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This paper investigates the fixed-time attitude tracking control problem for flexible spacecraftwith unknown bounded disturbances.
First, with the knowledge of norm upper bounds of external disturbances and the coupling effect of flexible modes, a novel robust
fixed-time controller is designed to deal with this problem. Second, the controller is further enhanced by an adaptive law to avoid
the knowledge of norm upper bounds of external disturbances and coupling effect of flexible modes. This control law guarantees
the convergence of attitude tracking errors in fixed time where the settling time is bounded by a constant independent of initial
conditions. Moreover, the proposed controllers can prevent the unwinding phenomenon. Simulation results are presented to
demonstrate the performance of the proposed control scheme.

1. Introduction

With the development of modern satellite technology,
space missions are expected to ensure rapid, high-precision
and global response such as navigation, communication,
astronomy, and earth observations. Modern spacecraft
often requires the structure of a rigid hub with flexible
appendages. Owing to strong coupling between hub and
flexible appendages attitudemaneuver is affected by vibration
of flexible appendages. This may degrade pointing accuracy
and dynamic performance of the attitude control system.
Furthermore, in practical control systems, there inevitably
exist model uncertainty and nonlinearity, inertia uncertainty,
and various external disturbance torques, such as aerody-
namic torque, radiation torque, and gravity gradient torque.
These factors make the design of an attitude control law
with rapid and precise maneuver performance for a flexible
spacecraft very difficult and even pose a great challenge to
space missions. In recent years, a variety of control methods

have been proposed to solve the attitude control problem,
like proportional derivative control [1], adaptive control [2],𝐻∞ control [3], passivity-based control [4, 5], sliding mode
control [6–8], active disturbance rejection control [9], dis-
turbance observer based control [10], and so forth [11–13].
Although these nonlinear control laws have offered sufficient
and reliable effectiveness and robustness in spacecraft attitude
control systems, they require infinite time to accomplish an
attitude maneuver. However, the ability of rapid maneuver is
highly required in many real-time space missions. In other
words, infinite-time attitude control is inadequate in some
space missions.

In fact, finite-time stabilization [14–17] can offer faster
convergence to the origin and better disturbance rejec-
tion than asymptotic stabilization. Thus, finite-time control
approaches are desirable to be considered in spacecraft
attitude controller designs. Terminal sliding mode control
(TSMC) [18, 19] method has provided a practical way to
design a finite-time controller. For TSMC, nonlinear sliding
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surface was proposed and the finite-time convergence was
analyzed based on the concept of terminal attractor. TSMC
has been applied to spacecraft attitude control problems [20–
22]. Later, a nonsingular terminal sliding mode based robust
finite-time control law was proposed in [23, 24] to deal with
the singularity problem, which exists in traditional TSMC.
More recently, nonsingular fast terminal slidingmode control
laws for a rigid spacecraftwere designed in [25, 26]. In [27, 28]
nonsingular fast terminal sliding mode control laws have
been developed for attitude motions of flexible spacecraft.

Apart from the above attention to achieve finite-time
convergence, actuator fault is another key issue in spacecraft
attitude control which may cause the performance degrada-
tion or even result in control system instability. To handle this
issue, fault-tolerant control (FTC) is a widely used scheme to
enhance the capability of maintaining control stability and
high performance despite casual actuator failures. Recently,
several FTC schemes have been developed for spacecraft atti-
tude control [29–32]. Xiao et al. [33] proposed a fault-tolerant
controller for a flexible spacecraft in the presence of possible
additive fault and partial loss of actuator effectiveness fault.
Zhang et al. [34] presented a robust fault-tolerant control
scheme to achieve attitude control of flexible spacecraft with
disturbances and actuator failures. These control algorithms
can tolerate partial loss of actuator effectiveness. In [35] a
fault-tolerant sliding mode attitude controller for flexible
spacecraft with inertia uncertainty, external disturbance,
actuator misalignment, and input saturation has been devel-
oped. Recently, FTC design for spacecraft attitude control
with consideration of different kinds of actuator faults and
failures is still an open problem.

Although control methods mentioned above can provide
good results of attitude tracking control of spacecraft, the
initial system state must be known to estimate the settling
time. It would be very useful if the settling time can be
determined without knowledge of initial conditions. In [36,
37] Polyakov and his colleagues have proposed the concept
of the fixed-finite-time stability. For the fixed-finite-time
stability concept, the upper bound of the settling time can
be estimated and it is independent of initial conditions.
For the spacecraft attitude control system it is desirable to
estimate the settling time independent of initial conditions.
Moreover, these control methods may cause the unwinding
phenomenon encountered in unit quaternion based attitude
systems since they consider only one of two equilibrium
points of unit quaternion [38].

In this paper, the fixed-time control problem associated
with attitude tracking of flexible spacecraft in the presence of
bounded external disturbances and coupling effect of flexible
modes is investigated.The aim is to design a robust fixed-time
attitude controller so that rapid attitude maneuver can be
achieved with high pointing accuracy. By extending the con-
cepts of fixed-finite stability by Polyakov and his colleagues
[36, 37], a new result of fixed-finite stability is introduced.
This result is also used to develop our proposed controllers. So
far, to the best our knowledge, there were no results of fixed-
time sliding controlmethods for attitudemaneuver control of
a flexible spacecraft in presence of bounded disturbanceswith
an unknown boundary. Inspired by the above discussion, two

fixed-time controllers are presented in this paper and the
main contributions lie in the following aspects:

(1) A new result of fixed-time stability is proposed
by extending concepts of fixed-finite stability by
Polyakov and his colleagues [36, 37]. For the case that
the upper bounds of disturbances and the coupling
effect of flexible modes are available in advance, a
novel fixed-time controller is proposed for flexible
spacecraft attitude maneuver. This controller ensures
the convergence of attitude tracking errors in fixed
time where the settling time is bounded by a constant
independent of initial conditions.Moreover, this con-
troller can eliminate the unwinding phenomenon.

(2) A new adaptive law is designed to estimate the
upper bounds of the disturbances and the coupling
effect in fixed time. Then, a new adaptive fixed-time
controller without requiring prior knowledge of their
boundaries is designed. By Lyapunov stability the-
ory, rigorous fixed-time stability is analyzed and the
expression of an accurate upper bound of convergent
regions is provided.

The remaining part of this paper is organized as follows.
Section 2 presents the description of a flexible spacecraft
model and some key lemmas. Then, a robust fixed-time
controller is designed in Section 3. The fixed-time stability
proof is also given. In Section 4, a novel robust adaptive fixed-
time attitude controller for flexible spacecraft is designed.
The developed attitude controller makes the system states
converge into a small neighborhood of the designed sliding
mode in fixed time. To verify the effectiveness of the proposed
control methods, simulation results are given in Section 5. In
Section 6, we present conclusions.

