

⋅ [ln (1 + 𝑞 (1 − 𝑢
𝐴
(𝑥
𝑖
)) + 1

+𝑞 (1 − V
𝐴
(𝑥
𝑖
))) − ln 2]} + 1,

(20)

where 𝑇 = (1 + 𝑞) ln(1 + 𝑞) − (2 + 𝑞)(ln(2 + 𝑞) − ln 2), 𝑞 > 0.
In [30, 31], Vlachos and Sergiadis proposed an entropy

measure 𝐸VS1 according to a cross-entropy measure and an
entropy measure 𝐸VS2 based on the product of two vectors:

𝐸VS1 (𝐴) = −
1

𝑛 ln 2

𝑛

∑

𝑖=1

[𝑢
𝐴
(𝑥
𝑖
) ln 𝑢
𝐴
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
) ln V
𝐴
(𝑥
𝑖
)

− (1 − 𝜋
𝐴
(𝑥
𝑖
)) ln (1 − 𝜋

𝐴
(𝑥
𝑖
))

−𝜋
𝐴
(𝑥
𝑖
) ln 2] ,

𝐸VS2 (𝐴) =
1

𝑛

𝑛

∑

𝑖=1

2𝑢
𝐴
(𝑥
𝑖
) V
𝐴
(𝑥
𝑖
) + 𝜋
2

𝐴
(𝑥
𝑖
)

𝑢
2

𝐴
(𝑥
𝑖
) + V2
𝐴
(𝑥
𝑖
) + 𝜋
2

𝐴
(𝑥
𝑖
)
.

(21)

These three entropy measures satisfy the set of require-
ments in Definition 9. The following examples show that
the entropy measures 𝐸VS1 and 𝐸VS2 may give inconsistent
information in some cases.

Example 15. Let

𝐴
1
= {⟨𝑥, 0.1, 0.9⟩ | 𝑥 ∈ 𝑋} ,

𝐴
2
= {⟨𝑥, 0.2, 0.7⟩ | 𝑥 ∈ 𝑋} ,

𝐴
3
= {⟨𝑥, 0.2, 0.5⟩ | 𝑥 ∈ 𝑋} ,

𝐴
4
= {⟨𝑥, 0.2, 0.4⟩ | 𝑥 ∈ 𝑋} ,

𝐴
5
= {⟨𝑥, 0.4, 0.5⟩ | 𝑥 ∈ 𝑋} ,

𝐴
6
= {⟨𝑥, 0.3, 0.4⟩ | 𝑥 ∈ 𝑋} ,

𝐴
7
= {⟨𝑥, 0.1, 0.2⟩ | 𝑥 ∈ 𝑋} ,

𝐴
8
= {⟨𝑥, 0.5, 0.5⟩ | 𝑥 ∈ 𝑋} .

(22)

Table 1 gives us the entropies of 𝐴
𝑖
by 𝐸, 𝐸1

𝑋𝑀
, 𝐸VS1, and

𝐸VS2.

Table 1: Comparison with existing entropies.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

𝐴
7

𝐴
8

𝐸 0.3090 0.7557 0.9350 0.9749 0.9898 0.9927 0.9957 1
𝐸
1

𝑋𝑀
0.3645 0.7616 0.9196 0.9654 0.9905 0.9911 0.9920 1

𝐸VS1 0.4690 0.7878 0.9042 0.9510 0.9920 0.9897 0.9755 1
𝐸VS2 0.2195 0.5370 0.7632 0.8889 0.9762 0.9706 0.9815 1

From Table 1, we can see that, for 𝐸 and 𝐸1
𝑋𝑀

, the closer
the membership degree and the nonmembership degree,
or the bigger the hesitation degree, the greater its entropy.
Particularly, when the membership degree is equal to the
nonmembership degree, the entropy reaches the maximum
value 1.The results obtained by using the entropy measures 𝐸
and 𝐸1

𝑋𝑀
are in accordance with our intuition.

For 𝐴
5
, 𝐴
6
, and 𝐴

7
, we can see that the absolute

differences between the membership degrees and the non-
membership degrees are the same, and hesitancy degrees of
the element 𝑥 to 𝐴

5
, 𝐴
6
, and 𝐴

7
are increasing. Intuitively,

the uncertain degree of the three IFSs should be increasing.
In fact, from Table 1, we have 𝐸(𝐴

5
) < 𝐸(𝐴

6
) < 𝐸(𝐴

7
) and

𝐸
1

𝑋𝑀
(𝐴
5
) < 𝐸

1

𝑋𝑀
(𝐴
6
) < 𝐸

1

𝑋𝑀
(𝐴
7
), which are consistent

with our intuition. But, by entropy measures 𝐸VS1 and 𝐸VS2,
we have 𝐸VS1(𝐴5) > 𝐸VS1(𝐴6) > 𝐸VS1(𝐴7), 𝐸VS2(𝐴5) >

𝐸VS2(𝐴6), and 𝐸VS2(𝐴6) < 𝐸VS2(𝐴7). Obviously, the results
obtained by using the two entropy measures are not in
accordance with our intuition. Furthermore, for the entropy
measures 𝐸VS1 and 𝐸VS2, we have the following conclusions.

Theorem 16. Let 𝑋 = {𝑥}. For a constant 𝑎 in (0, 1), let F
𝑎

be the set of all IFSs {⟨𝑥, 𝑢
𝐴
(𝑥), V
𝐴
(𝑥)⟩} in 𝑋 with |𝑢

𝐴
(𝑥) −

V
𝐴
(𝑥)| = 𝑎. Then

(1) 𝐸
𝑉𝑆1

(𝐴) is strictly monotone decreasing with respect to
𝜋
𝐴
(𝑥) onF

𝑎
;

(2) when 0 ≤ 𝜋
𝐴
(𝑥) < 1/3, 𝐸

𝑉𝑆2
(𝐴) is strictly monotone

decreasing with respect to 𝜋
𝐴
(𝑥) on F

𝑎
; when 1/3 <

𝜋
𝐴
(𝑥) ≤ 1, 𝐸

𝑉𝑆2
(𝐴) is strictly monotone increasing

with respect to 𝜋
𝐴
(𝑥) onF

𝑎
.

Proof. Since 𝜋
𝐴
(𝑥) = 1−𝑢

𝐴
(𝑥)− V

𝐴
(𝑥) and |𝑢

𝐴
(𝑥)− V

𝐴
(𝑥)| =

𝑎, we have 𝑢
𝐴
(𝑥) = (1−𝜋

𝐴
(𝑥)+𝑎)/2 and V

𝐴
(𝑥) = (1−𝜋

𝐴
(𝑥)−

𝑎)/2 or V
𝐴
(𝑥) = (1−𝜋

𝐴
(𝑥)+𝑎)/2 and𝑢

𝐴
(𝑥) = (1−𝜋

𝐴
(𝑥)−𝑎)/2.

