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We introduce the new concept of random comparable operators as a generalization of random monotone operators and prove
several random fixed point theorems for such a class of operators in partially ordered Banach spaces. Part of the presented results
generalize and extend some known results of random monotone operators. Finally, as an application, we consider the existence of
the solution of a random Hammerstein integral equation.

1. Introduction and Preliminaries

In 1950s, Špaček [1] and Hanš [2] initiated the study of
random fixed point theories. From then on, to study random
fixed point theories had been a central topic of random
theories. Moreover, the random theories played a main role
in the developing theories of random differential equations
and random integral equations and attracted much attention.
For example, Sehgal andWaters [3] proved the randomRothe
fixed point theorem in 1984 and Mukherjea [4] proved the
random Schauder fixed point theorem in 1996. In recent
years, random fixed point theories and their applications
developed very rapidly (see Lin [5]; Xu [6]; Li and Debnath
[7]; Shahzad [8]; Li and Duan [9]; Zhu and Yin [10]; and
Kumam [11–26]). In particular in 2005, Li and Duan [9]
proved the existence of fixed points for random monotone
operators.

In this work, as a generalization of the concept of random
monotone operators given by Li and Duan [9], we introduce
the concept of random comparable operators and under
different contractive conditions, we prove several random
fixed point theorems for such operators in partially ordered
Banach spaces. Some of our results generalize and extend the
main results of Li and Duan [9].

Let 𝐸 be a separable real Banach space, (Ω, Σ, 𝜇) a
complete measure space, and (𝐸, 𝛽) a measurable space,

where 𝛽 denotes the 𝜎-algebra of all Borel subsets generated
by all open subsets of 𝐸. Suppose that𝐷 is a nonempty subset
of 𝐸, and 𝑃 is a cone in 𝐸. Cone 𝑃 defines a partial order ≤

as follows: for 𝑥, 𝑦 ∈ 𝐸, 𝑥 ≤ 𝑦 ⇔ 𝑦 − 𝑥 ∈ 𝑃. 𝑃 is called
normal if there exists a constant 𝑁 > 0 such that 𝜃 ≤ 𝑥 ≤ 𝑦

implies ‖𝑥‖ ≤ 𝑁‖𝑦‖. Let 𝑢
0
, V
0
∈ 𝐸; write 𝑢

0
< V
0
if 𝑢
0
≤ V
0

and 𝑢
0

̸= V
0
. If 𝑢
0
< V
0
, we call the set [𝑢

0
, V
0
] = {𝑢 ∈ 𝐸 | 𝑢

0
≤

𝑢 ≤ V
0
} an order interval in 𝐸.

𝐴 : Ω → 𝐸 is called measurable if 𝐴−1(𝐵) ∈ Σ for each
Borel subset 𝐵 of 𝐸.

𝐴 : Ω × 𝐷 → 𝐸 is said to be a random operator if for
each fixed 𝑥 ∈ 𝐷, 𝐴(⋅, 𝑥) : Ω → 𝐸 is measurable.

A random operator 𝐴 : Ω × 𝐷 → 𝐸 is said to be con-
tinuous if for any 𝜔 ∈ Ω, 𝐴(𝜔, ⋅) : 𝐷 → 𝐸 is continuous.

A measurable map 𝜉 : Ω → 𝐸 is called a random fixed
point of a random operator 𝐴 : Ω × 𝐷 → 𝐸 if 𝐴(𝜔, 𝜉(𝜔)) =

𝜉(𝜔) for almost every 𝜔 ∈ Ω.

Definition 1. Suppose that 𝑢(𝜔), V(𝜔) : Ω → 𝐸 are measur-
able. 𝑢(𝜔) and V(𝜔) are said to be random comparable if for
any 𝜔 ∈ Ω, 𝑢(𝜔) ≤ V(𝜔) or V(𝜔) ≤ 𝑢(𝜔) holds.