2. Nonlinear Model of Spacecraft and
Problem Formulation

2.1. Mathematical Model of a Flexible Spacecraft. The flexible
spacecraft is characterized by a central rigid body with
attached appendages. Themathematical model of the flexible
spacecraft can be described in the body-fixed frame as [39]

𝐽𝜔̇ + 𝜔× (𝐽𝜔 + 𝛿𝑇 ̇𝜂) + 𝛿𝑇 ̈𝜂 = 𝑢 (𝑡) + 𝜏𝑑 (𝑡) , (1)

̈𝜂 + 𝐶 ̇𝜂 + 𝐾𝜂 = −𝛿𝜔̇, (2)

𝑄̇ = 12 [
−𝑞𝑇

𝑞0𝐼3 + 𝑞×]𝜔, (3)

where 𝐽 ∈ 𝑅3×3 is the symmetric inertia matrix of the whole
structure, 𝜔 ∈ 𝑅3 is the angular velocity of the spacecraft in
the body frame, 𝜏𝑑 ∈ 𝑅3 denotes external disturbances, 𝑢 ∈𝑅3 is the control torque acting on the hub, 𝜂 ∈ 𝑅𝑛 is themodal
coordinate vector of the flexible appendages, 𝑛 is the number
of flexible modes considered, and 𝛿 ∈ 𝑅3×𝑛 is the coupling
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matrix between the flexible appendage and the hub. In (2),
the damping matrix 𝐶 and stiffness matrix𝐾 are given by

𝐶 = [[[[
[

2𝜁1Λ 1 ⋅ ⋅ ⋅ 0
... d

...
0 ⋅ ⋅ ⋅ 2𝜁𝑛Λ 𝑛

]]]]
]
,

𝐾 = [[[[
[

Λ21 ⋅ ⋅ ⋅ 0
... d

...
0 ⋅ ⋅ ⋅ Λ2𝑛

]]]]
]
,

(4)

where 𝜁𝑖 and Λ 𝑖 denote the damping ration and natural
frequency of the 𝑖th order mode. The operator (⋅)× denotes
a 3 × 3 symmetric matrix such as

𝜔× = [[
[
0 −𝜔3 𝜔2𝜔3 0 −𝜔1−𝜔2 𝜔1 0

]]
]
, (5)

for 𝜔 = [𝜔1 𝜔2 𝜔3]𝑇. The vector 𝑄 = [𝑞0 𝑞𝑇]𝑇 represents
the attitude quaternion of the spacecraft subject to the unity
length constraint, that is, ‖𝑄‖ = 1, where 𝑞0 and 𝑞 =[𝑞1 𝑞2 𝑞3] denote the scalar and the vector components of
the unit quaternion, respectively. 𝐼3 is the 3×3 identitymatrix.
In (2), we define an auxiliary variable 𝜗 = 𝛿𝜔+ ̇𝜂 and one has

̇𝜗 = 𝛿𝜔̇ + ̈𝜂 = −𝐶𝜗 + 𝐶𝛿𝜔 − 𝐾𝜂. (6)

Substituting (6) into (1) yields

(𝐽 − 𝛿𝑇𝛿) 𝜔̇ = −𝜔×𝐽𝜔 + 𝑢 (𝑡) + 𝜉 (𝑡) + 𝜏𝑑 (𝑡) , (7)

where the total coupling effect term 𝜉(𝑡) denotes
𝜉 (𝑡) = 𝛿𝑇 [𝐾 𝐶] [𝜂𝜗] − 𝛿𝑇𝐶𝛿𝜔 − 𝜔×𝛿𝑇 (𝜗 − 𝛿𝜔) . (8)

Let𝑄𝑑 = [𝑞𝑑0 𝑞𝑇𝑑 ]𝑇with 𝑞𝑑 = [𝑞𝑑1 𝑞𝑑2 𝑞𝑑3]𝑇 be the unit
quaternion representing the desired attitude and satisfying‖𝑄𝑑‖ = 1. Let 𝜔𝑟 ∈ 𝑅3 be the desired angular velocity. The
quaternion error 𝑄𝑒 = [𝑒0 𝑒𝑇]𝑇 with 𝑒 = [𝑒1 𝑒2 𝑒3]𝑇 and
the angular velocity error 𝜔𝑒 are defined as follows:

𝑒 = 𝑞𝑑0𝑞 − 𝑞×𝑑𝑞 − 𝑞0𝑞𝑑,
𝑒0 = 𝑞𝑇𝑞𝑑 + 𝑞0𝑞𝑑0,
𝜔𝑒 = 𝜔 − 𝜔𝑟.

(9)

The unit quaternion 𝑄𝑒 satisfies ‖𝑄𝑒‖ = 1.
In fact, due to onboard payload motion, rotation of solar

arrays, fuel consumption, and out-gassing during operation,
the inertial matrix 𝐽 of spacecraft may be time-varying. Here,
we assume that it consists of two parts; that is, 𝐽 = 𝐽𝑛 + Δ𝐽,
where 𝐽𝑛 and Δ𝐽 represent the nominal value component
and the parameter perturbation component of the inertial

matrix 𝐽, respectively. Both of the nominal value component
of 𝐽𝑛 and the perturbation matrix Δ𝐽 are symmetric since 𝐽 is
always a symmetric matrix.

If the terms Δ𝐽𝜔̇ − 𝜔×Δ𝐽𝜔 are considered as the distur-
bance, then (1) becomes

(𝐽𝑛 − 𝛿𝑇𝛿) 𝜔̇𝑒 = −𝐽𝑛𝜔̇𝑟 − 𝜔×𝐽𝑛𝜔 + 𝑢 (𝑡) + 𝜉 (𝑡) + 𝑑 (𝑡) , (10)

where 𝑑(𝑡) = −Δ𝐽𝜔̇ − 𝜔×Δ𝐽𝜔 + 𝜏𝑑(𝑡).
Under the coordinate given in (9), (1) and (3) can be

written as

𝐽0𝜔̇𝑒 = −𝐽0𝜔̇𝑟 − 𝜔×𝐽𝑛𝜔 + 𝑢 (𝑡) + 𝜉 (𝑡) + 𝑑 (𝑡) , (11)

𝑄̇𝑒 = 12 [
−𝑒𝑇

𝑒0𝐼3 + 𝑒×]𝜔𝑒, (12)

where 𝐽0 = 𝐽𝑛 − 𝛿𝑇𝛿.
Throughout the paper, it is assumed that the influence

caused by the external disturbances and the flexible modes
is bounded in the following sense.