(1) Applying the above conditions, we have

𝐸VS1 (𝐴)

= −
1

ln 2
[
1 − 𝜋
𝐴 (𝑥) + 𝑎

2
ln 1 − 𝜋𝐴 (𝑥) + 𝑎

2

+
1 − 𝜋
𝐴 (𝑥) − 𝑎

2
ln 1 − 𝜋𝐴 (𝑥) − 𝑎

2

− (1 − 𝜋
𝐴 (𝑥)) ln (1 − 𝜋𝐴 (𝑥)) − 𝜋𝐴 (𝑥) ln 2] ,

(23)

where we let 0 ln 0 = 0 if necessary.
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Let 𝑓(𝑡) = ((1 − 𝑡 + 𝑎)/2) ln((1 − 𝑡 + 𝑎)/2) + ((1 − 𝑡 −

𝑎)/2) ln((1−𝑡−𝑎)/2)−(1−𝑡) ln(1−𝑡)−𝑡 ln 2 for 𝑡 ∈ (0, 1−𝑎).
Then 𝑓(𝑡) = −(1/2) ln((1−𝑡+𝑎)/2)−(1/2) ln((1−𝑡−𝑎)/2)+
ln 1 + 𝑡 − ln 2 = −(1/2) ln(((1 − 𝑡)2 − 𝑎2)/(1 − 𝑡)2) > 0, so that
𝑓(𝑡) is strictly monotone increasing with respect to 𝑡. Thus
𝐸VS1(𝐴) is strictlymonotone decreasingwith respect to𝜋

𝐴
(𝑥)

onF
𝑎
.

(2) Since 𝑢
𝐴
(𝑥) = (1 − 𝜋

𝐴
(𝑥) + 𝑎)/2 and V

𝐴
(𝑥) = (1 −

𝜋
𝐴
(𝑥)−𝑎)/2 or V

𝐴
(𝑥) = (1−𝜋

𝐴
(𝑥)+𝑎)/2 and 𝑢

𝐴
(𝑥) =

(1 − 𝜋
𝐴
(𝑥) − 𝑎)/2, we have

𝐸VS2 (𝐴) = (2
1 − 𝜋
𝐴 (𝑥) − 𝑎

2

1 − 𝜋
𝐴 (𝑥) + 𝑎

2
+ 𝜋
2

𝐴
(𝑥))

⋅ ((
1 − 𝜋
𝐴 (𝑥) − 𝑎

2
)

2

+ (
1 − 𝜋
𝐴 (𝑥) + 𝑎

2
)

2

+ 𝜋
2

𝐴
(𝑥))

−1

=
3𝜋
2

𝐴
(𝑥) − 2𝜋𝐴 (𝑥) + 1 − 𝑎

2

3𝜋
2

𝐴
(𝑥) − 2𝜋𝐴 (𝑥) + 1 + 𝑎

2
.

(24)

Let

𝑓 (𝜋
𝐴 (𝑥)) =

3𝜋
2

𝐴
(𝑥) − 2𝜋𝐴 (𝑥) + 1 − 𝑎

2

3𝜋
2

𝐴
(𝑥) − 2𝜋𝐴 (𝑥) + 1 + 𝑎

2
. (25)

Then𝑓(𝜋
𝐴
(𝑥)) = 2𝑎

2
(6𝜋
𝐴
(𝑥)−2)/(3𝜋

2

𝐴
(𝑥)−2𝜋

𝐴
(𝑥)+1+𝑎

2
)
2.

Clearly, when 0 ≤ 𝜋
𝐴
(𝑥) < 1/3, we have 𝑓(𝜋

𝐴
(𝑥)) < 0,

so that 𝐸VS3(𝐴) is strictly monotone decreasing with respect
to 𝜋
𝐴
(𝑥) on F

𝑎
; when 1/3 < 𝜋

𝐴
(𝑥) ≤ 1, 𝑓(𝜋

𝐴
(𝑥)) > 0,

which implies that 𝐸VS3(𝐴) is strictly monotone increasing
with respect to 𝜋

𝐴
(𝑥) onF

𝑎
.

Hence, compared with the above entropy measures, the
entropy measure 𝐸 defined by formula (11) is more effective
and reasonable tomeasure the uncertain information of IFSs.

4. An Entropy Measure for Interval-Valued
Intuitionistic Fuzzy Sets

In this section we will extend the entropy measure 𝐸 to
IVIFSs and define a new entropy measure for IVIFSs which
is compared to the entropy measures defined in [37].

Liu et al. [35] and Zhang et al. [38] proposed a set of
axiomatic requirements for an entropy measure of IVIFSs,
which extends Szmidt and Kacprzyk’s axioms formulated for
entropy of IFSs [26].

Definition 17 (see [35]). A real-valued function
𝐸: IVIFS(𝑋) → [0, 1] is called an entropy measure for an
IVIFS 𝐴, if it satisfies the following axiomatic requirements:

(E1) 𝐸(𝐴) = 0 if and only if 𝐴 is a crisp set;
(E2) 𝐸(𝐴) = 1 if and only if [𝑢

−

𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)] =

[V−
𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)] for each 𝑥

𝑖
∈ 𝑋;

(E3) 𝐸(𝐴) = 𝐸(𝐴𝐶);

(E4) 𝐸(𝐴) ≤ 𝐸(𝐵) if𝐴 is less fuzzy than 𝐵, which is defined
as

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ≤ [𝑢

−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ,

[V−
𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ≥ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)]

for [𝑢
−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ≤ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)] ;

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ≥ [𝑢

−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ,

[V−
𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ≤ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)]

for [𝑢
−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ≥ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)] ;

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ⪯ [𝑢

−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ,

[V−
𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ⪰ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)]

for [𝑢
−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ⪯ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)] ;

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ⪰ [𝑢

−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ,

[V−
𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ⪯ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)]

for [𝑢
−

𝐵
(𝑥
𝑖
) , 𝑢
+

𝐵
(𝑥
𝑖
)] ⪰ [V−

𝐵
(𝑥
𝑖
) , V+
𝐵
(𝑥
𝑖
)] .

(26)

In this sectionwewill introduce a formula to calculate the
entropy of an IVIFS based on the entropy measure for IFSs
defined by formula (11). For any 𝐴 ∈ IVIFS(𝑋) we define

𝐸 (𝐴) =
1

𝑛

𝑛

∑

𝑖=1

cos
𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)
 +

𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)


2 (2 + 𝜋
+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
))

𝜋.

(27)

Then we have the following theorem.

Theorem 18. The mapping 𝐸, defined by (27), is an entropy
measure for IVIFSs.

Proof. In order to prove that the mapping 𝐸 is an entropy
measure, it is sufficient to show that 𝐸 satisfies the conditions
(E1)–(E4) in Definition 17. Suppose that

𝐸
𝑖 (𝐴) = cos

𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)
 +

𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)


2 (2 + 𝜋
+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
))

𝜋.

(28)

Since 𝑢−
𝐴
(𝑥
𝑖
), 𝑢+
𝐴
(𝑥
𝑖
), V−
𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
), 𝜋−
𝐴
(𝑥
𝑖
), and 𝜋+

𝐴
(𝑥
𝑖
) are all

in the interval [0, 1], we have 0 ≤ ((|𝑢−
𝐴
(𝑥
𝑖
)−V−
𝐴
(𝑥
𝑖
)|+|𝑢
+

𝐴
(𝑥
𝑖
)−

V+
𝐴
(𝑥
𝑖
)|)/2(2 + 𝜋

+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
)))𝜋 ≤ 𝜋/2. Thus 0 ≤ 𝐸

𝑖
(𝐴) ≤ 1.

