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We design and implement a novel communications latency based authentication scheme, dubbed CLAS, that strengthens the
security of state-of-the-art web authentication approaches by leveraging the round trip network communications latency (RTL)
between clients and authenticators. In addition to the traditional credentials, CLAS profiles RTL values of clients and uses them to
defend against password compromise.The key challenges are (i) to prevent RTLmanipulation, (ii) to alleviate network instabilities,
and (iii) to address mobile clients. CLAS addresses the first challenge by introducing a novel network architecture, which makes
it extremely difficult for attackers to simulate legitimate RTL values. The second challenge is addressed by outlier removal and
multiple temporal profiling, while the last challenge is addressed by augmenting CLAS with out-of-band-channels or other
authentication schemes. CLAS restricts login to profiled locations while demanding additional information for nonprofiled ones,
which highly reduces the attack surface even when the legitimate credentials are compromised. Additionally, unlike many state-of-
the-art authentication mechanisms, CLAS is resilient to phishing, pharming, man-in-the-middle, and social engineering attacks.
Furthermore, CLAS is transparent to users and incurs negligible overhead. The experimental results show that CLAS can achieve
very low false positive and false negative rates.

1. Introduction

During April 2015 breaking news from RSA, Idan Tendler
pointed out that 80% of successful attacks exploit authen-
tication credentials [1]. Passwords have always been the
most notorious but dominant authentication credential for
web services. However, attackers continuously innovate ways
to compromise passwords: phishing, pharming, guessing,
shoulder surfing, brute force, social engineering, and eaves-
dropping, just to name a few [2].

To overcome password evolving weaknesses, multifactor
authentication schemes have been implemented as one of the
most appealing solutions [3, 4]. Multifactor authentication
schemes require, in addition to the regular password, other
authentication codes to log in. The additional credentials
(passwords, biometrics, PINs, hardware tokens, etc.) are
either preagreed upon or, in most cases, delivered to users
in real-time through a different channel such as email

and SMS. Multifactor authentication schemes considerably
enhance the security of password-based systems; however,
they suffer from many limitations and they introduce new
vulnerabilities.

(i) Many multifactor authentication mechanisms do not
protect againstman-in-the-middle attacks (through phishing
or pharming, for example, [5, 6]). A phishing attackermay get
the additional authentication codes the same way as he/she
gets the traditional credentials. The attacker can simply
present the user with a forged fake screen to input his/her
additional codes, which the attacker uses in real-time to
impersonate the legitimate user.

(ii) Many of the channels used to provide additional
credentials are likely easy to be compromised in many cases.
One of the most commonly used second-factor channels is
smartphone SMS. However, smartphones are vulnerable to
theft and loss and hence may expose authentication codes
passed through them. According to customer report, 3.1
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Table 1: A survey that compares single-factor and two-factor authentication of an e-banking service.

Ranked best Overall preference Convenience Security
Single-factor 32 (52.5%) 42 (68.9%) 4 (6.6%)
Two-factor 26 (42.6%) 9 (14.8%) 46 (75.4%)
Rate equally 3 (4.9%) 10 (16.4%) 11 (18.0%)

million smartphoneswere stolen and 1.6million smartphones
were lost during 2013 in the USA alone [7]. Most importantly,
smartphones become more and more susceptible to mobile
malware and spyware. In the 2015 threat report [8], Symantec
revealed an active Android malware that can intercept SMS
messages with second-factor authentication codes and for-
ward them to attackers.

(iii) Many multifactor authentication mechanisms have
poor user experience due to scanning or typing of extra bits
of information. The survey presented in Table 1 [14] reveals
that only 14.8% of the users of a two-factor authentication e-
banking service think it is convenient. This clearly indicates
that any security solution has to accommodate the trade-off
between security guarantees and usability desires.

A key question that motivated this work is if it is possible
for an authenticator to distinguish whether an ongoing login
attempt is initiated by the legitimate user or by a perpetrator
in possession of the legitimate credentials. Profiling the
behavior of the user is one of the first solutions that jump
straight ahead as it is proved to be effective in flagging some of
the most dangerous attacks. A plethora of mechanisms have
been introduced to profile users’ behavior in the context of
anomaly based intrusion detection systems. Many of such
mechanisms profile users’ network traffic information, such
as entropy of IP addresses and port numbers, percentage of
network bandwidth utilization, packet loss rate, and percent-
age of unencrypted traffic flow. However, it has been shown
that many of the features used are not robust [15]; that is,
attackers could easily change some of the features that charac-
terize their behavior tomatch those of the victims and, hence,
successfully impersonate them. Moreover, these network-
based profiling mechanisms incur prohibitively high over-
head because they require a relatively large amount of real-
time traffic to achieve acceptable profiling accuracy [16, 17].
This may also lead to poor user experience due to the longer
time it takes to log in.

In this work, we design and implement a novel scheme,
dubbed CLAS, that strengthens the security of web authenti-
cation by profiling the round trip network communications
latency (RTL) between clients and authenticators. CLAS
complements the state-of-the-art authentication schemes by
overcoming many of their limitations such as susceptibility
to phishing and pharming. In fact, CLAS is capable of
protecting legitimate users even when their credentials are
compromised. More importantly, CLAS has lightweight real-
time overhead and utilizes features that are extremely hard
to be manipulated. Additionally, CLAS is transparent to end
users as they do not provide any additional authentication
information beyond that of username and password.

CLAS uses round trip network communications latency
(RTL) to uniquely profile users. In this context, RTL is

defined as the time elapsed between sending out a packet
and receiving its acknowledgment. It has been observed
that RTL between two communicating parties (e.g., client
and server) approximately follows a Gaussian distribution
regardless of the Internet access technology used (e.g., WiFi,
wireline, and 3G/4G) [18]. The RTL changes when any of the
communicating parties changes the location of its Internet
access.

When a user registers for a service, the responsible server
initiates a process to establish his/her profile. For every user
in CLAS, the profile is themean and standard deviation of the
round trip network communications latency (RTL) between
the user and the server through a special network device (i.e.,
Stealthy Relay (SR) as discussed in Section 3.3) that resides in
the middle of them. Profile parameters are then stored on the
server along with the traditional credentials (username and
password) for future login verification. Later login attempts
are profiled in real-time and compared against the stored pro-
file parameters. Access is granted only when the ongoing real-
time profile parameters fall within predetermined boundaries
of the stored profile parameters.

In the context of this work, the same geographical
location does not necessarily imply the same login location.
Two users using different types of Internet access techniques
(e.g., one uses WiFi while the other uses 4G) most likely
have different login locations even if they have the exact
same geographical location.Throughout the rest of this paper,
location refers to the login location, not the geographical
location.

The first research challenge that CLAS faces is the secure
measurement of RTL. CLAS has been carefully designed
to make it highly unlikely for attackers, and even for the
legitimate users themselves, to learn profile parameters. This
is mainly achieved, as detailed in Section 3.3, by inserting
a special one-way forwarding device, dubbed Stealthy Relay
(SR), in the round trip route between the clients and the
server. This novel design makes RTL values extremely hard to
be manipulated. It is true that the RTL is different from RTT
(round trip time) by our design, mainly to prevent poten-
tial manipulation. RTT can be easily estimated and hence
manipulated by any perpetrator to impersonate legitimate
users, simply by judiciously delaying packets. In CLAS, the
profile is the round trip network communications latency
(RTL) between the user and the authenticator through the
SR as discussed in Section 3.3 and illustrated in Figure 2. It
is directly measured, stored, and used by the authenticator.
As long as the reference profile and the real-time profile are
measured through the same SR, there is no need to do any
adjustments or modifications to user profiles.

The second research challenge for CLAS is to cope with
potential network instabilities. The work in [18] and our
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experiments show that network instabilities (e.g., network
congestion due to server workload increment [19], inter-
mediate node dynamic wake-up time scheduling, and/or
reprogramming [20, 21]) may cause network communica-
tions latency to vary over time. CLAS addresses this issue
through preprocessing of RTL measurements and using
multiple temporal profiling. The detailed discussion and
analysis of the impact of network instabilities on CLAS are
presented in Section 3.7. The third challenge is the ability
of CLAS to support mobile clients. CLAS is designed to
only allow login from profiled locations, which creates an
inherent challenge for applications that support anywhere
authentication. CLAS can support anywhere authentication
by incorporating out-of-band-channels such as SMS mes-
sages or by integrating additional profiling features such
as browser fingerprints and typing patterns as explained in
Section 5.