Assume that 𝑢(𝜔), V(𝜔) : Ω → 𝐸 are random compa-
rable. If for any 𝜔 ∈ Ω, V(𝜔) ≤ 𝑢(𝜔), then we write 𝑢(𝜔) =

𝑢(𝜔)∨V(𝜔); if 𝑢(𝜔) ≤ V(𝜔), then we write V(𝜔) = 𝑢(𝜔)∨V(𝜔).
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Definition 2 (see [3]). A mapping 𝛼(𝜔) : Ω → L(𝐸) is said
to be a random endomorphismof𝐸 if𝛼(𝜔) is anL(𝐸)-valued
random variable, where L(𝐸) denotes the linear bounded
operator space of 𝐸.

Definition 3. A random operator 𝐴 : Ω × 𝐷 → 𝐸 is said to
be random comparable if 𝐴(𝜔, 𝑢(𝜔)) and 𝐴(𝜔, V(𝜔)) are
random comparable for any random comparable pair 𝑢(𝜔),
V(𝜔) : Ω → 𝐷.

Remark 4. The concept of random comparable operators
generalizes the concept of random increasing (decreasing)
operators given by Li and Duan [9].

Definition 5. A random comparable operator𝐴 : Ω×𝐷 → 𝐸

is said to be random 𝛼(𝜔)-ordered contractive if there exists
a random endomorphism 𝛼(𝜔) : Ω → L(𝐸) such that for
each 𝜔 ∈ Ω and any measurable mappings 𝑢(𝜔), V(𝜔) : Ω →

𝐷, if 𝑢(𝜔) and V(𝜔) are random comparable, then

(𝐴 (𝜔, 𝑢 (𝜔)) − 𝐴 (𝜔, V (𝜔)))

∨ (𝐴 (𝜔, V (𝜔)) − 𝐴 (𝜔, 𝑢 (𝜔)))

≤ 𝛼 (𝜔) ((𝑢 (𝜔) − V (𝜔)) ∨ (V (𝜔) − 𝑢 (𝜔))) .

(1)

By the definition of random comparable operators, the
following lemmas are easy, so we omit their proofs (wherein,
we assume that 𝑢(𝜔), V(𝜔), 𝑤(𝜔), 𝑢

𝑛
(𝜔), V

𝑛
(𝜔) : Ω → 𝐸 are

measurable, 𝑛 ≥ 1).

Lemma 6. If for each 𝜔 ∈ Ω, 𝑢(𝜔), V(𝜔) are random com-
parable, then 𝑢(𝜔) − V(𝜔) and V(𝜔) − 𝑢(𝜔) are random
comparable and

𝜃 ≤ (𝑢 (𝜔) − V (𝜔)) ∨ (V (𝜔) − 𝑢 (𝜔)) . (2)

Lemma 7. If for each 𝜔 ∈ Ω, 𝑢(𝜔) and V(𝜔), 𝑢(𝜔) and 𝑤(𝜔),
and V(𝜔) and 𝑤(𝜔) are random comparable, then

(𝑢 (𝜔) − V (𝜔)) ∨ (V (𝜔) − 𝑢 (𝜔))

≤ ((𝑢 (𝜔) − 𝑤 (𝜔)) ∨ (𝑤 (𝜔) − 𝑢 (𝜔)))

+ ((𝑤 (𝜔) − V (𝜔)) ∨ (V (𝜔) − 𝑤 (𝜔))) .

(3)

Lemma 8. If for each 𝜔 ∈ Ω and any positive integer 𝑛, 𝑢(𝜔)

and V
𝑛
(𝜔) are random comparable and V

𝑛
(𝜔) → V

0
(𝜔) (𝑛 →

∞), then 𝑢(𝜔) and V
0
(𝜔) are random comparable.

Lemma 9. If for each 𝜔 ∈ Ω and any positive integer 𝑛, 𝑢
𝑛
(𝜔)

and V
𝑛
(𝜔) are random comparable, and 𝑢

𝑛
(𝜔) → 𝑢

0
(𝜔),

V
𝑛
(𝜔) → V

0
(𝜔) (𝑛 → ∞), then 𝑢

0
(𝜔) and V

0
(𝜔) are random

comparable.

2. Main Results

Theorem 10. Let 𝐸 be a real Banach space and 𝑃 a normal
cone in 𝐸 with the normal constant 𝑁. Let 𝐴 : Ω × 𝐸 → 𝐸 be
a continuous random operator satisfying the following:

(i) 𝐴 is a random 𝛼(𝜔)-ordered contractive operator and
0 < ‖𝛼(𝜔)‖ < 1, 𝜔 ∈ Ω;

(ii) there exists 𝑥
0

∈ 𝐸 such that for any 𝜔 ∈ Ω, 𝑥
0
and

𝐴(𝜔, 𝑥
0
) are random comparable.