Assumption 1. The total external disturbance 𝑑(𝑡) in (11) is
bounded and satisfies ‖𝑑‖ ≤ 𝜃0, where 𝜃0 > 0 is an unknown
constant.

Assumption 2. The coupling effect term 𝜉(𝑡) in (11) satisfies‖𝜉(𝑡)‖ ≤ 𝑏1 + 𝑏2‖𝜔‖2 with 𝑏1 > 0 and 𝑏2 > 0. In other words,‖𝜉(𝑡)‖ ≤ 𝜃1Φ1 forΦ1 = 1 + ‖𝜔‖2 and 𝜃1 = max (𝑏1, 𝑏2).
2.2. Definition and Lemma. Consider the following autono-
mous system:

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡)) ,
𝑥 (0) = 0,
𝑓 (0) = 0,

𝑥 ∈ 𝑅𝑛,
(13)

where 𝑓 : 𝑈0 → 𝑅𝑛 is continuous on an open neighborhood𝑈0 of the origin 𝑥 = 0.
Definition 3 (see [16]). The equilibrium 𝑥 = 0 of system (13)
is finite-time convergent if there exist an open neighborhood𝑈 ⊂ 𝑈0 of the origin and a function and the function 𝑇 :𝑈 \ {0} → (0,∞) such that the solution of the system (13)
defined as 𝑥(𝑡, 𝑥0) with 𝑥0 ∈ 𝑈 \ {0} ⊂ 𝑅𝑛 satisfies 𝑥(𝑡, 𝑥0) ∈𝑈 \ {0} ⊂ 𝑅𝑛 for 𝑡 ∈ [0, 𝑇(𝑥0)] and lim𝑡→𝑇(𝑥0)𝑥(𝑡, 𝑥0) = 0 with𝑥(𝑡, 𝑥0) = 0 for 𝑡 > 𝑇(𝑥0). The zero solution of the system
(13) is finite-time stable if it is Lyapunov stable and finite-time
convergent in a 𝑈 ⊂ 𝑈0 of the origin. If 𝑈0 = 𝑈 = 𝑅𝑛, then
the zero solution is globally finite-time stable.

Lemma 4 (see [16]). For system (13), suppose that there exists
a continuous positive definite function𝑉(𝑥) : 𝑈 → 𝑅 such that

𝑉̇ (𝑥) + 𝛽𝑉 (𝑥)𝑝 ≤ 0, 𝑥 ∈ 𝑈0 \ {0} , (14)

where 𝑝 ∈ (0, 1), 𝛽 ∈ 𝑅+, and 𝑈0 ⊂ 𝑈 is an open
neighborhood of the origin. Then, the origin is a finite-time
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stable equilibrium of system (13). Furthermore, 𝑇(𝑥0) is the
settling time that is defined as the time needed to reach 𝑉(𝑥) ≡0 and satisfies

𝑇 (𝑥0) ≤ 1𝛽 (1 − 𝑝)𝑉 (𝑥0)1−𝑝 , (15)

where 𝑉(𝑥0) is the initial value of 𝑉(𝑥).
Definition 5 (see [36]). The equilibrium 𝑥 = 0 of system (13)
is said to be fixed-finite-time stable if it is globally finite-time
stable and the settling-time function 𝑇(𝑥0) is bounded, that
is, a positive constant 𝑇max can be found in such a way that𝑇(𝑥0) ≤ 𝑇max, ∀𝑥0 ∈ 𝑅𝑛.
Lemma 6 (see [22]). For system (13), suppose there exists a
positive definite and radially unbounded function𝑉(𝑥) : 𝑅𝑛 →𝑅 such that 𝑉(𝑥) = 0 ⇒ 𝑥 = 0 and

𝑉̇ (𝑥) ≤ −𝛼𝑉𝑝 (𝑥) − 𝛽𝑉 (𝑥)𝑞 , (16)

where 𝛼 > 0, 𝛽 > 0, 𝑝 ∈ (0, 1), and 𝑞 > 1. Then, the origin of
system (13) is fixed-time stable and

𝑇 (𝑥0) ≤ 1𝛼 (1 − 𝑝) + 1𝛽 (𝑞 − 1) , ∀𝑥0 ∈ 𝑅𝑛. (17)

Lemma 7 (see [40]). Let 𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛 be real
numbers and 𝑝 ∈ (0, 1); then the following inequality holds:

(󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨)𝑝 ≤ 󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑝 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨𝑝 . (18)

Lemma 8 (see [41]). For any numbers 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,
and 𝑝 > 1, then

𝑛∑
𝑖=1

𝑥𝑝𝑖 ≥ 𝑛1−𝑝(
𝑛∑
𝑖=1

𝑥𝑖)
𝑝 . (19)

In the following proposition, we give a new result of fixed-
finite stability.This result is an extended version of fixed-finite
stability presented in Lemma 6 and will be used in controller
designs in later section.

Proposition 9. Consider system (13). If there is a positive
definite and radially unbounded function 𝑉(𝑥) : 𝑅𝑛 → 𝑅 such
that 𝑉(𝑥) = 0 ⇒ 𝑥 = 0 and

𝑉̇ (𝑥) ≤ −𝛾𝑉 (𝑥) − 𝛼𝑉𝑝 (𝑥) − 𝛽𝑉 (𝑥)𝑞 , (20)

where 𝛼 > 0, 𝛽 > 0, 𝑝 ∈ (0, 1), and 𝑞 > 1, then, the origin of
system (13) is fixed-time stable

𝑇 (𝑥0) ≤ 1𝛽 (𝑞 − 1) + 1𝛽 (1 − 𝑝) ln(𝛾 + 𝛼𝛼 ) ,
∀𝑥0 ∈ 𝑅𝑛.