(E1) Let 𝐴 be a crisp set; that is, [𝑢−
𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)] =

[0, 0], [V−
𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)] = [1, 1], or [𝑢−

𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)] = [1, 1],

[V−
𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)] = [0, 0] for any 𝑥

𝑖
∈ 𝑋. No matter in which

case, we have 𝐸
𝑖
(𝐴) = 0. Hence 𝐸(𝐴) = 0.
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On the other hand, suppose that 𝐸(𝐴) = 0. Since 0 ≤

𝐸
𝑖
(𝐴) ≤ 1, we have 𝐸

𝑖
(𝐴) = 0. Also since 0 ≤ ((|𝑢

−

𝐴
(𝑥
𝑖
) −

V−
𝐴
(𝑥
𝑖
)| + |𝑢

+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)|)/2(2 + 𝜋

+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
)))𝜋 ≤ 𝜋/2,

we have ((|𝑢−
𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)| + |𝑢

+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)|)/2(2+𝜋

+

𝐴
(𝑥
𝑖
) +

𝜋
−

𝐴
(𝑥
𝑖
)))𝜋 = 𝜋/2. From the following four possible relations

of [𝑢−
𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)] and [V−

𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)]:

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ≤ [V−

𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ,

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ≥ [V−

𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ,

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ⪯ [V−

𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ,

[𝑢
−

𝐴
(𝑥
𝑖
) , 𝑢
+

𝐴
(𝑥
𝑖
)] ⪰ [V−

𝐴
(𝑥
𝑖
) , V+
𝐴
(𝑥
𝑖
)] ,

(29)

we can easily obtain 𝑢−
𝐴
(𝑥
𝑖
) = 𝑢
+

𝐴
(𝑥
𝑖
) = 1, V−

𝐴
(𝑥
𝑖
) = V+
𝐴
(𝑥
𝑖
) =

0, or V−
𝐴
(𝑥
𝑖
) = V+
𝐴
(𝑥
𝑖
) = 1, 𝑢−

𝐴
(𝑥
𝑖
) = 𝑢
+

𝐴
(𝑥
𝑖
) = 0, so 𝐴 is a crisp

set.
(E2) Let [𝑢−

𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)] = [V−

𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)]. Applying this

condition to (27) yields 𝐸(𝐴) = 1.
Now suppose that 𝐸(𝐴) = 1. It follows that 𝐸

𝑖
(𝐴) = 1

for each 𝑥
𝑖
∈ 𝑋. Since 0 ≤ ((|𝑢

−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)| + |𝑢

+

𝐴
(𝑥
𝑖
) −

V+
𝐴
(𝑥
𝑖
)|)/2(2 + 𝜋

+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
)))𝜋 ≤ 𝜋/2, we have |𝑢−

𝐴
(𝑥
𝑖
) −

V−
𝐴
(𝑥
𝑖
)|+|𝑢
+

𝐴
(𝑥
𝑖
)−V+
𝐴
(𝑥
𝑖
)| = 0.Thus 𝑢−

𝐴
(𝑥
𝑖
) = V−
𝐴
(𝑥
𝑖
), 𝑢+
𝐴
(𝑥
𝑖
) =

V+
𝐴
(𝑥
𝑖
) for each 𝑥

𝑖
∈ 𝑋.

(E3) For 𝐴𝐶 = {⟨𝑥
𝑖
, [V−
𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)], [𝑢
−

𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)]⟩ |

𝑥
𝑖
∈ 𝑋}, we can easily get that 𝐸(𝐴𝐶) = 𝐸(𝐴).
(E4) Suppose that [𝑢−

𝐴
(𝑥
𝑖
), 𝑢
+

𝐴
(𝑥
𝑖
)] ≤ [𝑢

−

𝐵
(𝑥
𝑖
), 𝑢
+

𝐵
(𝑥
𝑖
)],

[V−
𝐴
(𝑥
𝑖
), V+
𝐴
(𝑥
𝑖
)] ≥ [V−

𝐵
(𝑥
𝑖
), V+
𝐵
(𝑥
𝑖
)] for [𝑢

−

𝐵
(𝑥
𝑖
), 𝑢
+

𝐵
(𝑥
𝑖
)] ≤

[V−
𝐵
(𝑥
𝑖
), V+
𝐵
(𝑥
𝑖
)]. Then we have the following relations:

𝑢
−

𝐴
(𝑥
𝑖
) ≤ 𝑢
−

𝐵
(𝑥
𝑖
) ≤ V−
𝐵
(𝑥
𝑖
) ≤ V−
𝐴
(𝑥
𝑖
) ,

𝑢
+

𝐴
(𝑥
𝑖
) ≤ 𝑢
+

𝐵
(𝑥
𝑖
) ≤ V+
𝐵
(𝑥
𝑖
) ≤ V+
𝐴
(𝑥
𝑖
) .

(30)

In order to prove 𝐸
𝑖
(𝐴) ≤ 𝐸

𝑖
(𝐵), we need to prove that

𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)
 +

𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)


2 + 𝜋
+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
)

≥

𝑢
−

𝐵
(𝑥
𝑖
) − V−
𝐵
(𝑥
𝑖
)
 +

𝑢
+

𝐵
(𝑥
𝑖
) − V+
𝐵
(𝑥
𝑖
)


2 + 𝜋
+

𝐵
(𝑥
𝑖
) + 𝜋
−

𝐵
(𝑥
𝑖
)

.

(31)

By the assumption, it is equivalent to prove that

𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)

2 + 𝜋
+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
)

≤
𝑢
−

𝐵
(𝑥
𝑖
) − V−
𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
) − V+
𝐵
(𝑥
𝑖
)

2 + 𝜋
+

𝐵
(𝑥
𝑖
) + 𝜋
−

𝐵
(𝑥
𝑖
)

,

(32)

which can be simplified to prove that

(𝑢
−

𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
)) (2 − V−

𝐵
(𝑥
𝑖
) − V+
𝐵
(𝑥
𝑖
))

+ 2 (V−
𝐵
(𝑥
𝑖
) + V+
𝐵
(𝑥
𝑖
))

+ (V−
𝐴
(𝑥
𝑖
) + V+
𝐴
(𝑥
𝑖
)) (𝑢
−

𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
) − 2)

− 2 (𝑢
−

𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
)) ≤ 0.

(33)

Indeed, since 2− V−
𝐵
(𝑥
𝑖
)− V+
𝐵
(𝑥
𝑖
) ≥ 0 and 𝑢−

𝐵
(𝑥
𝑖
)+𝑢
+

𝐵
(𝑥
𝑖
)−

2 ≤ 0, we have

(𝑢
−

𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
)) (2 − V−

𝐵
(𝑥
𝑖
) − V+
𝐵
(𝑥
𝑖
))

≤ (𝑢
−

𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
)) (2 − V−

𝐵
(𝑥
𝑖
) − V+
𝐵
(𝑥
𝑖
)) ,

(V−
𝐴
(𝑥
𝑖
) + V+
𝐴
(𝑥
𝑖
)) (𝑢
−

𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
) − 2)

≤ (V−
𝐵
(𝑥
𝑖
) + V+
𝐵
(𝑥
𝑖
)) (𝑢
−

𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
) − 2) .

(34)

Then, by computing the sum of the left (resp., right) terms of
the above two inequalities, we have (33). Hence𝐸

𝑖
(𝐴) ≤ 𝐸

𝑖
(𝐵)

holds.
By a similar way, we can also prove that 𝐸

𝑖
(𝐴) ≤ 𝐸

𝑖
(𝐵) for

the other three cases. Since 𝐸
𝑖
(𝐴) ≤ 𝐸

𝑖
(𝐵) for each 𝑖, we have

𝐸(𝐴) ≤ 𝐸(𝐵).