Then 𝐴 has a random fixed point 𝑥
∗
(𝜔). Furthermore, the

iterative sequence {𝐴𝑛(𝜔, 𝑥
0
)} converges to 𝑥

∗
(𝜔) and ‖𝑥

∗
(𝜔)−

𝑥
0
‖ ≤ (1 + 𝑁‖𝛼(𝜔)‖/(1 − ‖𝛼(𝜔)‖))‖𝐴(𝜔, 𝑥

0
) − 𝑥
0
‖.

Proof. For any fixed 𝜔 ∈ Ω, set

𝑥
1
(𝜔) = 𝐴 (𝜔, 𝑥

0
) , . . . , 𝑥

𝑛
(𝜔) = 𝐴 (𝜔, 𝑥

𝑛−1
(𝜔)) , . . . , 𝑛 ≥ 1.

(4)

Since 𝑥
0
and 𝐴(𝜔, 𝑥

0
) are random comparable, by the given

condition (i), for any 𝑛 ≥ 1, 𝑥
𝑛
(𝜔) and 𝑥

𝑛+1
(𝜔) are random

comparable and

𝜃 ≤ (𝑥
𝑛+1

(𝜔) − 𝑥
𝑛
(𝜔)) ∨ (𝑥

𝑛
(𝜔) − 𝑥

𝑛+1
(𝜔))

= (𝐴 (𝜔, 𝑥
𝑛
(𝜔)) − 𝐴 (𝜔, 𝑥

𝑛−1
(𝜔)))

∨ (𝐴 (𝜔, 𝑥
𝑛−1

(𝜔)) − 𝐴 (𝜔, 𝑥
𝑛
(𝜔)))

≤ 𝛼 (𝜔) ((𝑥
𝑛
(𝜔) − 𝑥

𝑛−1
(𝜔)) ∨ (𝑥

𝑛−1
(𝜔) − 𝑥

𝑛
(𝜔)))

≤ ⋅ ⋅ ⋅ ≤ 𝛼 (𝜔)
𝑛
((𝑥
1 (𝜔) − 𝑥

0
) ∨ (𝑥

0
− 𝑥
1 (𝜔))) .

(5)

From the normality of 𝑃, we have ‖𝑥
𝑛+1

(𝜔) − 𝑥
𝑛
(𝜔)‖ ≤

𝑁‖𝛼(𝜔)‖
𝑛
‖𝑥
1
(𝜔) − 𝑥

0
‖. As for each 𝜔 ∈ Ω, 0 < ‖𝛼(𝜔)‖ < 1,

then {𝑥
𝑛
(𝜔)} is a Cauchy sequence in 𝐸. Hence there exists

𝑥
∗
(𝜔) ∈ 𝐸 such that 𝑥

𝑛
(𝜔) → 𝑥

∗
(𝜔) (𝑛 → ∞). Since𝐴(𝜔, ⋅)

is continuous,

𝐴 (𝜔, 𝑥
∗
(𝜔)) = lim

𝑛→∞
𝐴 (𝜔, 𝑥

𝑛
(𝜔)) = lim

𝑛→∞
𝑥
𝑛+1

(𝜔) = 𝑥
∗
(𝜔) .

(6)

Now, we prove that 𝑥∗(𝜔) : Ω → 𝐸 is measurable. Since
𝐴(𝜔, 𝑥

0
) is measurable, that is, 𝑥

1
(𝜔) = 𝐴(𝜔, 𝑥

0
) is measur-

able, from the measurable theorem of complex operators, it
is easy to prove that 𝑥

𝑛
(𝜔) is measurable for all 𝑛 ≥ 1. Hence

𝑥
∗
(𝜔) : Ω → 𝐸, being the limit of a sequence of measurable

mappings, is alsomeasurable. So 𝑥
∗
(𝜔) : Ω → 𝐸 is a random

fixed point of 𝐴. Furthermore,
󵄩󵄩󵄩󵄩𝑥
∗
(𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 (𝜔) − 𝑥
0

󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 (𝜔) − 𝑥
𝑖−1 (𝜔)

󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑛

∑

𝑖=2

𝑁‖𝛼(𝜔)‖
𝑖−1 󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

≤

∞

∑

𝑛=2

𝑁‖𝛼 (𝜔)‖
𝑛−1 󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

= (1 +
𝑁 ‖𝛼 (𝜔)‖

1 − ‖𝛼 (𝜔)‖
)

󵄩󵄩󵄩󵄩𝐴 (𝜔, 𝑥
0
) − 𝑥
0

󵄩󵄩󵄩󵄩 .

(7)
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Theorem 11. Let 𝐸 be a real Banach space and 𝑃 a normal
cone in 𝐸 with the normal constant 𝑁, 𝑢

0
, V
0

∈ 𝐸 with
𝑢
0

< V
0
and [𝑢

0
, V
0
] an order interval in 𝐸. Suppose that

𝐴 : Ω × [𝑢
0
, V
0
] → [𝑢

0
, V
0
] is a continuous random 𝛽(𝜔)-

ordered contractive operator, where 0 < ‖𝛽(𝜔)‖ < 1/𝑁. Then
𝐴 has a unique random fixed point 𝑥∗(𝜔).

Proof. Define iterative sequences as follows:

𝑢
1
(𝜔) = 𝐴 (𝜔, 𝑢

0
) , . . . , 𝑢

𝑛+1
(𝜔) = 𝐴 (𝜔, 𝑢

𝑛
(𝜔)) , . . . , 𝑛 ≥ 1,

V
1
(𝜔) = 𝐴 (𝜔, V

0
) , . . . , V

𝑛+1
(𝜔) = 𝐴 (𝜔, V

𝑛
(𝜔)) , . . . , 𝑛 ≥ 1;

(8)

then {𝑢
𝑛
(𝜔)}, {V

𝑛
(𝜔)} ⊂ [𝑢

0
, V
0
]. Since 𝑢

0
< V
0
and 𝐴 is a

continuous 𝛽(𝜔)-random ordered contractive operator,
𝑢
𝑛
(𝜔), V
𝑛
(𝜔) are random comparable for each 𝑛 ≥ 1 and

𝜃 ≤ (𝑢
𝑛 (𝜔) − V

𝑛 (𝜔)) ∨ (V
𝑛 (𝜔) − 𝑢

𝑛 (𝜔))

= (𝐴 (𝜔, 𝑢
𝑛−1

(𝜔)) − 𝐴 (𝜔, V
𝑛−1

(𝜔)))

∨ (𝐴 (𝜔, V
𝑛−1

(𝜔)) − 𝐴 (𝜔, 𝑢
𝑛−1

(𝜔)))

≤ 𝛽 (𝜔) ((𝑢
𝑛−1

(𝜔) − V
𝑛−1

(𝜔)) ∨ (V
𝑛−1

(𝜔) − 𝑢
𝑛−1

(𝜔)))

≤ 𝛽 (𝜔)
2
((𝑢
𝑛−2

(𝜔) − V
𝑛−2

(𝜔)) ∨ (V
𝑛−2

(𝜔) − 𝑢
𝑛−2

(𝜔)))

≤ ⋅ ⋅ ⋅

≤ 𝛽 (𝜔)
𝑛
((𝑢
0
− V
0
) ∨ (V

0
− 𝑢
0
)) .

(9)

From the normality of 𝑃, we have
󵄩󵄩󵄩󵄩𝑢𝑛 (𝜔) − V

𝑛 (𝜔)
󵄩󵄩󵄩󵄩 ≤ 𝑁

󵄩󵄩󵄩󵄩𝛽(𝜔)
󵄩󵄩󵄩󵄩

𝑛 󵄩󵄩󵄩󵄩𝑢0 − V
0

󵄩󵄩󵄩󵄩 . (10)

Since 𝑢
0
≤ 𝑢
1
(𝜔), 𝑢

𝑛
(𝜔) and 𝑢

𝑛+1
(𝜔) are random comparable

for any 𝑛 ≥ 1 and

𝜃 ≤ (𝑢
𝑛
(𝜔) − 𝑢

𝑛+1
(𝜔)) ∨ (𝑢

𝑛+1
(𝜔) − 𝑢

𝑛
(𝜔))