(21)

Proof. Owing to (20), we can obtain

𝑉̇ (𝑥 (𝑡)) ≤ {{{
−𝛾𝑉 (𝑥) − 𝛽𝑉𝑝 (𝑥) , 𝑉 (𝑥 (𝑡)) ≤ 1,
−𝛽𝑉𝑞 (𝑥) , 𝑉 (𝑥 (𝑡)) > 1. (22)

Hence, for any 𝑥(𝑡) such that 𝑉(𝑥(0)) > 1, the last inequality
ensures 𝑉(𝑥(𝑡0)) ≤ 1. This means 𝑉(𝑥(0)) is reduced such
that 𝑉(𝑥(𝑡)) = 1 at the time 𝑡0. Integrating both sides of the
last inequality yields

𝑉1−𝑞 (𝑡) ≤ − (1 − 𝑞) 𝛽𝑡 + 𝑉1−𝑞 (𝑥 (0)) , (23)

and consequently we can obtain 𝑡0 as
𝑡0 ≤ 1 − 𝑉1−𝑞 (𝑥 (0))𝛽 (𝑞 − 1) . (24)

As is known that 𝑉(𝑥(0)) > 1, one has
𝑡0 ≤ 1𝛽 (𝑞 − 1) . (25)

Next, the first inequality ensures that 𝑉(𝑥(𝑡0)) = 1 will
approach 𝑉(𝑥(𝑡1)) = 0. Now, 𝑡1 can be calculated from the
first inequality. The first inequality can be rearranged as

𝑉−𝑝 (𝑥 (𝑡)) 𝑉̇ (𝑥 (𝑡)) ≤ −𝛾𝑉1−𝑝 (𝑥 (𝑡)) − 𝛼, (26)

and consequently

𝑑𝑡 ≤ − 𝑉−𝑝 (𝑥 (𝑡))𝛾𝑉1−𝑝 (𝑥 (𝑡)) + 𝛼𝑑𝑉 (𝑥 (𝑡)) . (27)

Now, integrating both sides of the above inequality from 𝑡0 to𝑡1 yields
𝑡1 − 𝑡0 ≤ −∫0

𝑉(𝑥(𝑡0))

𝑉−𝑝 (𝑥 (𝑡))𝛾𝑉1−𝑝 (𝑥 (𝑡)) + 𝛼𝑑𝑉 (𝑥 (𝑡))
= − 1𝛾 (1 − 𝑝) [ln𝛼 − ln (𝛾𝑉1−𝑝 (𝑥 (𝑡0) + 𝛼))]
= 1𝛾 (1 − 𝑝) ln(

𝛾𝑉1−𝑝 (𝑥 (𝑡0)) + 𝛼𝛼 ) .
(28)

Using 𝑉(𝑥(𝑡0)) = 1, one obtains
𝑡1 ≤ 𝑡0 + 1𝛾 (1 − 𝑝) ln(𝛾 + 𝛼𝛼 )

or 𝑡1 ≤ 1𝛽 (𝑞 − 1) + 1𝛾 (1 − 𝑝) ln(𝛾 + 𝛼𝛼 ) .
(29)

This completes the proposition.

2.3. Problem Statement. In this paper, 𝑞𝑑, 𝜔𝑑, and 𝜔̇𝑑 are
assumed to be bounded, and the quaternion and angular
velocity measurements are always available. The main objec-
tive is to design a control law which forces the attitude and
angular velocity errors to a small region around the origin in
finite time in the sense of a fixed-time concept. This can be
expressed as

lim
𝑡→𝑇

(𝑒 (𝑡) , 𝜔𝑒 (𝑡)) = 0, (30)

where 𝑇 is the convergence time that can be estimated even
if information of initial values of system states is unavailable.
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3. Fixed-Time Attitude Controller

In this section, a new fixed-time sliding surface is introduced.
The fixed-time convergence of this sliding surface is analyzed.
Then, a new fixed-time based slidingmode attitude controller
is developed to achieve rapid maneuver and high-precise
attitude control performance for a flexible spacecraft in
presence of external disturbances.

Now, we define a new variable 𝑧(𝜔𝑒, 𝑒0, 𝑒) as
𝑧 (𝜔𝑒, 𝑞𝑒0, 𝑞𝑒) = 𝜔𝑒 + sign (𝑒0)𝐾𝑒, (31)

where𝐾 = diag(𝑘1, 𝑘2, 𝑘3) is a positive diagonal matrix.
Inspired by [22], we developed a nonsingular terminal

sliding surface for the spacecraft attitude system described by
(11) and (12) as follows:

𝑠 = 𝑧 + 𝐶1 ∫𝑡
0
sign (𝑧)𝛽 𝑑𝜏 + 𝐶2 ∫𝑡

0
sign (𝑧)𝛾 𝑑𝜏, (32)

where 𝐶1 = diag(𝑐11, 𝑐12, 𝑐13) and 𝐶2 = diag(𝑐21, 𝑐22, 𝑐23) are
constant matrices with 𝑐1𝑖, 𝑐2𝑖 > 0 (𝑖 = 1, 2, 3), 0 < 𝛽 < 1, and𝛾 > 1. For any vector 𝑥 = [𝑥1 𝑥2 𝑥3]𝑇 and constant 𝑝 > 0,
the function of sign(𝑥)𝑝 is defined as

sign (𝑥)𝑝 = [[[
[

󵄨󵄨󵄨󵄨𝑥1󵄨󵄨󵄨󵄨𝑝 sign (𝑥1)󵄨󵄨󵄨󵄨𝑥2󵄨󵄨󵄨󵄨𝑝 sign (𝑥2)󵄨󵄨󵄨󵄨𝑥3󵄨󵄨󵄨󵄨𝑝 sign (𝑥3)
]]]
]
. (33)

For the sake simplicity, the sliding surface can be rewritten in
the scalar form (𝑖 = 1, 2, 3) as

𝑠𝑖 = 𝑧𝑖 + 𝑐1𝑖 ∫𝑡
0

󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛽 sign (𝑧𝑖) 𝑑𝜏
+ 𝑐2𝑖 ∫𝑡

0

󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛾 sign (𝑧𝑖) 𝑑𝜏.
(34)

When the sliding mode is established under a suitably
designed controller, one can obtain

𝑠𝑖 = 𝑧𝑖 + 𝑐1𝑖 ∫𝑡
0

󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛽 sign (𝑧𝑖) 𝑑𝜏
+ 𝑐2𝑖 ∫𝑡

0

󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛾 sign (𝑧𝑖) 𝑑𝜏 = 0,
̇𝑠𝑖 = 𝑧̇𝑖 + 𝑐1𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛽 sign (𝑧𝑖) + 𝑐2𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛾 sign (𝑧𝑖) = 0.