The final research challenge that CLAS faces is the poten-
tial successful authentication of perpetrators who both pos-
sess login credentials and have access to the corresponding
profiled location. CLAS uses two factors to authenticate,
password and RTL, and it can tolerate the compromise of
either one but not both; that is, CLAS can defend against
attackers who capture legitimate passwords but have no
access to the corresponding profiling location.This limits the
attack surface of a compromised account from anywhere in
the world to only the profiled location, which is a significant
security improvement especially for nontargeted attacks.
Most of the password compromise attacks are nontargeted as
in the case of phishing throughmassive email spam, malware
spreading through worldwide bonnets, and server database
compromise.

In this work, we address the first two challenges in
detail and outline the proposed mitigation of the last two
challenges. The detailed design and analysis of the last two
challenges are planned for a future work.

We provide mathematical analysis and conduct extensive
experiments to evaluate the security guarantees and per-
formance overhead of CLAS. We mainly use two security
metrics, false positive rate (FP) and false negative rate (FN).
False positive occurs when the attacker succeeds to log in
using compromised credentials, while false negative occurs
when the legitimate user is denied access from his/her
profiled location. The results show that CLAS can achieve FP
as low as 0.0017 while the FN is below 0.007. In other words,
out of 1000 legitimate login trials less than 7 fails on average.
Additionally, perpetrators who possess the credentials of a
legitimate user have only 1.7 in 1000 chance to authenticate
on average. We also evaluate the login latency overhead, the
bandwidth overhead, and the storage requirements of CLAS
and show that they are negligible.

Our contributions in this work are summarized as fol-
lows:

(i) To design and implement a novel scheme, dubbed
CLAS, that strengthens the security of web authenti-
cation by leveraging the round trip network commu-
nications latency (RTL) between clients and authen-
ticators

(ii) To design and implement the novel network architec-
ture of CLAS which ensures its resiliency to manipu-
lation attacks

(iii) To design and develop algorithms to mitigate the
impact of network instabilities on CLAS

(iv) To outline the proposed solutions to support mobile
clients and defend against the compromise of both
password and RTL (e.g., access to the profile location)

(v) To perform security analysis about defense method-
ologies of CLAS for many types of attacks that cannot
be addressed by many state-of-the-art authentication
schemes

(vi) To perform mathematical analysis to evaluate the
security properties and performance overhead of
CLAS

Build a prototype of CLAS and conduct extensive exper-
iments to practically evaluate its security guarantees and
performance overhead.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 defines the attack model and
presents the design and the implementation details of CLAS,
including authentication process, secure measurement of
RTL, and network instabilities. Section 4 discusses the
defensemethodologies of CLAS formany types of attacks that
cannot be addressed by many state-of-the-art authentication
schemes. Section 5 discusses the challenges of CLAS and
presents extensions that address them, including mobile
user authentication, prevention of same location attacks, and
RTL sample space analysis. In Section 6, we present the
experimental setup and results. In Section 7, we conclude
this study and discuss potential future research extensions.
Appendix A presents the theoretical analysis of the trade-
off between FP and FN based on the Gaussian approxima-
tion.

2. Related Work

In [18], the authors perform extensive experiments to mea-
sure network communications latency and conclude that it
approximately follows a Gaussian distribution with the mean
and standard deviation used to characterize different cloud
servers. We partially leverage this observation to develop our
authentication scheme.

In [22], the authors propose a packet delay-based scheme
to detect man-in-the-middle (MitM) attacks. They assume
that delay increases in the existence of MitM attacker. How-
ever, this scheme suffers from serious security issues because
the packet delay as presented can be easily manipulated. The
way packet delay is computed enables attackers to reduce the
delay by simply using a proxy server. More importantly, the
scheme uses timestamps of TCP packet headers to calculate
the delay, which could be easily manipulated. Addition-
ally, the scheme fails to correctly address mobility issues.
CLAS, on the other hand, has a novel network architecture
carefully designed to mask network delay from everyone
except the profiling server. This design makes CLAS highly
resilient to any possible latencymanipulation and hence highly
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secure. Moreover, CLAS extensions support authentication
on mobile scenarios.

Since 2010, Gmail launched a service that enables its
users to detect suspicious account login activities based on
IP information [23]. The detection is made via the Gmail
automated system by matching the relevant IP address to a
broad geographical location. Gmail users can see all their
login activities within specific locations. This feature enables
Gmail users to detect any suspicious login activities and facil-
itates responses by, for example, changing login password.
However, IP-based verification is too weak due to the easiness
bywhich IP-based information can bemanipulated. Two easy
ways to fake location information are proxy servers (e.g., Tor
Project [24]) and VPNs. Alternatively, an attacker can choose
to perform IP hijacking attack to impersonate legitimate
users. One-way to hijack IPs is by using BGP hijacking
attacks [25]. BGP/IP hijacking is much more common than
current researchers think and it is hard to be detected in the
form of local BGP hijacking [26, 27]. Furthermore, IP-based
authentication suffers many other limitations due to current
Internet infrastructure including (1) extensive use of NAT,
especially the use of Carrier Grade NAT (CGN) or Large
Scale NAT (LSN) [28], and (2) complex and inconsistent IP
address configuration policies by different ISPs.Therefore, IP
address based authentication is more suitable for LAN other
than general web service authentication.

Comparing to our previous work in [29], the new paper
has achieved significant improvements, such as (1) presenting

a theoretical analysis of the FP and FN based on the Gaussian
approximation; (2) conducting 3 sets of new experimental
evaluations; (3) laying out more detailed research challenge
analysis and corresponding solutions/extensions; (4) per-
forming a security analysis about defense methodologies of
CLAS for many types of attacks that cannot be addressed
by many state-of-the-art authentication schemes; and (5)
providing a prototype website.

3. Communications Latency Based
Authentication Scheme (CLAS)

In this section, we present the attack model, the design, and
implementation details of CLAS. As depicted in Figure 1,
CLAS ecosystem comprises three entities, namely, User,
Server, and Stealthy Relay (SR). Users log in to servers to
access services. Servers authenticate users based on their
traditional credentials and previously stored measurements
of network communications latency. Servers build reference
profiles for users once they join the offered services. Servers,
later, grant/deny access after comparing real-time profiles
built during each login attempt with stored reference profiles
built at the registration time. Servers include SR in the round
trip route to users to thwart possible attempts to learn profile
parameters.

3.1. Attack Model. We assume that the registration phase
when reference profiles are established is secure. This is
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a reasonable assumption because secure registration (or
secure profiling phase) is considered the root of trust of all
cybersecurity systems that utilize profiling techniques (e.g.,
profiling the user’s behaviors for authentication [30, 31]).
We also assume that the Stealthy Relay (to be introduced
later) is secure and is connected to a network segment that
cannot be accessed by attackers. That is, attackers cannot
connect from the network segment of the Stealthy Relay
(SR) in a bid to learn profile parameters of users. Remote
access compromise and denial of service attacks are out
of the scope of this work. In remote compromise attacks,
attackers may manage to remotely access the computer of the
user, through, for example, compromise of remote desktop
credentials or infection by a Trojan Horse, while in denial
of service attacks, attackers try to prevent login of legitimate
users.

3.2. CLAS Authentication Process. CLAS authentication con-
sists of registration phase and authentication phase (Figure 1).
Registration is used to build profiles while authentication ver-
ifies future login attempts. To demonstrate the authentication
process of CLAS, we use the typical web-page login scenario
depicted in Figure 1.