Similar toTheorem 11, we give the following general form
of the entropy measure 𝐸 defined in (27).

Theorem 19. Let 𝑓 : [−1, 1] → [0, 1] be an even function
such that 𝑓 is strictly monotone increasing on [0, 1], 𝑓(−1) =
𝑓(1) = 0, and 𝑓(0) = 1. For any 𝐴 ∈ 𝐼𝑉𝐼𝐹𝑆(𝑋), let

𝐸
𝑓 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

𝑓(

𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)
 +

𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)


(2 + 𝜋
+

𝐴
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
))

) .

(35)

Then 𝐸
𝑓
is an entropy measure for IVIFSs.

Proof. The process of the proof is similar to that for
Theorem 18. We omit it.

In the following, we will compare the entropy measure 𝐸
defined by (27) with the entropy measures defined in [37, 41]:

𝐸 (𝐴) =
1

𝑛

𝑛

∑

𝑖=1

((2 −
𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)
 −

𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)


+𝜋
−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
))

⋅ (2 +
𝑢
−

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
)
 +

𝑢
+

𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)


+𝜋
−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
))
−1

) .

(36)
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Let 𝐴 = {⟨𝑥, [𝑢
−

𝐴
(𝑥), 𝑢
+

𝐴
(𝑥)], [V−

𝐴
(𝑥), V+
𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} be

an IVIFS in 𝑋. Chen et al. [41] proposed a concrete entropy
measure:

𝐸
𝐶𝑋 (𝐴) = −

1

𝑛 ln 4

𝑛

∑

𝑖=1

[𝑢
−

𝐴
(𝑥
𝑖
) ln 𝑢−
𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
) ln 𝑢+
𝐴
(𝑥
𝑖
)

+ V−
𝐴
(𝑥
𝑖
) ln V−
𝐴
(𝑥
𝑖
) + V+
𝐴
(𝑥
𝑖
) ln V+
𝐴
(𝑥
𝑖
)

− (1 − 𝜋
−

𝐴
(𝑥
𝑖
)) ln (1 − 𝜋−

𝐴
(𝑥
𝑖
))

− 𝜋
−

𝐴
(𝑥
𝑖
) ln 2

− (1 − 𝜋
+

𝐴
(𝑥
𝑖
)) ln (1 − 𝜋+

𝐴
(𝑥
𝑖
))

−𝜋
+

𝐴
(𝑥
𝑖
) ln 2] .

(37)

Ye [37] introduced two entropy measures 𝐿
1
and 𝐿

2
as

follows:

𝐿
1 (𝐴)

=
1

𝑛

𝑛

∑

𝑖=1

{[sin
1 + 𝑢
−

𝐴
(𝑥
𝑖
) + 𝑝𝑊

𝑢
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
) − 𝑞𝑊V (𝑥𝑖)

4
𝜋

+ sin
1 − 𝑢
−

𝐴
(𝑥
𝑖
) − 𝑝𝑊

𝑢
(𝑥
𝑖
) + V−
𝐴
(𝑥
𝑖
) + 𝑞𝑊V (𝑥𝑖)

4

⋅ 𝜋 − 1] ×
1

√2 − 1

} ,

𝐿
2 (𝐴)

=
1

𝑛

𝑛

∑

𝑖=1

{[cos
1 + 𝑢
−

𝐴
(𝑥
𝑖
) + 𝑝𝑊

𝑢
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
) − 𝑞𝑊V (𝑥𝑖)

4
𝜋

+ cos
1 − 𝑢
−

𝐴
(𝑥
𝑖
) − 𝑝𝑊

𝑢
(𝑥
𝑖
) + V−
𝐴
(𝑥
𝑖
) + 𝑞𝑊V (𝑥𝑖)

4

⋅ 𝜋 − 1] ×
1

√2 − 1

} ,

(38)

where 𝑊
𝑢
(𝑥
𝑖
) = 𝑢

+

𝐴
(𝑥
𝑖
) − 𝑢
−

𝐴
(𝑥
𝑖
), 𝑊V(𝑥𝑖) = V+

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
),

and 𝑝, 𝑞 ∈ [0, 1] are two fixed numbers.

Theorem 20. For each 𝐴 in IVIFS(𝑋), let

𝐿 (𝐴)

=
1

𝑛

𝑛

∑

𝑖=1

{[√2 cos
𝑢
−

𝐴
(𝑥
𝑖
) + 𝑝𝑊

𝑢
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
) − 𝑞𝑊V (𝑥𝑖)

4

⋅ 𝜋 − 1] ×
1

√2 − 1

} ,

(39)

where 𝑊
𝑢
(𝑥
𝑖
) = 𝑢

+

𝐴
(𝑥
𝑖
) − 𝑢
−

𝐴
(𝑥
𝑖
), 𝑊V(𝑥𝑖) = V+

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
),

and 𝑝, 𝑞 ∈ [0, 1].
Then 𝐿

1
(𝐴) = 𝐿

2
(𝐴) = 𝐿(𝐴).

Proof. The process of the proof is similar to that for
Proposition 12. We omit it.

Example 21. Let us calculate entropies for the following
IVIFSs:

𝐴
1
= {⟨𝑥

𝑖
, [0.1, 0.2] , [0.1, 0.2]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
2
= {⟨𝑥

𝑖
, [0.3, 0.3] , [0.1, 0.5]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
3
= {⟨𝑥

𝑖
, [0.1, 0.2] , [0.3, 0.4]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
4
= {⟨𝑥

𝑖
, [0.2, 0.3] , [0.4, 0.5]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
5
= {⟨𝑥

𝑖
, [0.3, 0.4] , [0.5, 0.6]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
6
= {⟨𝑥

𝑖
, [0.2, 0.3] , [0.5, 0.6]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
7
= {⟨𝑥

𝑖
, [0.1, 0.2] , [0.5, 0.6]⟩ | 𝑥𝑖 ∈ 𝑋} ,

𝐴
8
= {⟨𝑥

𝑖
, [0.1, 0.2] , [0.7, 0.8]⟩ | 𝑥𝑖 ∈ 𝑋} .

(40)

By the entropy measure 𝐸
𝐶𝑋

, we get

𝐸
𝐶𝑋

(𝐴
1
) = 1, 𝐸

𝐶𝑋
(𝐴
2
) = 0.944,

𝐸
𝐶𝑋

(𝐴
3
) = 0.9377, 𝐸

𝐶𝑋
(𝐴
4
) = 0.9573,

𝐸
𝐶𝑋

(𝐴
5
) = 0.9627, 𝐸

𝐶𝑋
(𝐴
6
) = 0.9153,

𝐸
𝐶𝑋

(𝐴
7
) = 0.8195, 𝐸

𝐶𝑋
(𝐴
8
) = 0.6784.

(41)

The difference between the membership degrees and
nonmembership degrees of 𝐴

4
and 𝐴

5
is the same, and the

hesitant degree of𝐴
4
is bigger than that of𝐴

5
, so the entropy

of 𝐴
4
should be bigger than that of 𝐴

5
. However, by the

entropy measure 𝐸
𝐶𝑋

, we have 𝐸
𝐶𝑋
(𝐴
4
) < 𝐸
𝐶𝑋
(𝐴
5
).