= (𝐴 (𝜔, 𝑢
𝑛−1 (𝜔)) − 𝐴 (𝜔, 𝑢

𝑛 (𝜔)))

∨ (𝐴 (𝜔, 𝑢
𝑛
(𝜔)) − 𝐴 (𝜔, 𝑢

𝑛−1
(𝜔)))

≤ 𝛽 (𝜔) ((𝑢𝑛−1 (𝜔) − 𝑢
𝑛 (𝜔)) ∨ (𝑢

𝑛 (𝜔) − 𝑢
𝑛−1 (𝜔)))

≤ 𝛽 (𝜔)
2
((𝑢
𝑛−2

(𝜔) − 𝑢
𝑛−1

(𝜔)) ∨ (𝑢
𝑛−1

(𝜔) − 𝑢
𝑛−2

(𝜔)))

≤ ⋅ ⋅ ⋅

≤ 𝛽 (𝜔)
𝑛
((𝑢
0
− 𝑢
1 (𝜔)) ∨ (𝑢

1 (𝜔) − 𝑢
0
)) .

(11)

By the normality of 𝑃 again, we get
󵄩󵄩󵄩󵄩𝑢𝑛 (𝜔) − 𝑢

𝑛+1
(𝜔)

󵄩󵄩󵄩󵄩 ≤ 𝑁
󵄩󵄩󵄩󵄩𝛽(𝜔)

󵄩󵄩󵄩󵄩

𝑛 󵄩󵄩󵄩󵄩𝑢0 − 𝑢
1
(𝜔)

󵄩󵄩󵄩󵄩 . (12)

As 0 < ‖𝛽(𝜔)‖ < 1/𝑁 ≤ 1, it is seen easily that {𝑢
𝑛
(𝜔)} is

a Cauchy sequence in 𝐸. Hence there exists 𝑢
∗
(𝜔) ∈ [𝑢

0
, V
0
]

such that 𝑢
𝑛
(𝜔) → 𝑢

∗
(𝜔) (𝑛 → ∞). Similarly, we can prove

that {V
𝑛
(𝜔)} is also a Cauchy sequence in 𝐸 and there exists

V∗(𝜔) ∈ [𝑢
0
, V
0
] such that V

𝑛
(𝜔) → V∗(𝜔) (𝑛 → ∞). It fol-

lows from (10) that

󵄩󵄩󵄩󵄩𝑢
∗
(𝜔) − V∗ (𝜔)

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 (𝜔) − V
𝑛 (𝜔)

󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑁
󵄩󵄩󵄩󵄩𝛽(𝜔)

󵄩󵄩󵄩󵄩

𝑛 󵄩󵄩󵄩󵄩𝑢0 − V
0

󵄩󵄩󵄩󵄩 = 0.

(13)

So 𝑢
∗
(𝜔) = V∗(𝜔). Since 𝐴(𝜔, ⋅) is continuous, we have

𝐴 (𝜔, 𝑢
∗
(𝜔)) = lim

𝑛→∞
𝐴 (𝜔, 𝑢

𝑛 (𝜔)) = lim
𝑛→∞

𝑢
𝑛+1 (𝜔) = 𝑢

∗
(𝜔) ,

(14)

𝐴 (𝜔, V∗ (𝜔)) = lim
𝑛→∞

𝐴 (𝜔, V
𝑛
(𝜔)) = lim

𝑛→∞
V
𝑛+1

(𝜔) = V∗ (𝜔) .

(15)

Let 𝑥∗(𝜔) = 𝑢
∗
(𝜔) = V∗(𝜔). Equation (14) together with (15)

implies that

𝐴 (𝜔, 𝑥
∗
(𝜔)) = 𝑥

∗
(𝜔) . (16)

In addition, by a proof similar to that of Theorem 10, we get
that 𝑥∗(𝜔) : Ω → 𝐸 is a random fixed point of 𝐴.