Registration starts when a user creates a new accountwith
the intended server (Step (1) in Figure 1). The registration
daemon at the server starts the profiling process through
which multiple packets are exchanged with the user to
establish its reference RTL profile. The server asks for the
user’s permission to engage in the profiling process (Step (2)
in Figure 1). After the user accepts the request (Step (3)
in Figure 1), the server sends a sequence of packets, called
Profiling Signals, to the SR and the SR forwards them to
the user (Step (4) in Figure 1). Then the user acknowledges
the reception of each profiling signal by sending direct
acknowledgments back to the server (Step (5) in Figure 1). A
profiling signal is a very small packet (similar to ping request
and reply messages) intended to measure the RTL between
the server and the user.

Detailed analysis of the number of profiling signals
required to establish sufficiently accurate profiles is provided
in the analysis section (Section 3.5). The RTL for each
profiling signal (Steps (4) and (5) in Figure 1) is computed at
the server as the time elapsed between sending out the signal
and receiving its acknowledgment back. The average and
the standard deviation of the RTL values of all the profiling
comprise the profile of the user.

In the authentication phase, downstream (Steps (8) and
(9) in Figure 1) login packets from the server are acknowl-
edged by the user. Using the profiling signals and acknowl-
edgments, the server computes the mean and the standard
deviation of the RTL in real-time (Step (11) in Figure 1).
The server, then, compares the real-time measured profile
parameters with those of the reference profile. Based on the
result of the comparison, access is either granted or denied.

3.3. Secure Measurement of RTL. An important security
concern in the naive measurement of RTL is that it allows
attackers to easily figure it out. For example, an attacker
can simply ping the server from the location of the user.

The round trip delay of the ping packets provides excellent
estimation of the round trip delay between the user and
the server and, hence, can be used to compute profile
parameters. If the attacker learns the profile parameters of
a user and if he/she is in a location with communications
latency less than that of the user, he/she can easily mimic
the profile of the user. The attacker simply adds appropriate
delay before acknowledging the profiling signals. To address
this important security concern, CLAS introduces a special
network component called Stealthy Relay (SR) in the round
trip route between the user and the server (Figure 2). SR
is a secure one-way packet forwarding device owned and
controlled by the service provider. SR has one and only one
function: it is dedicated to receive the profiling signals from
the server and relays them to the user; that is, the SR serves as
a special purpose router. The profiling signal received by the
user has the IP of the server as the source address, while the
IP address of the SR is only known to the server.

SR is configured to refuse any other kind of communica-
tion with any entity, including the server itself. For example,
the SR does not respond to any ping requests. Additionally,
the SR is installed on a separate dedicated secure network
segment; that is, attackers cannot connect to the location
of the SR nor can they compromise it. Therefore, attackers
cannot use SR or the network segment where SR is connected
to send ping packets (or any other packets) to any entity. The
detailed configuration of SR is presented in Section 6.1.

The purpose of SR is to make it extremely hard for any
entity, including the users themselves, to learn the RTL. SR
achieves this by creating new path-segments in the round trip
path between the server and its users. The communications
delay over these new path-segments cannot be measured
by outsiders. In Figure 2, the RTL is the sum of the delay
over the path-segment from the server to the SR (𝐷ss), the
delay over the path-segment from the SR to the user (𝐷su),
and the delay over the path-segment from the user to the
server (𝐷us). The attacker may be able to estimate 𝐷us by
pinging the server from the location of the user; however, it
is not possible for him/her to figure out 𝐷su and 𝐷ss due to
the one-way communications architecture of the SR. Recall
that SR does not respond to any communication even from
the server itself. In other words, round trip cycles cannot be
established on the path-segment between the user and the SR
or between the SR and the server. In this architecture, the only
cycle that can be established is the one initiated by the server
using the profiling signals and is completed by receiving the
corresponding acknowledgments.Therefore, the server is the
only entity of CLAS that knows the profile parameters. No
other entity, including the user herself, can compute or learn
even his/her own profile parameters.

There are two possible ways for attackers to estimate the
round trip profile parameters: (i) establish round trip cycles
on 𝐷su and 𝐷ss path-segments by pinging the user and the
server from the SR or its location. However, we have shown
earlier that this is not possible because the SR is assumed
to be secure and connected to a location that cannot be
accessed by attackers. Furthermore, recall that the network
location of the SR cannot be determined because the IP
address of the SR is only known to the server. Therefore,
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attackers cannot use ping packets from SR or its location to
estimate 𝐷su and 𝐷ss. (ii) An insider who has access to the
location of the server may monitor the profiling signals and
the acknowledgments to estimate profile parameters. This
is thwarted by encrypting the profiling signals at the server
before sending them to the SR; that is, the insider cannotmap
the incoming acknowledgments and the outgoing profiling
signals. More details are presented in Section 3.4.

Someonemay argue that another possible way to estimate𝐷su and 𝐷ss is by compromising the server itself. However,
this scenario does not apply to our discussion here, simply
because it would be irrational for an attacker, in this case, to
compromise users in a bid to access their services; he/she has
already compromised the service itself.

The service provider may set up more than one SR at
different locations for the purpose of load balancing and
recovery from loss. Multiple SRs could be deployed using
existing infrastructures (e.g., Google has many offices, repair
branches, and data centers) such that the deployment cost can
be substantially reduced. The users are randomly assigned
to different SRs. Additionally, some service providers may
optionally change the assignment of the SR to change the
profile parameters of the users as an extra security precaution
against possible leakage of users’ profile parameters. Note
that SR reassignment is quite a simple configuration that is
performed by the server and is completely transparent to the
user. After the user logs in using his/her current profile, a
new profile is established using the new SR (Section 3.2) by
sending a sequence of profiling signals through the new SR.
The new profile replaces the old one and the new SR is used
for future logins.

3.4. Profiling: Protocol and Implementation. In this section,
we show how SR is used to securely measure RTL.The server
first encrypts each profiling signal using the symmetric key it
shares with the SR. A programming interface implemented
on top of the MAC layer at the server records the send
time (𝑠𝑒𝑛𝑑𝑡𝑖𝑚𝑒) of each downstream profiling signal. The
SR decrypts the profiling signal and then relays it to the
user. Finally, the user sends an acknowledgment for each
received profiling signal directly to the server. The profiling
signals received at the user have the IP of the server as the
source address and, hence, the IP address of the SR is not
exposed to the users.This setup also has the advantage that no
special agent is needed at the user side, a feature that makes
CLAS completely user transparent. When the programming
interface at the server receives the acknowledgment from the
user, it records its reception time (𝑟𝑐V𝑡𝑖𝑚𝑒) and computes
RTL = 𝑟𝑐V𝑡𝑖𝑚𝑒 − 𝑠𝑒𝑛𝑑𝑡𝑖𝑚𝑒. When enough profiling signal
acknowledgments are received, the mean and the standard
deviation are computed and used to determine whether to
grant or deny access.

3.5. Profiling Sample Size. In this section, we use theGaussian
approximation of RTL to analyze theminimum requirements
to build sufficiently representative profiles while controlling
bandwidth and login latency overhead. Time and bandwidth
overhead incurred during the registration phase may not be

of a material concern since it is a one-time process. However,
authentication happens with every login and authentication
profiles have to be established in real-time. Therefore, it
is of paramount importance to ensure that the incurred
login latency and bandwidth overhead are within acceptable
limits. The main source of both login latency overhead
and bandwidth overhead is the extra (beyond the regular
login packets) profiling signals that are required to build
sufficiently accurate profiles. The accuracy of profiles is
determined by the acceptable rate of false positives and
false negatives. In this section, we compute the approximate
number of profiling signals (i.e., sample size) that produces
acceptable profile accuracy.

Assume a population with Gaussian distribution that has
standard deviation 𝑆 and mean 𝑀. The goal is to find the
minimum sample size, 𝑁, that produces a mean, 𝜇, within
a certain error margin, 𝛿, with a certain confidence level1 − 𝛼. The error margin (aka the confidence interval), 𝛿,
is the maximum allowed distance between 𝑀 and 𝜇. The
confidence level represents how confident we are that the
measured mean (𝜇) falls within the confidence interval.