(35)

Therefore, the dynamics of the associate sliding mode can be
obtained as

𝑧̇𝑖 = −𝑐1𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛽 sign (𝑧𝑖) − 𝑐2𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛾 sign (𝑧𝑖) ,
(𝑖 = 1, 2, 3) . (36)

Theorem 10. The zero solution 𝑧𝑖 = 0 (𝑖 = 1, 2, 3), of the
sliding mode dynamics (36), is globally fixed-time stable and
the settling time is given by

𝑇 ≤ 1𝑐1𝑖 (1 − 𝛽) +
1𝑐2𝑖 (𝛾 − 1) . (37)

Proof. The Lyapunov function candidate is chosen as

𝑉1 = 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨 . (38)

Its first time derivative is
𝑉̇1 = sign (𝑧𝑖) 𝑧̇𝑖
= sign (𝑧𝑖) (−𝑐1𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛽 sign (𝑧𝑖) − 𝑐2𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛾 sign (𝑧𝑖))
= −𝑐1𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛽 − 𝑐2𝑖 󵄨󵄨󵄨󵄨𝑧𝑖󵄨󵄨󵄨󵄨𝛾 = −𝑐1𝑖𝑉𝛽1 − 𝑐2𝑖𝑉𝛾1 .

(39)

By Lemma 6, it can be concluded that 𝑧𝑖 = 0 (𝑖 = 1, 2, 3) are
fixed-time stabilized. This completes the proof.

Once the fixed-time-based sliding surface is designed, it
is followed by designing a control law 𝑢 ∈ 𝑅3 as follows:

𝑢 = 𝜔×𝐽𝑛𝜔 + 𝐽0𝜔̇𝑟 + 𝐽0𝐾 sign (𝑒0) 12 (𝑒0𝐼3 + 𝑒×) 𝜔𝑒
− 𝐽0𝐶1 sign (𝑧)𝛽 − 𝐽0𝐶2 sign (𝑧)𝛾 − 𝜇1𝑠
− 𝜇2 sign (𝑠) − 𝜇3 sign (𝑠)𝜌 ,

(40)

where 𝜌 > 1, 𝜇1 = diag(𝜇11, 𝜇12, 𝜇13), 𝜇2 = diag(𝜇21, 𝜇22, 𝜇23),
and 𝜇3 = diag(𝜇31, 𝜇32, 𝜇33) are diagonal matrices with𝜇1𝑖, 𝜇2𝑖, 𝜇3𝑖 > 0 (𝑖 = 1, 2, 3). For any vector 𝑥 = [𝑥1 𝑥2 𝑥3]𝑇,
the function of sign(𝑥) is defined as

sign (𝑥) = [[[
[

sign (𝑥1)
sign (𝑥2)
sign (𝑥3)

]]]
]
, (41)

where 𝛾1 ∈ (0, 1) and 𝑘1 is a positive number; the larger the
value of 𝑘1, the faster the reaching speed. The term 𝜇2sign(𝑠)
is employed to cope with external disturbances and coupling
effect.

The fixed-time stability of the closed-loop system under
the action of the controller (40) is analyzed in the following
theorem.

Theorem 11. Consider the system described by (11) and (12)
and let Assumptions 1 and 2 hold. If the control law is designed
as (40), then the sliding surface 𝑠 = 0 is achieved in a fixed time.

Proof. According to (32), we can obtain the time derivative
of 𝐽0𝑠 along the trajectory of the system consisting of (11) and
(12):

𝐽0 ̇𝑠 = 𝐽0𝜔̇𝑒 + 𝐽0𝐾 sign (𝑒0) + 𝐽0𝐶1 sign (𝑧)𝛽
+ 𝐽0𝐶2 sign (𝑧)𝛾 . (42)

Then, substituting (11) into (42) yields

𝐽0 ̇𝑠 = 𝐽0𝑧̇ + 𝐽0𝐶1 sign (𝑧)𝛽 + 𝐽0𝐶2 sign (𝑧)𝛾
= −𝜔×𝐽𝑛𝜔 − 𝐽0𝜔̇𝑟 + 𝑢 + 𝑑 + 𝜉
+ 𝐽0𝐾 sign (𝑒0) 12 (𝑒0𝐼3 + 𝑒×) 𝜔𝑒
+ 𝐽0𝐶1 sign (𝑧)𝛽 + 𝐽0𝐶2 sign (𝑧)𝛾 .

(43)
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Substituting (40) into (43), we obtain

𝐽0 ̇𝑠 = −𝜇1𝑠 − 𝜇2 sign (𝑠) − 𝜇3 sign (𝑠)𝜌 + 𝑑 + 𝜉. (44)

Consider the candidate Lyapunov function:

𝑉2 = 12𝑠𝑇𝐽0𝑠, (45)

which satisfies

𝜆min (𝐽0) ‖𝑠‖2 ≤ 2𝑉2 ≤ 𝜆max (𝐽0) ‖𝑠‖2 , (46)

where 𝜆min(𝐽0) and 𝜆max(𝐽0) denote the minimum and
maximum singular values of the matrix 𝐽0.

According to (44), the derivative of𝑉2 along the trajectory
of the system described by (11) and (12) is

𝑉̇2 = 𝑠𝑇𝐽0 ̇𝑠
= 𝑠𝑇 (−𝜇1𝑠 − 𝜇2 sign (𝑠) − 𝜇3 sign (𝑠)𝜌 + 𝑑)
= −𝜆min (𝜇1) 3∑

𝑖=1

(󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨) − 𝜆min (𝜇2) 3∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨2

− 𝜆min (𝜇3) 3∑
𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨1+𝜌 + ‖𝑠‖ ‖𝑑‖
≤ − (𝜆min (𝜇1) − 𝜃0) ‖𝑠‖ − 𝜆min (𝜇2) ‖𝑠‖2
− 3(1−𝜌)/2𝜆min (𝜇3) ‖𝑠‖1+𝜌 .

(47)

Letting 𝜀 = 𝜆min(𝜇1) − 𝜃0 > 0, one obtains
𝑉̇2 ≤ − √2𝜀√𝜆max (𝐽)𝑉

1/2
2 − 2𝜆min (𝜇2)𝜆max (𝐽) 𝑉2

− 3(1−𝜌)/2𝜆min (𝜇3) ( 2𝜆max (𝐽))
(1+𝜌)/2 𝑉(1+𝜌)/22

= −𝜅1𝑉1/22 − 𝜅2𝑉2 − 𝜅3𝑉(1+𝜌)/22 ,

(48)

where 𝜅1 = √2𝜀/√𝜆max(𝐽0), 𝜅2 = 2𝜆min(𝜇2)/𝜆max(𝐽0), and𝜅3 = 𝜆min(𝜇3)(3(1−𝜌)/2)(2/𝜆max(𝐽0))(1+𝜌)/2. Hence, the sliding
variable 𝑠(𝑡) reaches zero in a fixed time that can be calculated
by using Proposition 9.