Using (43), we have

𝐿 (𝐴
1
) = 𝐿 (𝐴

2
) = 1,

𝐿 (𝐴
3
) = 𝐿 (𝐴

4
) = 𝐿 (𝐴

5
) = 0.9580,

𝐿 (𝐴
6
) = 0.9057, 𝐿 (𝐴

7
) = 0.8329,

𝐿 (𝐴
8
) = 0.6279.

(42)

We suppose that 𝑝 = 𝑞 = 0.5 in formula (39); then
formula (39) reduces to

𝐿 (𝐴) =
1

𝑛

𝑛

∑

𝑖=1

{[√2 cos
𝑢
−

𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
) − V−
𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)

8

⋅ 𝜋 − 1] ×
1

√2 − 1

} .

(43)

From these results, we can see that the entropy formula
defined by (43) has the following two drawbacks.

(1) It does not satisfy the necessary condition of (E2)
in Definition 17. In fact, for any IVIFS 𝐴 satisfying
𝑢
−

𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
) = V−
𝐴
(𝑥
𝑖
) + V+
𝐴
(𝑥
𝑖
) for each 𝑥

𝑖
, we can

obtain 𝐽(𝐴) = 1.
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(2) It only reflects the difference between the member-
ship degree and nonmembership degree. Thus, for
any two IVIFS 𝐴 and 𝐵 satisfying |𝑢−

𝐴
(𝑥
𝑖
) + 𝑢
+

𝐴
(𝑥
𝑖
) −

V−
𝐴
(𝑥
𝑖
) − V+
𝐴
(𝑥
𝑖
)| = |𝑢

−

𝐵
(𝑥
𝑖
) + 𝑢
+

𝐵
(𝑥
𝑖
) − V−
𝐵
(𝑥
𝑖
) − V+
𝐵
(𝑥
𝑖
)|,

for all 𝑥
𝑖
∈ 𝑋, we have 𝐽(𝐴) = 𝐽(𝐵).

Now by the entropy formula defined by (27), we can
obtain

𝐸 (𝐴
1
) = 1, 𝐸 (𝐴

2
) = 0.9749,

𝐸 (𝐴
3
) = 0.9781, 𝐸 (𝐴

4
) = 0.9709,

𝐸 (𝐴
5
) = 0.9595, 𝐸 (𝐴

6
) = 0.9239,

𝐸 (𝐴
7
) = 0.8855, 𝐸 (𝐴

8
) = 0.6547.

(44)

The results show that 𝐸(𝐴
1
) ̸= 𝐸(𝐴

2
) and 𝐸(𝐴

4
) > 𝐸(𝐴

5
).

The proposed entropy measure 𝐸 can overcome the above
shortcomings of the entropy measures 𝐸

𝐶𝑋
and 𝐿.

5. The Application of Entropy Measures in
Multicriteria Decision-Making

Entropy measures have been applied in many problems
such as optimizing the distinguishability of input space
partitioning [42] and assessing the weights of experts or
criteria in intuitionistic fuzzy decision-making [43–45]. In
this section we propose a method to determinate experts’
weights inmulticriteria groupdecision-makingwith interval-
valued intuitionistic fuzzy information by using the proposed
entropy measures.

The group decision-making problem which is considered
in this paper can be represented as follows. Let 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a set of evaluation alternatives, 𝐷 =

{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑠
} a set of experts, 𝑈 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
} a

criterion set, and𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 the weighting vector

of criteria such that 𝑤
𝑗
∈ [0, 1] and ∑𝑚

𝑗=1
𝑤
𝑗
= 1. Let 𝐴

𝑘
=

(𝑠
(𝑘)

𝑖𝑗
)
𝑛×𝑚

(𝑘 = 1, 2, . . . , 𝑠) be interval-valued intuitionistic
fuzzy decision matrices, where 𝑠(𝑘)

𝑖𝑗
= ([𝑎

𝑘

𝑖𝑗
, 𝑏
𝑘

𝑖𝑗
], [𝑐
𝑘

𝑖𝑗
, 𝑑
𝑘

𝑖𝑗
]) is

an IVIFV, provided by the decision maker 𝑑
𝑘
∈ 𝐷 for the

alternative 𝑥
𝑖
∈ 𝑋 with respect to the criterion 𝐶

𝑗
∈ 𝑈.

Decision maker’s goal is to obtain the ranking order of the
alternatives.

According to [46], if criteria include cost criteria and
benefit criteria in multicriteria decision-making process, we
should transform the criterion values of cost type into those
of benefit type. Hence decision-making matrices 𝐴

𝑘
=

(𝑠
(𝑘)

𝑖𝑗
)
𝑛×𝑚

(𝑘 = 1, 2, . . . , 𝑠) are transformed into normalized
decision-making matrices 𝑅

𝑘
= (𝑟
(𝑘)

𝑖𝑗
)
𝑛×𝑚

(𝑘 = 1, 2, . . . , 𝑠),
where

𝑟
(𝑘)

𝑖𝑗
=

{{

{{

{

𝑠
(𝑘)

𝑖𝑗
, for benefit criterion 𝐶

𝑗
,

𝑠
(𝑘)𝐶

𝑖𝑗
, for cost criterion 𝐶

𝑗
,

(45)

and 𝑠(𝑘)𝐶
𝑖𝑗

= ([𝑐
𝑘

𝑖𝑗
, 𝑑
𝑘

𝑖𝑗
], [𝑎
𝑘

𝑖𝑗
, 𝑏
𝑘

𝑖𝑗
]) (𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . ,

𝑚).

For a given weighting vector of criteria, we can use the
IVIFWA operator to derive the individual overall evaluation
values 𝑧(𝑘)

𝑖
= ([𝑎

(𝑘)

𝑖
, 𝑏
(𝑘)

𝑖
], [𝑐
(𝑘)

𝑖
, 𝑑
(𝑘)

𝑖
]) of alternatives 𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑛) by experts 𝑑
𝑘
(𝑘 = 1, 2, . . . , 𝑠):

𝑧
(𝑘)

𝑖
= IVIFWA

𝑤
(𝑟
(𝑘)

𝑖1
, 𝑟
(𝑘)

𝑖2
, . . . , 𝑟

(𝑘)

𝑖𝑚
)

= 𝑤
1
𝑟
(𝑘)

𝑖1
⊕ 𝑤
2
𝑟
(𝑘)

𝑖2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑤

𝑚
𝑟
(𝑘)

𝑖𝑚
,

(46)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 is the weighting vector of

criteria𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑚), with𝑤

𝑗
∈ [0, 1] and∑𝑚

𝑗=1
𝑤
𝑗
= 1.

5.1. Determining the Weights of Experts. In many practi-
cal group decision-making problems, it is an important
research topic to determine the weights of experts according
to experts’ evaluation information. In this subsection, we
propose a method to derive the weights of experts based on
the proposed entropy measures.

It is known that entropies can measure the uncertainty
degrees of IVIFSs. 𝑍

𝑘
= {𝑧
(𝑘)

𝑖
= ([𝑎
(𝑘)

𝑖
, 𝑏
(𝑘)

𝑖
], [𝑐
(𝑘)

𝑖
, 𝑑
(𝑘)

𝑖
]) | 𝑖 =

1, 2, . . . , 𝑛} is actually an IVIFS in alternative sets 𝑋, which
includes the overall assessment values for all alternatives
𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) by experts 𝑑

𝑘
∈ 𝐷. By formula (27), the

entropy of 𝑍
𝑘
can be calculated, which is denoted by 𝐸

𝑘
. 𝐸
𝑘

indicates the uncertainty degree of assessment information
provided by expert 𝑑

𝑘
. During the practical group decision-

making process, we usually expect that the uncertainty degree
of the assessment information is as small as possible. Thus,
the bigger 𝐸

𝑘
is, the smaller the weight should be given to 𝑑

𝑘
.