For Gaussian distributions, it has been shown ([32, 33])
that the minimum sample size𝑁 can be calculated as

𝑁 ≥ (𝑍1−𝛼𝛿 )2 𝑆2, (1)

where 𝑍 is the critical value for the normal distribution. In
other words, for a sample size of𝑁, we have 1 − 𝛼 confidence
that the measured mean (𝜇) will fall in the range of

𝑀− 𝛿 ≤ 𝜇 ≤ 𝑀 + 𝛿. (2)

Similarly, the range of the real-time measured standard
deviation 𝜎 can be computed using Chi-Square (𝜒) table as

√𝜒2𝐿 ⋅ 𝑆2𝑁 − 1 ≤ 𝜎 ≤ √𝜒
2
𝑅 ⋅ 𝑆2𝑁 − 1 , (3)

where 𝜒𝐿 and 𝜒𝑅 are computed for specific values of 𝛼 using
the Chi-Square table.

For example, to be 99% confident that 𝜇 is in the range
of ±𝛿 = ±0.5 ⋅ 𝑆 (i.e., the error tolerance is half of the
standard deviation), the number of measurements should be𝑁 ≥ (𝑍1−𝛼/𝛿)2𝑆2 = 4 ⋅ (𝑍0.99)2 ≈ 27. In other words, with
more than 27 profiling signals, we will be 99% confident that
the real-time profile mean will be within 0.5 ⋅ 𝑆 from the
reference profile mean.

3.6. Access Decision. The decision to grant or deny access
for a certain login attempt is simple: if the real-time RTL
mean is within the range defined in (2) and the real-time RTL
standard deviation is within the range defined in (3), access
is granted; otherwise, access is denied.

When out-of-band-channels such as phone SMS or email
are available, the access decision accuracy is enhanced by
incorporating an additional state: further information is
required. If the login attempt has (i) a real-time RTL mean
outside the range defined in (2) but within the range defined



Security and Communication Networks 7

in (2)± 𝛾1 and (ii) a real-timeRTL standard deviation outside
the range defined in (3) but within the range defined in
(3) ± 𝛾2, the decision will be further information is required.
If further information is required, the user has to provide
additional information that he will receive through the out-
of-band-channel.

3.7. Network Instabilities. Network instabilities may be
caused by different factors including permanent routing
changes, congestion, DDoS, and traffic rerouting. Such
instabilities may cause network communications latency to
vary overtime. To understand network instabilities and to
effectively alleviate their impact on CLAS, we classify them
into three broad categories.

Instantaneous instabilities are instabilities which lead to
transient changes in network communications latency and,
hence, it only affects a few profiling signals. For example,
when sending 100 signals to the server, only a few of them
experience unexpected large delay due to traffic congestion
(e.g., queuing at intermediate routers).This type of instability
is the most common case and is handled by removing the
outlier RTL values before computing the mean and the stan-
dard deviation (i.e., a statistical outlier removal algorithm:
median absolute deviation method based on the Gaussian
approximation).

Long-term instabilities are instabilities that stay long
enough to affect the whole or most of the profiling signals but
are not permanent. For example, if a user has a low bandwidth
Internet, he/she will experience longer communications
latency while his/her roommate is watching an HD movie
online. This type of instability is a less common case and
usually happens on the local network. CLAS addresses this
case by increasing the error tolerance of the user according to
his/her historical records and utilizing out-of-band-channels
to enhance the access decision accuracy. Additionally, shared
increment removal algorithm based on the design of multiple
profiles to address the long-term instabilities is planned for
the future work.

Routing instabilities are instabilities that result in perma-
nent changes in network communications latency, due to, for
example, permanent network routing changes. It has been
shown that most of the important IP prefixes have stable
routes and that instabilities only exist in a small portion of
the global Internet [34–37] and, hence, the impact of these
instabilities on CLAS is limited. In [34], the authors examine
BGP routing information at five of the major US network
exchange points: AADS, Mae-East, Mae-West, PacBell, and
Sprint. The experiments show that the majority of routing
information exhibits the same significant weekly, daily, and
holiday cycles. More importantly, the experiments show
that network instabilities exhibit strong periodicity. A recent
study [38], which is based on 3-year daily data and 8-year
monthly data, confirms the results of the earlier studies
and further shows that routing changes have strong weekly
periodicity, despite the overall growth in the size of the
Internet. Consequently, the impact of this type of network
instabilities in CLAS is marginal. Even for the small portions
of global Internet with obvious instabilities, the instabilities

exhibit strong periodicity and temporal properties.Therefore,
CLAS can leverage these temporal properties and the strong
periodicity of these instabilities to create long-term dynamic
profiles. For example, CLAS can create temporal profiles such
as daytime profile, night profile, weekday profile, and week-
end profile. Also, these temporal profiles can be dynamically
adjusted according to the user’s valid login records or by using
continuous profiling. In continuous profiling, the reference
profile is updated with every successful login. Using such
long-term dynamic temporal profiling alleviates the impact
of network instabilities on CLAS.

In addition, for any sudden, unexpected, significant, and
permanent changes, which are rarely incurred, users can use
the login failure techniques discussed in Section 5 to rebuild
their reference profiles.

4. Security Analysis

In this section, we discuss the defense methodologies of
CLAS for many types of attacks.

4.1. Physical Observation. Refers to the potential leakage of
authentication credentials by physical observation of users
during login (e.g., shoulder surfing). It is important to note
that the end user does not know and does not need to
know his/her profile parameters. The profile parameters are
measured, stored, and used by the authenticating server (as
detailed in Section 3.3).Therefore, it is completely resilient to
physical observation.

4.2. Internal Observation. It refers to the attack in which a
perpetrator captures credentials by intercepting the input of
the user inside his/her device. As detailed in Section 3.3,
CLAS does not require any user input. Therefore, it is
completely resilient to internal observation.

4.3. Password Compromise. In CLAS, even if the traditional
credentials of the user are compromised, attackers cannot use
them to successfully login from arbitrary locations. For such
attacks to succeed, in addition to compromising credentials,
attackers have to log in from locations that have similar
parameters to those of the profiled location of the legitimate
user, which is extremely hard to achieve. To have similar
parameters to those of the legitimate user, the attacker has
to either use brute force tactics or simulate the legitimate
parameters. In the first case, the attacker tries to log in from
multiple different locations until he/she, hopefully, succeeds
in hitting a matching location. This can be easily thwarted
by using the common practice techniques of enforcing
maximum number of login retries. In the latter case, the
attacker must know the legitimate profile parameters to be
able to successfully simulate them.

4.4. Leaks fromOther Verifiers. Wenote thatmany people use
the same password on multiple services (web mail account,
social account, billing account, etc.). Table 2 presents a
summary of multiple surveys about password reuse [9–13].
The summary clearly shows that 77% of the surveyed people
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Table 2: Password reuse survey summary.

Institute Sample size Nation Reuse
2010 BitDefender [9] Over 250k Online 75%
2011 CIS [10] Over 1k Australia 63%
2012 CSID [11] 1,200 USA 61%
2013 OFCOM [12] 1,805 UK 55%
2014 UIUC [13] 224 Online 77%

in 2014 reused passwords across multiple services. For CLAS,
thanks to the SRs, profile parameters across different verifiers
are independent, and, hence, user profiles in one verifier are
decoupled from his/her profiles in other verifiers.

4.5. Active Phishing. Phishing is a type of man-in-the-middle
(MitM) attack. Active phishing describes the attack in which
perpetrators use forged websites to capture authentication
credentials and then use them in real-time to impersonate
legitimate users. CLAS could defend against active phishing
because its users do not send credentials that could be
intercepted by attackers.