Remark 12. To avoid chattering in practical applications,
owing to the imperfect implementation of the sign function, a
saturation function is a simple choice to replace the sign func-
tion in the control law (40).Thus, in (40), for 𝑠 = [𝑠1 𝑠2 𝑠3]𝑇,
sign(𝑠) is replaced by sat(𝑠) = [sat(𝑠1) sat(𝑠2) sat(𝑠3)]𝑇. The
function sat(⋅) is a saturation function

sat (𝑥) =
{{{{{{{{{

1, 𝑥 > 𝜙𝑠
𝑥, |𝑥| < 𝜙𝑠
−1, 𝑥 < −𝜙𝑠,

(49)

where 𝜙𝑠 is a small positive constant.

4. Adaptive Fixed-Time Attitude Control

In the previous section, the proposed fixed-time attitude
controller (40) can force the states of the system described by
(11) and (12) to the origin. However, it is required to know the
upper bounds of external disturbances and coupling effect.
In practice, it is difficult to know these upper bounds, which
implies that the values of 𝜃0 and 𝜃1 may not be available.
Without prior knowledge of the upper bounds of external
disturbances and coupling effect, the gain of sign function
needs to be chosen sufficiently large to satisfy the existence
condition of slidingmode, whichmay reduce the steady-state
performance of the attitude control systemdue to undesirable
chattering in control torque and require large control input
magnitudes.

In order to achieve more efficiently performance, an
adaptive scheme is constructed to estimate the upper
bound information. Then, an adaptive law is designed to
guarantee fixed-time reachability of given desired attitude
motion.Here, we design an adaptive fixed-time-based control
law as

𝑢 = 𝜔×𝐽𝑛𝜔 + 𝐽0𝜔̇𝑟 + 𝐽0𝐾 sign (𝑒0) 12 (𝑒0𝐼3 + 𝑒×) 𝜔𝑒
− 𝐽0𝐶1 sign (𝑧)𝛽 − 𝐽0𝐶2 sign (𝑧)𝛾 − 𝜇1𝑠
− 𝜇2 sign (𝑠) − 𝜇2 sign (𝑠)𝜌 + 𝑢𝑎,

(50)

where 𝑢𝑎 is a continuous adaptive control term designed as
follows:

𝑢𝑎 = −( 𝜃02𝜀20 +
𝜃1Φ2𝜀21 ) 𝑠, (51)

where

̇̂𝜃0 = 𝛽0 (‖𝑠‖22𝜀20 − 𝑘0𝜃0) ,
̇̂𝜃1 = 𝛽1 (Φ‖𝑠‖22𝜀21 − 𝑘1𝜃1) .

(52)

Theorem 13. Consider the motion equations (11) and (12) that
satisfy Assumptions 1 and 2, but with 𝑑 and 𝜃1 unknown. If the
control law is designed as (50), then the attitude error 𝑒 and the
angular velocity error 𝜔𝑒 can be stabilized in fixed time into a
neighborhood of the sliding mode 𝑠(𝑡) = 0.
Proof. Consider the following candidate Lyapunov function:

𝑉3 = 12 (𝑠𝑇𝐽0𝑠 + 1𝛽0 𝜃20 +
1𝛽1 𝜃21) , (53)
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where 𝜃0 and 𝜃1 are the parameter estimation errors defined
as 𝜃0 fl 𝜃0 − 𝜃0 and 𝜃1 fl 𝜃1 − 𝜃1, respectively. The derivative
of 𝑉3 along the trajectory of system (11) and (12) is

𝑉̇3 = 𝑠𝑇𝐽0 ̇𝑠 + 1𝛽0 𝜃0
̇̂𝜃0 + 1𝛽1 𝜃1

̇̂𝜃1 = 𝑠𝑇(−𝜇1𝑠
− 𝜇2 sign (𝑠) − 𝜇3 sin (𝑧)𝜌 − 𝜃02𝜀20 𝑠 −

𝜃1Φ2𝜀21 𝑠 + 𝑑 (𝑡)
+ 𝜉 (𝑡)) − (‖𝑠‖22𝜀20 − 𝑘0𝜃0)(𝜃0 − 𝜃0) − (

Φ ‖𝑠‖22𝜀21
− 𝑘1𝜃1)(𝜃1 − 𝜃1) ≤ −𝑠𝑇𝜇1𝑠 − 𝑠𝑇𝜇2 sign (𝑠) − 𝑠𝑇𝜇3
⋅ sign (𝑠)𝜌 + ‖𝑠‖ ‖𝑑‖ + ‖𝑠‖ 󵄩󵄩󵄩󵄩𝜉 (𝑡)󵄩󵄩󵄩󵄩 − 𝜃02𝜀20 ‖𝑠‖

2

− 𝜃12𝜀21 ‖𝑠‖
2Φ + 𝑘0𝜃0𝜃0 + 𝑘1𝜃1𝜃1 ≤ −𝜆min (𝜇1) ‖𝑠‖2

+ ‖𝑠‖ ‖𝑑‖ + 𝜃1 ‖𝑠‖Φ − 𝜃02𝜀20 ‖𝑠‖
2 − 𝜃12𝜀21 ‖𝑠‖

2Φ
+ 𝑘0𝜃0𝜃0 + 𝑘1𝜃1𝜃1.

(54)

Note that

𝑘0𝜃0𝜃0 = 𝑘0𝜃0𝜃0 − 𝑘0𝜃20 ≤ 𝑘0 (−𝜃20 + 12𝜃20 + 12𝜃20)
= −𝑘02 𝜃20 + 𝑘02 𝜃20 ,

(55)

and similarly

𝑘1𝜃1𝜃1 ≤ −𝑘12 𝜃21 + 𝑘12 𝜃21 . (56)

Moreover, letting 𝜃0 = (𝑑)2 and applying Young’s inequality,
one obtains

‖𝑠‖ ‖𝑑‖ ≤ 𝜃02𝜀20 ‖𝑠‖
2 + 𝜀202 ,

𝜃1 ‖𝑠‖Φ ≤ 𝜃12𝜀21 ‖𝑠‖
2Φ + 𝜀212 .