Next we prove that 𝑥
∗
(𝜔) is the unique random fixed

point of 𝐴. Suppose that 𝑦∗(𝜔) ∈ [𝑢
0
, V
0
] is another random

fixed point of 𝐴. By induction, one can prove that, for any
𝑛 ≥ 0, 𝑢

𝑛
(𝜔) and 𝑦

∗
(𝜔) are random comparable. Since

𝑢
𝑛
(𝜔) → 𝑥

∗
(𝜔) (𝑛 → ∞), by Lemma 8, 𝑦∗(𝜔) and 𝑥

∗
(𝜔)

are also random comparable. Because 𝐴 is continuous and
𝛽(𝜔)-random ordered contractive,

𝜃 ≤ (𝑥
∗
(𝜔) − 𝑦

∗
(𝜔)) ∨ (𝑦

∗
(𝜔) − 𝑥

∗
(𝜔))

= (𝐴 (𝜔, 𝑥
∗
(𝜔)) − 𝐴 (𝜔, 𝑦

∗
(𝜔)))

∨ (𝐴 (𝜔, 𝑦
∗
(𝜔)) − 𝐴 (𝜔, 𝑥

∗
(𝜔)))

≤ 𝛽 (𝜔) {(𝑥
∗
(𝜔) − 𝑦

∗
(𝜔)) ∨ (𝑦

∗
(𝜔) − 𝑥

∗
(𝜔))} .

(17)

By the normality of 𝑃, we have

󵄩󵄩󵄩󵄩𝑥
∗
(𝜔) − 𝑦

∗
(𝜔)

󵄩󵄩󵄩󵄩 ≤ 𝑁
󵄩󵄩󵄩󵄩𝛽 (𝜔)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥
∗
(𝜔) − 𝑦

∗
(𝜔)

󵄩󵄩󵄩󵄩 , (18)

which implies that ‖𝑥∗(𝜔)−𝑦
∗
(𝜔)‖ = 0 as 0 < ‖𝛽(𝜔)‖ < 1/𝑁.

That is 𝑥∗(𝜔) = 𝑦
∗
(𝜔).

Remark 12. In the work of Li andDuan [9], the random oper-
ator 𝐴 in Theorems 2.3-2.4 needs to be random increasing
and random decreasing, respectively. Hence, Theorems 10-11
in this work generalize and extend the results of Theorems
2.3-2.4 in [9], respectively.

Theorem 13. Let 𝐸 be a real Banach space and 𝑃 a normal
cone in 𝐸 with the normal constant 𝑁. Let 𝐴 : Ω × 𝐸 → 𝐸

be a continuous random comparable operator and satisfy the
following:
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(i) there exists 0 < 𝜆 < 1/2 such that if 𝑢(𝜔) and V(𝜔),
𝑢(𝜔) and 𝐴(𝜔, 𝑢(𝜔)), and V(𝜔) and 𝐴(𝜔, V(𝜔)) are
random comparable, then

(𝐴 (𝜔, V (𝜔)) − 𝐴 (𝜔, 𝑢 (𝜔)))

∨ (𝐴 (𝜔, 𝑢 (𝜔)) − 𝐴 (𝜔, V (𝜔)))

≤ 𝜆 (((𝐴 (𝜔, 𝑢 (𝜔)) − 𝑢 (𝜔)) ∨ (𝑢 (𝜔) − 𝐴 (𝜔, 𝑢 (𝜔))))

+ ((𝐴 (𝜔, V (𝜔)) − V (𝜔)) ∨ (V (𝜔) − 𝐴 (𝜔, V (𝜔))))) ;

(19)

(ii) there exists 𝑥
0

∈ 𝐸 such that 𝑥
0
and 𝐴(𝜔, 𝑥

0
) are

random comparable.
Then 𝐴 has a random fixed point 𝑥

∗
(𝜔). Furthermore, the

iterative sequence {𝐴𝑛(𝜔, 𝑥
0
)} converges to 𝑥

∗
(𝜔) and ‖𝑥

∗
(𝜔)−

𝑥
0
‖ ≤ (1 + 𝑁𝜆/(1 − 2𝜆))‖𝐴(𝜔, 𝑥

0
) − 𝑥
0
‖.

Proof. For any fixed 𝜔 ∈ Ω, set

𝑥
1
(𝜔) = 𝐴 (𝜔, 𝑥

0
) , . . . , 𝑥

𝑛
(𝜔) = 𝐴 (𝜔, 𝑥

𝑛−1
(𝜔)) , . . . , 𝑛 ≥ 1.