4.6. Mimic Attack. There are two possible ways to “mimic SR
to get similar RTL”: (1) the attacker takes down the SR and
replaces it; (2) the attacker tries to mimic the RTL by getting
closer to the location of the SR. The first type of attacks is
very difficult to perform because the SR is assumed to be
located in a secure place and the communications between
the server and SR are protected by strong authentication and
encryption mechanisms. The second type of attacks requires
two things to materialize: (1) the perpetrator needs first to
find the physical location of the SR and get close to it and
(2) the perpetrator needs to try many times to brute force
the RTL of the user. However, it is hard for the attacker to
find out the exact location of the SR because the profiling
signal received by the user has the IP of the server as the
source address, while the IP address of the SR is only known
to the server (as detailed in Section 3.3). Moreover, brute
force attacks can be easily countered by limiting the number
of login attempts within a certain time period. For example,
the user’s account will be frozen after 3 consecutive fail login
attempts and the corresponding user will be notified via an
out-of-band channel (e.g., email or SMS). Additionally, the
security of CLAS can be further elevated by using multiple
SRs. The server periodically changes the reference profile of
each user by reprofiling using a different SR, which helps to
not only defend against SR compromise attempts but also
defeat guessing attempts and increase reliability.

5. CLAS Extensions

In this section, we discuss the potential integration of addi-
tional profiling features with baseline to achieve more robust
and flexible defenses against password compromise. Such
integration mainly targets the mobility and same location
challenges that the baseline CLAS faces. We outline here the

high level solutions to these challenges and leave the detailed
implementation and validation for a future work.

5.1. Mobility and Legitimate Login Failures. CLAS identifies
users based on the mean and the standard deviation of the
network communications latency, which is highly dependent
on the login location of the user. Two users have the same
location if they are connected to the same local area network
segment (for example, the same switch/hop), connected to
the same access point, or connected to the same 3G/4G
cell. Therefore, baseline CLAS may fail in the case of mobile
users. If a legitimate user logs in from a location other than
the profiled one, he/she may be denied access with high
probability. Additionally, due to Internet instabilities, the user
may sometimes fail to log in from his/her profiled location.

In this section, we propose to augment baseline CLAS
with solutions that can handle both mobility and legitimate
login failures.

Selective Mobility. Selective mobility refers to the case in
which a user frequently logs in from a set of locations such
as home, office, and library. In this case, CLAS simply creates
a separate profile for each location. For each new location,
the user registers with the service provider using exactly the
same protocol used for the first-time account registration
(Section 3.2). The server builds a new reference profile for
each new location following exactly the same protocol used
to build the first-time account reference profile (Section 3.2).
A user will be granted access if his/her real-time login profile
matches any of the stored profiles. The advantage of this
solution is that it maintains the enhanced security benefits of
CLAS (resiliency to MitM, phishing, etc.).

Arbitrary Mobility. Arbitrary mobility refers to the general
mobility pattern, in which users may log in from arbitrary
locations. We propose three options to handle the general
mobility pattern.

(i) In the first option, the user uses one of his/her profiled
locations to obtain a temporary token that can be used later
to log in from a new nonprofiled location. For example, if
the user plans to travel for a 3-day conference, he/she first
logs in from one of his/her profiled locations and requests
a temporary token with specific validity period. The system
sends back a temporary token to the user. The user can then
provide the temporary token as a second authentication code
used by the server to bypass the regular profile authentication.
This allows the user to log in from any location during the
validity period of the temporary token.
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(ii) In the second option, users may specify out-of-band
communication channels (e.g., email, phone, etc.) as part of
their reference profiles.These additional channels can be used
later to deliver temporary authentication codes to users when
logging in from new nonprofiled locations or when the login
fails after exhausting the maximum number of login retries.

(iii) In the third option, CLAS can be integrated with
any traditional second-factor authenticationmechanism.The
advantage of the second option over the third is that it
does not require any other authentication scheme besides
CLAS. The usability of the last two options is obviously
better than that of the first. This is because the user gets
authentication codes on-demand and uses them in real-
time without carrying the burden to a priori request and
safely store codes. However, both options are susceptible to
the same multifactor limitations mentioned earlier in the
Introduction.Therefore, the last two options, while providing
the same security level as 2-factor authentication, lack the
enhanced security protection provided by CLAS.

5.2. Same Location Attacks. As mentioned earlier in the
Introduction, CLAS can tolerate compromise of either the
password or the profiled location of a user but not both, which
makes it vulnerable to what we call same location attacks.
Same location attacks can only be launched by attackers who
possess the password and have access to the profile location of
the legitimate user. To thwart such sophisticated attacks, we
propose to integrate CLAS with additional profiling features,
such as browser/hardware fingerprints [39–41] or keystroke
dynamics [42].

In browser fingerprinting [39], browser characteristics
such as browser plug-ins, time zone, user agent, system
fonts, and other measurements are used to generate unique
fingerprints, which can be used to identify users. Multiple
devices and multiple agents per device can be profiled to
accommodate the flexibility of possible multidevice multia-
gent need. Keystroke dynamics, exhibited in a user’s typing
pattern, provides a unique signature to authenticate the user.
Latency between successive keystrokes, keystroke durations,
finger placement, and applied pressure on the keys can be
used to construct a unique signature per individual [42].

Augmenting CLAS (location authentication) with
browser/hardware fingerprinting (device authentication),
keystroke dynamics (user authentication), or a combination
of both can effectively defend against same location attacks.
For example, when a login attempt passes the RTL check
but presents a different browser fingerprint or keystroke
dynamics, CLAS will raise an alert and request the user to
answer a few security questions or authenticates using a
second channel. In addition, the integration can also increase
the authentication sample space such that the security
guarantee of CLAS could be further improved.

6. Experimental Evaluation

In this section, we evaluate the performance overhead and the
security guarantees of CLAS.More precisely, we evaluate how
likely it is for legitimate users to be denied access and how

likely it is for a perpetrator in possession of the credentials
of legitimate users to be granted access. Additionally, we
evaluate the experience of the clients in terms of how much
more time it takes them to log in using CLAS compared to
the baseline system. Finally, we evaluate the extra resources
consumed by CLAS compared to the baseline system. The
baseline system is a system that authenticates using simple
credentials of username and password. Specifically, our eval-
uation focuses on the following metrics:

(i) False negative rate (FN): the probability that a legiti-
mate user fails to log in from his/her profiled location

(ii) False positive rate (FP): the probability that a per-
petrator who possesses legitimate user credentials
successfully authenticates on behalf of the legitimate
user

(iii) Login latency overhead: the extra time it takes a user
to successfully authenticate using CLAS compared
to a baseline system that authenticates using only
username and password

(iv) Bandwidth and storage overhead: the extra network
bandwidth incurred and the extra storage required by
CLAS

For all these metrics, the lower the value is the better. CLAS
mainly has four parameters: the error tolerance (ET), the
maximum number of failed login retries (LR), the server
workload (WL) in terms of login requests per second, and the
number of profiling signals (𝑁). Both ET and LR impact the
trade-off between FN and FP. Intuitively, the higher the ET
or the higher the LR, the lower the FN, but the higher the FP.
Additionally, the higher the WL or 𝑁, the higher the login
latency and the bandwidth overhead. Next, we are going to
present the experimental results.

6.1. Experimental Setup. We build a password-based web
login service that supports CLAS authentication. The service
is implemented using HTML and PHP and runs on an
Apache HTTP Server Version 2.4 [43] The prototype website
can be reached at 52.24.162.70/login.html. The server
runs Ubuntu 12.04 on an Amazon EC2 instance. Users’
credentials (i.e., username, password, profile mean, and
profile standard deviation) are stored in a 𝑀𝑦𝑆𝑄𝐿 database
that runs on the same server. The programming interface
that constructs users’ profiles is implemented on top of
the MAC layer at the server. The interface implements (in
Java and C) the logic that generates and sends profiling
signals, measures delay, computes profile parameters, and
takes access decisions. We configure and deploy another PC
(Ubuntu 12.04 LTS 64-bit operating system, 4GB memory,
Intel i5 CPU ×2) to perform the SR functionality. We develop
a programming interface on top of the MAC layer at the SR,
which directly captures and forwards related packets in the
cache of the network interface card. This interface is respon-
sible for relaying profiling signals from the server to the user.
We disable all the application layer traffic in both directions in
SR (i.e., sudo iptables-p INPUT OUTPUT DROP) and disable
Internet forwarding (i.e., sudo echo “0” > ip_forward) to
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Figure 3: The ROC curves of the FN and the FP, when varying𝑁; WL = 200; LR = 3.

prevent any potential attacks from the application layer. AES
(advanced encryption standard) is used to secure the server-
SR channel by encrypting the profiling signals before being
sent to the SR.