(57)

Now 𝑉̇3 becomes

𝑉̇3 ≤ −𝜆min (𝜇1) ‖𝑠‖2 + 𝜀202 + 𝜀
2
12 − 𝑘02 𝜃20 − 𝑘12 𝜃21

+ 𝜀02 𝜃20 + 𝜀12 𝜃21
≤ −2𝜆min (𝜇1)𝜆max (𝐽0) (

12𝑠𝑇𝐽0𝑠) − 𝑘0𝛽0 ( 12𝛽0 𝜃20)
− 𝑘1𝛽1 ( 12𝛽1 𝜃21) + Υ,

(58)

where Υ = 𝜀20/2 + 𝜀21/2 + (𝑘0/2)𝜃20 + (𝑘1/2)𝜃21 . As a result, one
has

𝑉̇3 ≤ −𝛼𝑉3 + Υ, (59)

where 𝛼 = min(2𝜆min(𝜇1)/𝜆max(𝐽0), 𝑘0𝛽0, 𝑘1𝛽1).
Using the boundedness theorem, 𝑠, 𝜃0, 𝜃1 are uniformly

ultimate bounded (UUB). Therefore, one can assume that𝜃0 ≤ 𝜃0 and 𝜃1 ≤ 𝜃1. To prove the fixed-time stability, we
define a new Lyapunov function

𝑉4 = 12𝑠𝑇𝐽0𝑠. (60)

Differentiating 𝑉4 with respect to time, one obtains

𝑉̇4 ≤ −𝑠𝑇𝜇1𝑠 − 𝑠𝑇𝜇2 sign (𝑠) − 𝑠𝑇𝜇3 sign (𝑠)𝜌
− 𝜃02𝜀20 ‖𝑠‖

2 − 𝜃1Φ2𝜀21 ‖𝑠‖
2 + ‖𝑠‖ ‖𝑑‖ + ‖𝑠‖ 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩

≤ −𝜆min (𝜇1) ‖𝑠‖2 − 𝜆min (𝜇2) ‖𝑠‖
− 𝜆min (𝜇3) 3∑

𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨𝜌 − 𝜃02𝜀20 ‖𝑠‖
2 − 𝜃12𝜀21Φ ‖𝑠‖2

+ 𝜃02𝜀20 ‖𝑠‖
2 + 𝜃12𝜀21Φ ‖𝑠‖2 + 𝜀202 + 𝜀

2
12

≤ −𝜆min (𝜇1) ‖𝑠‖2 − 𝜆min (𝜇2) ‖𝑠‖
− 𝜆min (𝜇3) 3∑

𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨𝜌 − 𝜃02𝜀20 ‖𝑠‖
2 − 𝜃12𝜀21Φ ‖𝑠‖2

+ 𝜀202 + 𝜀
2
12

≤ −(𝜆min (𝜇1) − 𝜃02𝜀20 −
𝜃1Φ2𝜀21 ) ‖𝑠‖

2

− 𝜆min (𝜇2) ‖𝑠‖ − 3(1−𝜌)/2𝜆min (𝜇3) ‖𝑠‖𝜌+1 + 𝜛,

(61)

where 𝜛 = 𝜀20/2 + 𝜀21/2.
If 𝜆min(𝜇1) is chosen such that 𝜆min(𝜇1) = 𝜃0/2𝜀20 +𝜃1Φ/2𝜀21 + 𝜖 where 𝜖 is a positive constant, then 𝑉̇4 can be

written in the following two forms:

𝑉̇4 ≤ −𝜖 ‖𝑠‖2 − (𝜆min (𝜇2) − 𝜛‖𝑠‖) ‖𝑠‖
− 3(1−𝜌)/2𝜆min (𝜇3) ‖𝑠‖𝜌+1 ,

or 𝑉̇4 ≤ −𝜖 ‖𝑠‖2 − 𝜆min (𝜇2) ‖𝑠‖
− (3(1−𝜌)/2𝜆min (𝜇3) − 𝜛

‖𝑠‖𝜌+1) ‖𝑠‖𝜌+1 .

(62)

With the process similar to Theorem 11, the trajectory of
the system is fixed-time stable. When 𝜆min(𝜇2) > 𝜛/‖𝑠‖ or
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3(1−𝜌)/2𝜆min(𝜇3) > 𝜛/‖𝑠‖𝜌+1, the trajectories of the solution of
the system converge to the residual set given by

𝐷 = { lim
𝑡→𝑇𝑓

𝑠 (𝑡) | ‖𝑠‖

≤ min( 𝜛𝜆min (𝜇2) , (
𝜛3(1−𝜌)/2𝜆min (𝜇3))

1/(1+𝜌))} .
(63)

Hence, the proof of Theorem 13 is completed.

Remark 14. In particular, 𝜃0 and 𝜃1 are the estimated values
of 𝜃0 and 𝜃1, in Assumptions 1 and 2, respectively. In [13],
the upper bound of 𝑑(𝑡)was estimated by traditional adaptive
update law.The sign functionwas combinedwith the adaptive
update law and it can only ensure uniformly ultimate bound-
edness of 𝜃0 and 𝜃1. In this paper, the design parameters𝑘0 and 𝑘1 are used to determine the convergence region,
and these parameters can be selected to be sufficiently small.
However, these parameters also determine the convergence
speed of the estimated bounds 𝜃0 and 𝜃1. If values 𝑘0 and𝑘1 are chosen too small, then a slow convergence rate is
obtained. Therefore, a compromise is made between the
convergence region and the convergence speed. Moreover,
the values of 𝑘0 and 𝑘1 cannot be selected too small [42].
Based on the above adaptive law, the trajectories of 𝜃0 and𝜃1 are reduced significantly and then converge to a value near
zero.

5. Simulations

Numerical simulations on the flexible spacecraft have been
conducted to verify the performance of the proposed adaptive
fixed-time control law (50) and PD-based sliding mode
control (PD-SMC) method in [5]. For this, the same model
parameters used in [39] are applied in this study. The inertia
matrix and the flexible coupling matrix are as follows:

𝐽 = [[
[
350 3 4
3 270 10
4 10 190

]]
]

kg ⋅m2, (64)

and coupling matrices

𝛿 = [[[[[
[

6.45637 1.27814 2.15629
−1.25619 0.91756 −1.67264
1.11678 2.48901 −0.83674
1.23637 −2.6581 −1.12503

]]]]]
]

kg1/2 ⋅m/s2, (65)

respectively. The natural frequencies and damping are pro-
vided by

Λ 1 = 0.7681,
Λ 2 = 1.1038,
Λ 3 = 1.8733,
Λ 4 = 2.5496 rad/sec

𝜁1 = 0.0056,
𝜁2 = 0.0086,
𝜁3 = 0.013,
𝜁1 = 0.025.