Conversely, the smaller 𝐸
𝑘
is, the bigger the weight should be

given to 𝑑
𝑘
. Therefore, the weights of experts are defined as

follows:

𝜆
𝑘
=

1 − 𝑒
𝑘

∑
𝑠

𝑖=1
(1 − 𝑒

𝑘
)
, where 𝑒

𝑘
=

𝐸
𝑘

∑
𝑠

𝑖=1
𝐸
𝑘

, 𝑘 = 1, 2, . . . , 𝑠.

(47)

In the next subsection, we will aggregate the overall
assessment information of individual experts to get the
evaluations of the group for alternatives.

5.2. An Approach to Solve Interval-Valued Intuitionistic Fuzzy
Group Decision-Making Problems. According to the analysis
in Section 5.1, we develop the following steps to get the
ranking of alternatives.

Step 1. Use formula (45) to transform decisionmatrices𝐴
𝑘
=

(𝑠
(𝑘)

𝑖𝑗
)
𝑛×𝑚

into normalized decision matrices 𝑅
𝑘
= (𝑟
(𝑘)

𝑖𝑗
)
𝑛×𝑚

.

Step 2. Use formula (46) to derive the individual overall
assessment values 𝑧(𝑘)

𝑖
of alternatives 𝑥

𝑖
by experts 𝑑

𝑘
(𝑖 =

1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑠).

Step 3. Use formulas (27) and (47) to derive experts’ weight-
ing vector 𝜆 = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑠
)
𝑇.
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Step 4. Use the IVIFWA operator to derive the overall
assessment values 𝑧

𝑖
(𝑖 = 1, 2, . . . , 𝑛) of the alternatives𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑛):

𝑧
𝑖
= IVIFWA

𝜆
(𝑧
(1)

𝑖
, 𝑧
(2)

𝑖
, . . . , 𝑧

(𝑠)

𝑖
)

= 𝜆
1
𝑧
(1)

𝑖
⊕ 𝜆
2
𝑧
(2)

𝑖
⊕ ⋅ ⋅ ⋅ ⊕ 𝜆

𝑠
𝑧
(𝑠)

𝑖
,

(48)

where 𝜆 = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
)
𝑇 is the weighting vector of experts

with 𝜆
𝑘
∈ [0, 1] and ∑𝑠

𝑘=1
𝜆
𝑘
= 1.

Step 5. Use Definition 6 to compare the overall assessment
values 𝑧

𝑖
(𝑖 = 1, 2, . . . , 𝑛) and rank the alternatives 𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑛).

For interval-valued intuitionistic fuzzy decision matrices
𝐴
𝑘
= (𝑠
(𝑘)

𝑖𝑗
)
𝑛×𝑚

(𝑘 = 1, 2, . . . , 𝑠) with 𝑠(𝑘)
𝑖𝑗

= ([𝑎
𝑘

𝑖𝑗
, 𝑏
𝑘

𝑖𝑗
], [𝑐
𝑘

𝑖𝑗
, 𝑑
𝑘

𝑖𝑗
]),

if 𝑎𝑘
𝑖𝑗

= 𝑏
𝑘

𝑖𝑗
and 𝑐

𝑘

𝑖𝑗
= 𝑑
𝑘

𝑖𝑗
, then these interval-valued

intuitionistic fuzzy decision matrices reduce to intuitionistic
fuzzy decision matrices. So the above method is also suitable
to solve intuitionistic fuzzy group decision-making problems
with unknown experts’ weights.

In the following, we give an example which was adapted
from Xu and Cai [47] to illustrate the above approach.

Example 22 (see [47]). Consider an air-condition system
selection problem. Suppose that there exist three air-
condition systems 𝑥

𝑖
(𝑖 = 1, 2, 3) to be selected, and the

following is the list of five criteria 𝐶
𝑗
(𝑗 = 1, 2, 3, 4, 5): good

quality (𝐶
1
), easiness to operate (𝐶

2
), being economical (𝐶

3
),

good service after selling (𝐶
4
), and cost (𝐶

5
). Among these

criteria, 𝐶
𝑗
(𝑗 = 1, 2, 3, 4) are of benefit type; 𝐶

5
is of cost

type. 𝑤 = (0.200, 0.299, 0.106, 0.156, 0.239)
𝑇 is the weighting

vector of criteria. The evaluations of experts 𝑑
𝑘
(𝑘 = 1, 2, 3)

for the air-condition systems 𝑥
𝑖
(𝑖 = 1, 2, 3) under criteria

𝐶
𝑗
(𝑗 = 1, 2, 3, 4, 5) are represented by IFVs 𝑠(𝑘)

𝑖𝑗
, which

construct the decision matrices 𝐴
𝑘
= (𝑠
(𝑘)

𝑖𝑗
)
3×5

(𝑘 = 1, 2, 3):

𝐴
1
=(

(0.8, 0.1) (0.7, 0.1) (0.7, 0.2) (0.9, 0.0) (0.4, 0.5)

(0.7, 0.1) (0.8, 0.2) (0.6, 0.4) (0.7, 0.1) (0.6, 0.4)

(0.8, 0.2) (0.9, 0.1) (0.7, 0.0) (0.7, 0.2) (0.5, 0.5)

) ,

𝐴
2
=(

(0.9, 0.1) (0.8, 0.1) (0.7, 0.0) (0.9, 0.1) (0.3, 0.7)

(0.7, 0.2) (0.8, 0.1) (0.9, 0.1) (0.7, 0.3) (0.7, 0.2)

(0.7, 0.1) (0.9, 0.0) (0.8, 0.0) (0.8, 0.2) (0.6, 0.3)

) ,

𝐴
3
=(

(0.8, 0.0) (0.7, 0.1) (0.9, 0.0) (0.8, 0.1) (0.4, 0.6)

(0.8, 0.2) (0.7, 0.3) (0.8, 0.1) (0.9, 0.1) (0.6, 0.3)

(0.9, 0.1) (0.8, 0.0) (0.8, 0.1) (0.9, 0.0) (0.5, 0.4)

) .

(49)

We now use the above steps to rank the three air-
condition systems 𝑥

𝑖
(𝑖 = 1, 2, 3).

Step 1. Using (45), we transform decision matrices 𝐴
𝑘
=

(𝑠
(𝑘)

𝑖𝑗
)
3×5

(𝑘 = 1, 2, 3) into normalized decision matrices 𝑅
𝑘
=

(𝑟
(𝑘)

𝑖𝑗
)
3×5

(𝑘 = 1, 2, 3):

𝑅
1
= (

(0.8, 0.1) (0.7, 0.1) (0.7, 0.2) (0.9, 0.0) (0.5, 0.4)

(0.7, 0.1) (0.8, 0.2) (0.6, 0.4) (0.7, 0.1) (0.4, 0.6)

(0.8, 0.2) (0.9, 0.1) (0.7, 0.0) (0.7, 0.2) (0.5, 0.5)

) ,

𝑅
2
= (

(0.9, 0.1) (0.8, 0.1) (0.7, 0.0) (0.9, 0.1) (0.7, 0.3)

(0.7, 0.2) (0.8, 0.1) (0.9, 0.1) (0.7, 0.3) (0.2, 0.7)

(0.7, 0.1) (0.9, 0.0) (0.8, 0.0) (0.8, 0.2) (0.3, 0.6)

) ,

𝑅
3
= (

(0.8, 0.0) (0.7, 0.1) (0.9, 0.0) (0.8, 0.1) (0.6, 0.4)

(0.8, 0.2) (0.7, 0.3) (0.8, 0.1) (0.9, 0.1) (0.3, 0.6)

(0.9, 0.1) (0.8, 0.0) (0.8, 0.1) (0.9, 0.0) (0.4, 0.5)

) .