The client population consists of 10 instances of Amazon
EC2, 130 PlanetLab nodes, 25 GENI nodes, and 63 residential
users randomly selected from different places in USA. Each
client runs a browser that logs in to the web service. The
selection of the operating system and the browser at the client
does not affect the results and hence any option can be used.
All our clients run either Chrome or Firefox browsers on
Ubuntu 12.04 LTS operating system.

In all the following experiments, unless otherwise stated,
we use𝑁 = 91, WL = 200 requests per second, LR = 3, and
the login occurs during weekday time periods.

6.2. FN and FP Trade-Offs. To measure FN rate, we set
each of the 25 GENI clients to uniformly log in 300 times
during 4 different time periods: weekday daytime, weekday
nighttime, weekend daytime, and weekend nighttime. The
daytime period extends between 1 p.m. and 5 p.m. and the
nighttime period extends between 9 p.m. and 2 a.m. The FN
rate is computed as the number of failed login trials divided
by the total number of login requests. To measure FP rate,
we create and profile a different user account for each of the
155 clients (GENI + PlanetLab). Then, we set each of the 25
GENI clients to play attackers’ role who try to log in using the
credentials of the remaining 154 clients. Each attacking client
launches 300 attacks against each of the remaining clients.
Therefore, the total number of attack instances is 1,155,000(154 ⋅300 ⋅25). Each failed login is retried for a maximum of 3
times. The FP rate is measured as the number of successful
attack trials divided by the total number of attack trials.
The EC2 instances are used to create the appropriate server
workload.

6.2.1. Varying the Number of Profiling Signals (𝑁). We study
here the trade-off between FP and FN, when we vary the
number of profiling signals. Figure 3 shows the FP-FN ROC
(receiver operator characteristics) curves of four ET values
(0.2 ⋅ 𝑆, 0.3 ⋅ 𝑆, 0.4 ⋅ 𝑆, and 0.5 ⋅ 𝑆) when we vary𝑁 (27, 54, and
91).The server workload is set to 200 requests per second and
the LR is set to 3 trials. In the figure, the lower the value, the
better both FN and FP. The figure shows negative correlation
between FN and FP as a function of the error tolerance. As the
error tolerance increases, FN decreases, while FP increases.
We see that CLAS can achieve FP of around 0.004 for FN
around 0.002 when ET equals 0.3 ⋅ 𝑆.
6.2.2. Varying the Error Tolerance (ET). We study here the
trade-off between FN and FP, when we vary the ET. Figure 4
shows the FP-FN ROC curves of three 𝑁 values (27, 54,
and 91) while varying the ET. The server workload is set
to 200 requests per second and LR is set to 3 trials. The
figure shows positive correlation between FN and FP when
varying 𝑁. Both FP and FN improve when 𝑁 increases.
The figure shows poor FN and FP behavior when 𝑁 is 27.
However, the enhancements in FN and FP diminish beyond𝑁 = 91. This behavior, as the mathematical analysis suggests,
is because both FN and FP are proportional to the square
root of 𝑁. In other words, FP and FN are only marginally
improved by further increasing 𝑁. On the other hand, the
higher the value of 𝑁, the higher the login latency overhead
and the bandwidth overhead. Most importantly, the figure
presents the trade-off between the security guarantees and the
functional performance of CLAS for the selected parameters.
For example, the figure shows that CLAS can achieve FP
as low as 0.0017 while FN is below 0.007. In other words,
out of 1000 legitimate login trials, there are less than 7 fails
on average. Additionally, perpetrators who possess user’s
credentials have only 1.7 in 1000 chances to authenticate on
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Figure 4: The ROC curves of the FN and the FP, when varying ET; WL = 200; LR = 3.
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Figure 5: The LR ROC curves of the FP and the FN when varying ET; WL = 200.

average. This can be achieved when ET equals 0.5 ⋅ 𝑆, 𝑁
equals 91 signals per login, LR equals 3 retries, and WL
equals 200 requests per second. Other trade-offs, such as
tolerating higher FP to achieve lower FN, can be achieved by
selecting the appropriate operating point on the ROC curve.
For example, CLAS can achieve FN of around 0.0008 when
FP around 0.01.

6.2.3. Varying the Maximum Number of Login Retries. Fig-
ure 5 shows the FN-FP ROC curves for different LR values
while varying the ET. Each curve represents one LR value
between 1 and 5. The figure, intuitively, shows that LR has
more impact on FN compared to FP. The chances that the
legitimate real-time profile parameters match the profiled

parameters in a next login trial is way higher than the
chances of a perpetrator’s real-time profile parameters that
match the legitimate profiled parameters in the next trial.
The figure shows that LR of 3 provides the best trade-off
between FP and FN because the impact of LR on the trade-
off diminishes with higher LR values. Again, the figure shows
that CLAS can achieve FP as low as 0.0017 while FN is below
0.007.

Figure 6 shows the impact of the server workload on
the trade-off between FP and FN rates. The figure shows
small variations in FP and FN rates when the workload
varies. In general, as the workload increases both FN
and FP rates slightly increase. The variations are mainly
due the slightly extra delays at the server when sending
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Figure 7: The impact of the login time period on the FN;𝑁 = 91; WL = 200; LR = 3.

the profiling signals, receiving the corresponding acknowl-
edgments, and computing the real-time profile parame-
ters.

6.2.4. Varying the Login Time. We study here the impact of
the login time on FN. We set each of the clients to log in
for 300 times during the 4 different time periods mentioned
earlier. The daytime period extends between 1 p.m. and 5
p.m. and the nighttime period extends between 9 p.m. and
2 a.m. Figure 7 shows that, in general, the FN is almost stable
irrespective of the login time period. However, FN is slightly
higher during the weekday due to the impact of peek time on
network communications latency.

6.2.5. Theoretical versus Experimental Results. Figure 8 com-
pares the theoretical and the experimental FN and FP as a
function of ET for 𝑁 = 91, LR = 3, WL = 200, and weekday
time login. The detailed mathematical analysis of FP and
FN is presented in Appendix A. The figure shows that our
mathematical model provides acceptable approximate value
for FP and FN. The figure also shows that the mathematical
model provides a good approximation for FP across thewhole
range of ET. On the other hand, the mathematical model of
FN becomes more accurate with higher ET values.

6.2.6. Residential User Study. In the previous experiments,
we evaluate the functionality and the security guarantees of
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Figure 8: Theoretical versus experimental FP and FN, when varying the ET.

CLAS under various system parameters for enterprise and
cloud users (for simplicity, we refer to those users as fixed
users). In this experiment, we study the security and the
functionality of CLAS for residential users. Residential users
usually have less stable connections compared to enterprise
and cloud users due to varying traffic and congestion of the
last wireless hop. Such less stable connections may result in
higher packet loss rate and, hence, higher variance in network
communications latency. Figure 10 presents an example of
the RTL values for (a) a fixed user (b) a residential WiFi
user and (c) the residential WiFi user after outlier removal
(i.e., remove extreme values before computing the mean
RTL). In this experiment, each user type tries to log in every
12 minutes for 50-hour period from Friday 8:00 a.m. to
Sunday 10:00 a.m. The figure shows that the RTL values of
the residential WiFi user have larger variance compared to
that of the fixed user, and this variance has been efficiently
alleviated by utilizing any standard outlier removal algorithm
[44].

In a second experiment, 63 residential users in Canada
and USA use CLAS to authenticate to our testbed web
service over a one-month period using home/work WiFi
connections. Figure 11 compares FP-FN ROC curves of the
two user types (residential and fixed). However, we believe
that if the congestion rates are high and the last wireless hop
quality is poor and unpredictable as in the case of busy public
WiFi connections, FN will be high. In such scenarios, CLAS
falls back to other authentication options such as browser
fingerprinting or second-factor authentication to verify users’
identity. As expected, the figure shows that the average FN
rate of residential users is higher than that of the fixed users
for the same average FP rate. For example, the residential
users’ FN rate is 0.0094 compared to 0.007 for fixed users
when the average FP rate for both is 0.0048.