(66)

In this numerical simulation, we assume that the desired
angular velocity is given by

𝜔𝑟 (𝑡) = 0.05
[[[[[[[
[

sin( 𝜋𝑡100)
sin(2𝜋𝑡100)
sin(3𝜋𝑡100)

]]]]]]]
]

rad/s. (67)

For the initial conditions of the unit quaternion
and the target unit quaternion, we set 𝑄(0) =[−0.17365 −0.2632 0.7896 −0.5264]𝑇 and 𝑄𝑑(0) =[0 0 0 1]𝑇, respectively. The initial value of the angular
velocity is supposed to be 𝜔(0) = [0 0 0]𝑇 rad/s.
We bounded the magnitude of the control torque as|𝑢𝑖| ≤ 3.0N-m, 𝑖 = 1, 2, 3. The external disturbance torque
that includes constant disturbance and periodic disturbance
of two different frequencies is described as follows:

𝜏𝑑 (𝑡) = [[
[

3 cos (𝑡) − 10 + 4 sin (0.3𝑡)
3 cos (0.5𝑡) + 15 − 1.5 sin (0.2𝑡)
3 sin (𝑡) + 10 + 8 sin (0.4𝑡)

]]
]

× 10−2Nm.
(68)

The parameters for the controller (50) are chosen as 𝐾 =0.2𝐼3, 𝐶1 = 𝐼3, 𝐶1 = 0.6𝐼3, 𝛽 = 7/9, 𝛾 = 1.1, 𝜇1 = 5𝐼3, 𝜇2 =3𝐼3, 𝜇3 = 1.2𝐼3, 𝜌 = 5/3, 𝜂0 = 10, 𝜂1 = 10, 𝜀0 = 0.01,
and 𝜀1 = 0.01. For the PD-SMC method in [5], simulations
are performed with the parameters given as 𝑘𝑃 = 3, 𝑘𝑑 = 8,𝑘𝑒 = 3.5, and Γ = 20.

The performance of the PD-SMC method in [5] is
shown in Figures 1–7. From Figure 1 one can see that the
time responses of quaternion errors converge to zero after
60 seconds. Figure 2 depicts the unwinding phenomenon
encountered in unit quaternion based attitude systems. Since𝑒0(0) = −0.17365, the scalar quaternion error should finally
converge to the equilibrium point 𝑒0(𝑡) = −1 instead of the
equilibrium point 𝑒0(𝑡) = 1. As shown in Figure 3, the time
responses of angular velocity tracking errors are stabilized to
zero but they are not smooth due to coupling effect of flexible
modes. Also, Figure 4 shows that the time responses of sliding
variables 𝑠𝑖 (𝑖 = 1, 2, 3) converge to zero with low accuracy.
As shown in Figure 5, the time responses of control torques
have much variation during the first 60 seconds. Figures 6
and 7 illustrate the time responses of modal displacements
which are ultimately bounded by small values near zero. For
the tracking accuracy, the Euclidean norm of steady errors of𝑒(𝑡),𝜔𝑒(𝑡), and 𝑠(𝑡) can be listed as ‖𝑞𝑒‖ ≤ 5.7×10−3 and ‖𝜔𝑒‖ ≤7.7×10−4 and ‖𝑠‖ ≤ 1.77×10−4 with sampling time ℎ = 0.005.
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Figure 1: Quaternion errors under PD-SMC.
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Figure 2: Scalar component of quaternion errors under PD-SMC.
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Figure 3: Angular velocity errors under PD-SMC.
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Figure 4: Sliding surface under PD-SMC.
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Figure 5: First and second modes under PD-SMC.

Figures 8–14 show the performance of the proposed adap-
tive fixed-time control law (50). As can be seen fromFigure 8,
time responses of quaternion errors can be stabilized to
zero. Figure 9 shows that the controller (50) can prevent the
unwinding phenomenon. When 𝑒0(0) = −0.17365, the scalar
quaternion errors can properly converge to the equilibrium
point 𝑒0(𝑡) = −1. As shown in Figure 10, the time responses
of angular velocity errors are smoother when compared with
those obtained by the PD-SMCmethod in [5]. FromFigure 11
one can see that the sliding surface 𝑠 = 0 is achieved
with higher precision than those of the PD-SMC method.
Figure 12 shows the time responses of control torques which
have small variation. As shown in Figures 13 and 14 the
flexible mode vibration is reduced greatly at the beginning
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Figure 6: First and second modes under PD-SMC.
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Figure 7: Third and fourth modes under PD-SMC.
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Figure 8: Quaternion errors under controller (50).
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Figure 9: Scalar component of quaternion errors under controller
(50).
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Figure 10: Angular velocity errors under controller (50).

and then decreased to a small value. In fact these modal
coordinates converge to a small amplitude of the flexible
mode vibration (less than 0.05) after 50 seconds. Practically,
it is sufficiently good for some spacecraft missions. However,
sufficiently large control torques can be applied to keep the
flexible mode vibration at an acceptable amplitude of the
flexible mode vibration in a small amount of time. Regarding
the tracking accuracy, the Euclidean norm of steady errors of𝑒(𝑡), 𝜔𝑒(𝑡), and 𝑠(𝑡) can be listed as ‖𝑞𝑒‖ ≤ 4.6 × 10−5 and‖𝜔𝑒‖ ≤ 2.06 × 10−4 and ‖𝑠‖ ≤ 1.87 × 10−4 with sampling timeℎ = 0.005.

From these simulation results, the proposed adaptive
fixed-time control law (50) provides offers smoother time
responses of attitude and angular velocity errors and higher
accuracy of attitude and angular velocity errors than the
PD-SMC method in [5]. Furthermore, the controller (50)
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Figure 11: Sliding surface under controller (50).
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Figure 12: Control inputs under controller (50).

effectively prevents the unwinding phenomenon. In view of
the simulation, the proposed control law seems to be a more
effective control approach for general case of attitude tracking
maneuvers of a flexible spacecraft.

6. Conclusion

In this paper, an adaptive fixed-time control law has been
developed for the attitude tracking control problem of a
flexible spacecraft. The first objective of this research has
been aimed at providing a new result in fixed-time stability.
Then, a fixed-time attitude tracking controller is proposed
in the presence of external disturbances and coupling effect
of flexible modes. Later, the controller is further enhanced
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Figure 13: First and second modes under controller (50).
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Figure 14: Third and fourth modes under controller (50).

by an adaptive law to relax the knowledge of norm upper
bounds of external disturbances and coupling effect of flexible
modes. The proposed adaptive fixed-time controller offers
a fast transient process and high attitude tracking accuracy.
This controller can avoid the unwinding phenomenon. Using
Lyapunov stability theory, we have proved that the error
dynamics converge to a desired region containing the origin
in finite time in the sense of fixed-time convergence. Numer-
ical simulations on attitude control of a flexible spacecraft
model are also presented to demonstrate the performance of
the proposed control methods.
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