(50)

Step 2. By formula (46), we derive the individual overall
assessment values 𝑧(𝑘)

𝑖
of alternatives 𝑥

𝑖
by experts 𝑑

𝑘
(𝑖 =

1, 2, 3, 𝑘 = 1, 2, 3):

𝑧
(1)

1
= (0.7367, 0.0000) , 𝑧

(1)

2
= (0.6767, 0.2187) ,

𝑧
(1)

3
= (0.7750, 0.0000) ,

𝑧
(2)

1
= (0.8203, 0.0000) , 𝑧

(2)

2
= (0.7010, 0.2171) ,

𝑧
(2)

3
= (0.7622, 0.0000) ,

𝑧
(3)

1
= (0.7524, 0.0000) , 𝑧

(3)

2
= (0.7266, 0.2448) ,

𝑧
(3)

3
= (0.7968, 0.0000) .

(51)

Step 3. By formulas (27) (or (11)) and (47), we obtain 𝐸
𝑖
(𝑖 =

1, 2, 3):

𝐸
1
= 0.6499, 𝐸

2
= 0.5971, 𝐸

3
= 0.6104. (52)

So the experts’ weighting vector 𝜆 is equal to
(0.3250, 0.3393, 0.3357)

𝑇.

Step 4. By formula (48), we get the overall assessment values
𝑧
𝑖
(𝑖 = 1, 2, 3) of the alternatives 𝑥

𝑖
(𝑖 = 1, 2, 3):

𝑧
1
= IFWA

𝜆
(𝑧
(1)

1
, 𝑧
(2)

1
, 𝑧
(3)

1
) = (0.7734, 0) ,

𝑧
2
= IFWA

𝜆
(𝑧
(1)

2
, 𝑧
(2)

2
, 𝑧
(3)

2
) = (0.7024, 0.2266) ,

𝑧
3
= IFWA

𝜆
(𝑧
(1)

3
, 𝑧
(2)

3
, 𝑧
(3)

3
) = (0.7748, 0) .

(53)

Step 5. From Definition 6, we get

𝑠 (𝑧
1
) = 0.7734, 𝑠 (𝑧

2
) = 0.4758, 𝑠 (𝑧

3
) = 0.7784.

(54)

So the ranking is 𝑥
3
≻ 𝑥
1
≻ 𝑥
2
.

In fact, Xu’s method [47] considered the consensus
of experts’ opinions. In this paper, we take into account
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the uncertain degree of individual expert’s evaluation infor-
mation to assess the weights of experts. For a practical
decision-making problem, we can combine the two points
of view to derive the relative importance weights of experts
according to the requirement of decision maker.

6. Conclusions

The entropy measures for IFSs and IVIFSs have been applied
in many fields such as decision-making, pattern recognition,
and medical diagnosis [31, 48]. In this work, we first propose
a new entropy measure for IFSs. By analyzing the features of
the entropymeasure, a family of entropymeasures is obtained
for IFSs. We then extend these entropy measures to IVIFSs.
The proposed entropy formulas can measure both fuzziness
and intuitionism of IFSs and IVIFSs. Numerical examples
are given to show that the proposed entropy formulas are
a reasonable and effective supplement of entropy measures
for IFSs and IVIFSs. As an application, we use the proposed
entropy measures to assess the weights of experts and solve
(interval-valued) intuitionistic fuzzy group decision-making
problems with unknown experts’ weights.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are most grateful to the referees and the edi-
tors for their constructive suggestions. This research was
supported by the National Natural Science Foundation of
China (nos. 71371107, 71171187, and 11271224), the Ministry of
Education Special Fund for the Doctoral Program of Higher
Education (20123705110003), and the Science Foundation of
Shandong Province (ZR2013GM011).

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8,
no. 3, pp. 338–353, 1965.

[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[3] K. Atanassov and G. Gargov, “Interval valued intuitionistic
fuzzy sets,” Fuzzy Sets and Systems, vol. 31, no. 3, pp. 343–349,
1989.

[4] W.-L. Gau and D. J. Buehrer, “Vague sets,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 23, no. 2, pp. 610–614, 1993.

[5] C. Cornelis, K. T. Atanassov, and E. E. Kerre, “Intuitionistic
fuzzy sets and interval-valued fuzzy sets: a critical comparison
in,” in Proceedings of the 3rd Conference of the European Society
for Fuzzy Logic and Technology (EUSFLAT ’03), pp. 159–163,
Zittau, Germany, 2003.

[6] H. Bustince and P. Burillo, “Vague sets are intuitionistic fuzzy
sets,” Fuzzy Sets and Systems, vol. 79, no. 3, pp. 403–405, 1996.

[7] G. Deschrijver and E. E. Kerre, “On the relationship between
some extensions of fuzzy set theory,” Fuzzy Sets and Systems,
vol. 133, no. 2, pp. 227–235, 2003.

[8] G. Wei, X. Zhao, and R. Lin, “Some hesitant interval-valued
fuzzy aggregation operators and their applications to multiple
attribute decision making,” Knowledge-Based Systems, vol. 46,
pp. 43–53, 2013.

[9] P. D. Liu and Y. M. Wang, “Multiple attribute group decision
making methods based on intuitionistic linguistic power gen-
eralized aggregation operators,”Applied SoftComputing Journal,
vol. 17, pp. 90–104, 2014.

[10] P. Liu, “Some hamacher aggregation operators based on the
interval-valued intuitionistic fuzzy numbers and their applica-
tion to group decision making,” IEEE Transactions on Fuzzy
Systems, vol. 22, no. 1, pp. 83–97, 2014.

[11] L. A. Zadeh, “The concept of a linguistic variable and its
application to approximate reasoning-I,” Information Science,
vol. 8, pp. 199–249, 1975.

[12] A. de Luca and S. Termini, “A definition of a nonprobabilistic
entropy in the setting of fuzzy sets theory,” Information and
Computation, vol. 20, pp. 301–312, 1972.

[13] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets,
Academic Press, New York, NY, USA, 1975.

[14] R. R. Yager, “On the measure of fuzziness and negation, part I:
membership in unit interval,” International Journal of General
Systems, vol. 5, no. 4, pp. 221–229, 1979.

[15] C. H. Chiu and W. J. Wang, “Simple calculation for the entropy
of the fuzzy number in addition and extension principle,”
International Journal of Fuzzy Systems, vol. 2, pp. 256–266, 2000.

[16] W.-J. Wang and C.-H. Chiu, “The entropy change in extension
principle,” Fuzzy Sets and Systems, vol. 103, no. 1, pp. 153–162,
1999.

[17] D. H. Hong and J. H. Kim, “Some formulae to calculate the
entropies of the image fuzzy sets,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 11, no.
5, pp. 615–626, 2003.