6.3. Performance Overhead

6.3.1. Login Latency Overhead. In this experiment, we study
the variations of the login latency overhead under different
server workloads.The login latency overhead is defined as the
extra time it takes a user to successfully authenticate using
CLAS compared to a baseline system, which authenticates
using only username and password. The login latency is
an important indicator for users about the usability of the
system. The appropriate WL is generated by the 10 Amazon
EC2 instances. We set each of the GENI clients to log in
300 times within one-hour period and measure the login
latency overhead for each of the 7500 logins (25 ⋅ 300) under
workloads of 1, 10, 100, 200, and 300 requests per second.The
login latency ismeasured at the client as the time elapsed from
sending the login request until access is granted. Figure 9
shows the empirical cumulative distribution function (CDF)
of the login latency overhead for each server workload. The
figure shows that more than 95% of logins have overhead
latencies below 0.2 seconds with WL up to 200 requests per
second. The latency overhead experienced with 300 requests
per second slightly increases to less than 0.24 seconds for
more than 95% of the logins. This increase is mainly due to
the queuing delays at the server. As the number of requests
per second reaches the physical limits of the testbed server,
some requests are queued for later processing. The results
clearly show that the login latency overhead is unnoticeable
by humans and hence the performance overhead of our
scheme is negligible.

6.3.2. Bandwidth and Storage Overhead. To reduce the login
latency overhead and the bandwidth overhead of the authen-
tication process, CLAS leverages the regular login packets
that are normally sent to users during login to serve as



14 Security and Communication Networks

120 140 160 180 200 220 240 260 280 300
X: login latency overhead compared to

baseline authentication (ms)

0

0.1

0.2

0.3

0.4

0.5

F
(X

)

0.6

0.7

0.8

0.9

1

WL = 1
WL = 10
WL = 100

WL = 200
WL = 300

Figure 9: The CDF of the login latency overhead under various WL;𝑁 = 91; LR = 3; ET = 0.3 ⋅ 𝑆.

75
80
85
90

RT
L 

(m
s)

50 100 150 200 2500
(a)

50 100 150 200 2500
75
80
85
90

RT
L 

(m
s)

(b)

50 100 150 200 2500
75
80
85
90

RT
L 

(m
s)

(c)
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Table 3:The approximate number of login page packets for a sample
of popular websites.

Website name

Number of packets sent to user
before entering username and

password
Cached

Yes No

Chase 10 354
Bank of America 10 140
City Bank 24 450
Wells Fargo 21 55
FNC 10 500
HSBC 23 556
US Bank 15 248
SunTrust Bank 33 470
Capital One 62 260
Bank of Montreal 9 683
Facebook 13 168
Amazon 150 440

profiling signals. Most of the commercial websites (e.g., e-
banking, e-government, web-based email, etc.) send many
packets to users during the login process. We run an
experiment to count the number of regular login packets
sent to users for a sample of popular websites. Table 3
shows the results. If the website is cached, the approximate
number of regular login packets ranges between 10 and
150. If the site is not cached, the approximate number of
packets ranges between 55 and 683. Specialized profiling
signal packets are generated only if the number of reg-
ular login packets is less than the number required to
measure sufficiently accurate profile parameters. Based on
Table 3 and the mathematical and experimental analysis
of the required number of profiling signals (Section 3 and
Appendix A), the website login content packets are suffi-
cient to construct users’ profiles in most of the websites.
Therefore, the bandwidth overhead of CLAS is negligi-
ble.

The storage overhead is also negligible. In addition to
username and password, the credentials database stores,
for each user, profiled mean, error tolerance, and standard
deviation range. This overhead adds less than 32 bytes per
user even when using floating point representation (8 bytes)
of profile parameters.

6.3.3. Impact of the WL on Profile Parameters. In this ex-
periment, we measure the impact of the server workload
on the measurements of the real-time profile parameters.
We set each of the GENI clients to log in 300 times
within one-hour period under workloads of 1, 10, 100, 200,
and 300 requests per second. For each client we measure

the average mean and the average standard deviation of
the 300 logins under each workload. Figure 12 shows the
empirical cumulative distribution function (CDF) of the
relative maximum variations of the mean and the standard
deviation of each client. For each client, the relativemaximum
variation in the mean is computed as the percentage of the
maximum variations in the mean relative to the average
mean across all server workloads. Similarly, the relative
maximum variation in the standard deviation is measured as
the percentage of the maximum variations in the standard
deviation relative to the average standard across all server
workloads. The figure shows that more than 90% of the
clients have relative maximum mean variations less than
6.5% of the average mean. In other words, if the mean is
100ms, the maximum variation in the measured mean under
different server workloads is less than 6.5ms. Additionally,
the relative maximum standard deviation variation is less
than 3.3% for more than 97% of the clients. These results
explain the earlier behavior of FN and FP when varying WL
(Figure 6). WL may only slightly affect the measured profile
parameters and, hence, FN and FP are marginally affected by
WL.

7. Conclusions

In this work, we design and implement a novel highly secure
and usable scheme (CLAS), which complements the state-
of-the-art authentication mechanisms and strengthens the
security of web authentication. CLAS uses, in addition to
the traditional credentials, the round trip network com-
munications latency (RTL) to uniquely profile users. The
novel architecture of CLAS makes its profiling parameters
robust and highly resilient to manipulation. It is highly
unlikely for attackers, and even legitimate users, to learn
and manipulate profile parameters. This key security fea-
ture protects CLAS users against impersonation even when
their traditional credentials are compromised. Moreover,
CLAS, unlike many state-of-the-art authentication mecha-
nisms, is resilient to active phishing, man-in-the-middle,
and social engineering attacks. More importantly, CLAS
is completely transparent to end users. Finally, CLAS can
be augmented with additional profiling features such as
key stoke dynamics, as well as other authentication mech-
anisms to offer more robust and flexible web authentica-
tion.

Our analysis and experiments show that CLAS can
achieve false positive rate as low as 0.0017 while the false
negative rate is below 0.007. Moreover, the results show that
the login latency overhead is negligible and cannot be noticed
by humans (i.e., less than 0.2 seconds).

In the future, we plan to develop and implement the
techniques we propose to support anywhere authentication
and to address the same location attacks. We also plan
to develop more techniques to further alleviate the poten-
tial impact of network instabilities on RTL measurements.
In addition, we plan to use standard software evaluation
tools (e.g., function point [45]) to perform the cost and
effort estimation of CLAS to ensure it is practical to
use.



16 Security and Communication Networks

Mean
Standard deviation

0

0.1

0.2

0.3

0.4

0.5

F
(X

)

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 90

X: relative maximum variations of the measured
mean/standard deviation

(%)

Figure 12: The CDF of the relative maximum variations in the mean and the standard deviation of the real-time profile, when varying the
WL;𝑁 = 91; LR = 3; ET = 0.3 ⋅ 𝑆.

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

0

10

20

30

40

85 90 95 100 105 11080

0

0.05

0.1

0.15

0.2

85 90 95 100 105 11080

Round trip latency (ms)

Round trip latency (ms)

Figure 13: Sample of communications latency distribution and its Gaussian distribution.

Appendix

A. Mathematical Analysis

A.1. Gaussian Approximation of Network Delay. It has been
observed that network communications latency approxi-
mately follows a Gaussian distribution [18]. This observation
is validated by conducting extensive experiments to measure
communications latency from a pool of 130 PlanetLab nodes
[18]. Each one of the 130 nodes receives 400 TCP packets
from one single server, which is located in University of
Rochester, and sends them back for measuring the round
trip communications latency.We have also conducted similar
experiments using GENI nodes and come up with the same

conclusion: Gaussian is a good approximation for network
communications latency. Figure 13 shows an example of
the latency distribution and the corresponding Gaussian
approximation for a client pinging a sever with 300 packets.
In our experiments, we measure pair-wise communications
latency distribution between nodes randomly selected from
a pool of 25 worldwide GENI nodes [46]. The outcome
of all these experiments confirms that Gaussian is an
acceptable approximation for the communications latency
distribution.

A.2. False Negative Rate (FN). As mentioned in the previous
section, the FN rate of the Gaussian distribution is 𝛼, which
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Figure 14: Graphical illustration of arbitrary grant-access area.

stands for the probability that a legitimate user fails to
authenticate from his/her profiled location. Let 𝛿𝑖 = 𝐶𝑖 ⋅ 𝑆𝑖,
where 𝐶𝑖 is the error tolerance coefficient for user 𝑖 and let 𝑈
be the total number of users. To compute FN, we plug 𝛿𝑖 in
(1):

𝑍1−𝛼𝑖 = 𝐶𝑖 ⋅ √𝑁𝑖,
FN = ∑𝑈𝑖=1 (1 − 𝑍−1 (𝐶𝑖 ⋅ √𝑁𝑖))𝑈 .

(A.1)

A.3. False Positive Rate (FP). The FP, 𝛽, is the probability
that a perpetrator passes authentication from a location other
than the profiled one. In other words, false positive rate is
the probability that the real-time measured latency mean
and standard deviation of the perpetrator fall within the
grant-access area of the legitimate user. We first derive a
simplified estimate of the false positive rate and then enhance
the derivation accuracy. Figure 14 shows the grant-access area
for an arbitrary user (User 𝑖) and the grant-access area for
a perpetrator (Attacker 𝑗) at a random location. Recall that
the perpetrator also possesses the username and password of
the legitimate user. Assume, for now, uniform distribution
of the measured mean and standard deviation within the
grant-access area (the green rectangle in Figure 14 shows the
reference profile area of an arbitrary user (User 𝑖), dubbed as
the grant-access area (GAA)). Access is granted for any login
attemptwithmeasured (𝜇,𝜎) point that falls within the grant-
access area. Also assume that the locations from which an
attacker may try to log in are known. Then, the probability
that Attacker 𝑗 successfully authenticates as User 𝑖 equals the
overlap area between the grant-access area of the user and
the grant-access area of the perpetrator divided by the grant-
access area of perpetrator averaged over all possible attack
locations:

𝛽𝑖 = ∑
𝐴
𝑗=1 ((GAA𝑖 ∩ GAA𝑗) /GAA𝑗)𝐴 , (A.2)

where 𝐴 is the number of all possible locations from which
the attacker may try to impersonate the user.The overall false

positive rate of the system is computed as the average of false
positive rates of all the users of the system:

FP = ∑𝑈𝑖=1 𝛽𝑖𝑈 . (A.3)

Note that even though this is a simplified estimate of the false
positive rate, we next show that it provides an upper bound
approximation of the false positive rate.

To derive a more accurate estimate of the false positive
rate, we need to identify the real distribution of latency
mean and standard deviation within the grant-access area,
rather than just assuming it to be uniform. Moreover, we
need to remove the assumption of previously known attack
locations by acknowledging that attackers may use any
arbitrary previously unknown location to log in. Let themean
of network communications latency be a random variable 𝑋
in the range [𝑎, 𝑏] and let the standard deviation of the mean𝑋 be a randomvariable𝑌 in the range [𝑐∗𝑋, 𝑑∗𝑋]. According
to the conclusions derived in [18], which is also validated
by our experiments, both 𝑋 and 𝑌 are approximately Gaus-
sian with the following probability distribution functions
(pdf):

𝑓𝑋 (𝑥) = 1
√2𝜋𝜎2𝑥 ⋅ 𝑒

−(𝑥−𝜇𝑥)/(2⋅𝜎
2
𝑥),

𝑓𝑌 (𝑦) = 1
√2𝜋𝜎2𝑦 ⋅ 𝑒

−(𝑦−𝜇𝑦)/(2⋅𝜎
2
𝑦).

(A.4)

For the systems analyzed in [18], 𝑎 = 5ms, 𝑏 = 700𝑚𝑠,𝑐 = 0.0155, and 𝑑 = 0.196. Therefore, the sample space of
the communications latency 𝑋 and its standard deviation 𝑌
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Figure 15: Sample space of the communications latency mean and standard deviation.

falls in the shaded area shown in Figure 15. Based on these
values, the pdf parameters of𝑋 and 𝑌 distributions are

𝜇𝑥 = 221,
𝜎𝑥 = 83.86,
𝜇𝑦 = 0.0155𝑥 + (0.196𝑥 − 0.0155𝑥)2 = 0.1058𝑥,
𝜎𝑦 = (𝑦0.005 − 𝜇𝑦)𝑄−1 (0.005) = 0.035𝑥.

(A.5)

Using Figure 14 and assuming error tolerance 𝛿 = 𝐶 ⋅ 𝑆, the
grant-access area can be computed as

GAA = [(𝑀 + 𝛿) − (𝑀 − 𝛿)]
⋅ [
[
√𝜒2𝑅 ⋅ 𝑆2𝑁 − 1 − √𝜒

2
𝐿 ⋅ 𝑆2𝑁 − 1 ]]

. (A.6)

According to the experimental results, the optimal false
positive rate occurs when 𝛿 = 0.2 ⋅ 𝑆. Therefore,

GAA = 𝑆210 . (A.7)

Using (A.4), (A.5), and (A.7), the expected value of the grant-
access area is computed as

∫𝑏
𝑥=𝑎

∫𝑑⋅𝑥
𝑦=𝑐⋅𝑥

𝑆210 ⋅ 1
√2𝜋𝜎2𝑥 ⋅ 𝑒

−(𝑥−𝜇𝑥)/(2⋅𝜎
2
𝑥) ⋅ 1

√2𝜋𝜎2𝑦
⋅ 𝑒−(𝑦−𝜇𝑦)/(2⋅𝜎2𝑦)𝑑𝑥 𝑑𝑦

= 4.74 × 10−17 ⋅ ∫700
𝑥=5

∫0.196𝑥
𝑦=0.0155𝑥

𝑦2𝑥 ⋅ 𝑒−7.11×10−5 ⋅𝑥2

⋅ 𝑒0.0314𝑥+86.367⋅(𝑦/𝑥)−408.16⋅(𝑦2/𝑥2)𝑑𝑥 𝑑𝑦.

(A.8)

The false positive rate is the probability that an attacker at a
random location successfully impersonates a legitimate user,
which is given by

FP = 𝐸 [GAA]
Area of the Sample Space (A.9)

Using (A.9), for the systems analyzed in [18], the expected
value of the false positive rate is approximately 0.0034. In
other words, if the attacker tries to log in from 1000 different
locations, on average, he/she successfully authenticates from
less than 4 of them. This is a very low probability and hence
clearly proves the high security guarantees of CLAS.

Using (A.3), for the systems analyzed in [18], the expected
value of the false positive rate is approximately 0.0068.
Therefore, the simplified analysis provided earlier provides an
upper bound estimate of the false positive rate.

A.4. False Positive and False Negative Trade-Offs. Optimally,
we need to keep both false positive and false negative rates
very low. However, these two indicators are dependent.
Decreasing the false negative rate increases the false positive
rate and vice versa. A possible trade-off is to maximize
the security guarantees while maintaining an acceptable
functionality level. Using the false positive and false negative
formulas developed in Appendix A.3, the trade-off can be
translated into the following optimization problem:

Minimize FP = ∑𝑈𝑖=1 𝛽𝑖𝑈
= ∑𝑈𝑖=1∑𝐴𝑗=1 ((GAA𝑖 ∩ GAA𝑗) /GAA𝑗)𝐴 ⋅ 𝑈

S.T. FN = ∑𝑈𝑖=1 [1 − 𝑍−1 ⋅ (𝐶𝑖 ⋅ √𝑁𝑖)]𝑈
≤ FNrequired

𝐶𝑖 ≥ 0, 𝑁𝑖, 𝑈, 𝐴 ≥ 0, integer.

(A.10)

Security administrators can use the optimization problem in
(A.10) to guide their functionality and security configura-
tions.
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