[18] W. Zeng and H. Li, “Inclusion measures, similarity measures,
and the fuzziness of fuzzy sets and their relations,” International
Journal of Intelligent Systems, vol. 21, no. 6, pp. 639–653, 2006.

[19] J. Chachi and S. M. Taheri, “A unified approach to similarity
measures between intuitionistic fuzzy sets,” International Jour-
nal of Intelligent Systems, vol. 28, no. 7, pp. 669–685, 2013.

[20] B. Farhadinia, “A theoretical development on the entropy of
interval-valued fuzzy sets based on the intuitionistic distance
and its relationship with similarity measure,” Knowledge-Based
Systems, vol. 39, pp. 79–84, 2013.

[21] Y. Jiang, Y. Tang, H. Liu, and Z. Chen, “Entropy on intuitionistic
fuzzy soft sets and on interval-valued fuzzy soft sets,” Informa-
tion Sciences, vol. 240, pp. 95–114, 2013.

[22] W. Y. Zeng and P. Guo, “Normalized distance, similarity mea-
sure, inclusion measure and entropy of interval-valued fuzzy
sets and their relationship,” Information Sciences, vol. 178, no.
5, pp. 1334–1342, 2008.

[23] W. Zeng and H. Li, “Relationship between similarity measure
and entropy of interval valued fuzzy sets,” Fuzzy Sets and
Systems, vol. 157, no. 11, pp. 1477–1484, 2006.

[24] H. Zhang, W. Zhang, and C. Mei, “Entropy of interval-valued
fuzzy sets based on distance and its relationship with similarity
measure,”Knowledge-Based Systems, vol. 22, no. 6, pp. 449–454,
2009.

[25] P. Burillo and H. Bustince, “Entropy on intuitionistic fuzzy sets
and on interval-valued fuzzy sets,” Fuzzy Sets and Systems, vol.
78, no. 3, pp. 305–316, 1996.



Mathematical Problems in Engineering 13

[26] E. Szmidt and J. Kacprzyk, “Entropy for intuitionistic fuzzy sets,”
Fuzzy Sets and Systems, vol. 118, no. 3, pp. 467–477, 2001.

[27] W.-L. Hung and M.-S. Yang, “Fuzzy entropy on intuitionistic
fuzzy sets,” International Journal of Intelligent Systems, vol. 21,
no. 4, pp. 443–451, 2006.

[28] M. M. Xia and Z. S. Xu, “Entropy/cross entropy-based group
decisionmaking under intuitionistic fuzzy environment,” Infor-
mation Fusion, vol. 13, no. 1, pp. 31–47, 2012.

[29] J. Ye, “Two effective measures of intuitionistic fuzzy entropy,”
Computing, vol. 87, no. 1-2, pp. 55–62, 2010.

[30] I. K. Vlachos and G. D. Sergiadis, “Inner product based entropy
in the intuitionistic fuzzy setting,” International Journal of
Uncertainty, Fuzziness andKnowledge-Based Systems, vol. 14, no.
3, pp. 351–366, 2006.

[31] I. K. Vlachos and G. D. Sergiadis, “Intuitionistic fuzzy
information—applications to pattern recognition,” Pattern
Recognition Letters, vol. 28, no. 2, pp. 197–206, 2007.

[32] W. Y. Zeng and H. X. Li, “Relationship between similarity
measure and entropy of interval valued fuzzy sets,” Fuzzy Sets
and Systems, vol. 157, no. 11, pp. 1477–1484, 2006.

[33] H. Y. Zhang, W. X. Zhang, and C. L. Mei, “Entropy of interval-
valued fuzzy sets based on distance and its relationship with
similaritymeasure,”Knowledge-Based Systems, vol. 22, no. 6, pp.
449–454, 2009.

[34] Q.-S. Zhang and S.-Y. Jiang, “A note on information entropy
measures for vague sets and its applications,” Information
Sciences, vol. 178, no. 21, pp. 4184–4191, 2008.

[35] X. D. Liu, S. H. Zhang, and F. L. Xiong, “Entropy and subset-
hood for general interval-valued intuitionistic fuzzy sets,” in
Fuzzy Systems and Knowledge Discovery, vol. 3613 of Lecture
Notes in Computer Science, pp. 42–52, Springer, Berlin, Ger-
many, 2005.

[36] C.-P. Wei, P. Wang, and Y.-Z. Zhang, “Entropy, similarity
measure of interval-valued intuitionistic fuzzy sets and their
applications,” Information Sciences, vol. 181, no. 19, pp. 4273–
4286, 2011.

[37] J. Ye, “Multicriteria fuzzy decision-making method using
entropy weights-based correlation coefficients of interval-
valued intuitionistic fuzzy sets,” Applied Mathematical Mod-
elling, vol. 34, no. 12, pp. 3864–3870, 2010.

[38] Q. S. Zhang, S. Y. Jiang, B. G. Jia, and S. H. Luo, “Some
information measures for interval-valued intuitionistic fuzzy
sets,” Information Sciences, vol. 180, no. 24, pp. 5130–5145, 2010.

[39] Q. S. Zhang and S. Y. Jiang, “Relationships between entropy and
similarity measure of interval-valued intuitionistic fuzzy set,”
International Journal of Intelligent Systems, vol. 25, no. 11, pp.
1121–1140, 2010.

[40] Z.-S. Xu, “Methods for aggregating interval-valued intuitionis-
tic fuzzy information and their application to decisionmaking,”
Control and Decision, vol. 22, no. 2, pp. 216–219, 2007 (Chinese).

[41] Q. Chen, Z. S. Xu, S. S. Liu, and X. H. Yu, “A method based on
intervalvalued intuitionistic fuzzy entropy formultiple attribute
decision making,” Information, vol. 13, no. 3, pp. 67–77, 2010.

[42] S.-M. Zhou and J. Q. Gan, “Constructing accurate and parsi-
monious fuzzy models with distinguishable fuzzy sets based on
an entropy measure,” Fuzzy Sets and Systems, vol. 157, no. 8, pp.
1057–1074, 2006.

[43] C. Wei and X. Tang, “An intuitionistic fuzzy group decision-
making approach based on entropy and similarity measures,”
International Journal of Information Technology & Decision
Making, vol. 10, no. 6, pp. 1111–1130, 2011.

[44] X. Liang and C. Wei, “An Atanassov’s intuitionistic fuzzy multi-
attribute group decision making method based on entropy and
similarity measure,” International Journal of Machine Learning
and Cybernetics, vol. 5, no. 3, pp. 435–444, 2014.

[45] J. Ye, “Fuzzy decision-making method based on the weighted
correlation coefficient under intuitionistic fuzzy environment,”
European Journal of Operational Research, vol. 205, no. 1, pp.
202–204, 2010.

[46] Z. S. Xu and H. Hu, “Projection models for intuitionistic fuzzy
multiple attribute decision making,” International Journal of
Information Technology & Decision Making, vol. 9, no. 2, pp.
267–280, 2010.

[47] Z. Xu and X. Cai, “Nonlinear optimization models for multiple
attribute group decision making with intuitionistic fuzzy infor-
mation,” International Journal of Intelligent Systems, vol. 25, no.
6, pp. 489–513, 2010.

[48] H. Zhang and L. Yu, “MADM method based on cross-entropy
and extended TOPSIS with interval-valued intuitionistic fuzzy
sets,” Knowledge-Based Systems, vol. 30, pp. 115–120, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