(20)

By a similar approach as in the proof of Theorem 10, we
obtain that 𝑥

𝑛
(𝜔) and 𝑥

𝑛+1
(𝜔) are random comparable and

𝜃 ≤ (𝑥
𝑛 (𝜔) − 𝑥

𝑛+1 (𝜔)) ∨ (𝑥
𝑛+1 (𝜔) − 𝑥

𝑛 (𝜔))

= (𝐴 (𝜔, 𝑥
𝑛−1

(𝜔)) − 𝐴 (𝜔, 𝑥
𝑛
(𝜔)))

∨ (𝐴 (𝜔, 𝑥
𝑛
(𝜔)) − 𝐴 (𝜔, 𝑥

𝑛−1
(𝜔)))

≤ 𝜆 ((𝐴 (𝜔, 𝑥
𝑛
(𝜔)) − 𝑥

𝑛
(𝜔))

∨ (𝑥
𝑛
(𝜔) − 𝐴 (𝜔, 𝑥

𝑛
(𝜔)))

+ (𝐴 (𝜔, 𝑥
𝑛−1 (𝜔)) − 𝑥

𝑛−1 (𝜔))

∨ (𝑥
𝑛−1

(𝜔) − 𝐴 (𝜔, 𝑥
𝑛−1

(𝜔))))

= 𝜆 ((𝑥
𝑛+1

(𝜔) − 𝑥
𝑛
(𝜔)) ∨ (𝑥

𝑛
(𝜔) − 𝑥

𝑛+1
(𝜔))

+ (𝑥
𝑛
(𝜔) − 𝑥

𝑛−1
(𝜔)) ∨ (𝑥

𝑛−1
(𝜔) − 𝑥

𝑛
(𝜔))) .

(21)

So
𝜃 ≤ (𝑥

𝑛+1
(𝜔) − 𝑥

𝑛
(𝜔)) ∨ (𝑥

𝑛
(𝜔) − 𝑥

𝑛+1
(𝜔))

≤
𝜆

1 − 𝜆
((𝑥
𝑛 (𝜔) − 𝑥

𝑛−1 (𝜔)) ∨ (𝑥
𝑛−1 (𝜔) − 𝑥

𝑛 (𝜔)))

≤ ⋅ ⋅ ⋅

≤ (
𝜆

1 − 𝜆
)

𝑛

((𝑥
1
(𝜔) − 𝑥

0
) ∨ (𝑥

0
− 𝑥
1
(𝜔))) .

(22)

From the normality of𝑃, we get ‖𝑥
𝑛+1

(𝜔)−𝑥
𝑛
(𝜔)‖ ≤ 𝑁(𝜆/(1−

𝜆))
𝑛
‖𝑥
1
(𝜔) − 𝑥

0
‖. Since 0 < 𝜆 < 1/2, {𝑥

𝑛
(𝜔)} is a Cauchy

sequence in 𝐸. Hence there exists 𝑥
∗
(𝜔) ∈ 𝐸 such that

𝑥
𝑛
(𝜔) → 𝑥

∗
(𝜔) (𝑛 → ∞). The continuity of 𝐴(𝜔, ⋅) implies

that
𝐴 (𝜔, 𝑥

∗
(𝜔)) = lim

𝑛→∞
𝐴 (𝜔, 𝑥

𝑛 (𝜔)) = lim
𝑛→∞

𝑥
𝑛+1 (𝜔) = 𝑥

∗
(𝜔) .

(23)

By a proof similar to that of Theorem 10, we can easily
prove that 𝑥

∗
(𝜔) : Ω → 𝐸 is measurable, so 𝑥

∗
(𝜔) is a

random fixed point 𝐴. Furthermore,
󵄩󵄩󵄩󵄩𝑥
∗
(𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 (𝜔) − 𝑥
0

󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 (𝜔) − 𝑥
𝑖−1 (𝜔)

󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑛

∑

𝑖=2

(
𝜆

1 − 𝜆
)

𝑖−1

𝑁
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

≤

∞

∑

𝑛=2

(
𝜆

1 − 𝜆
)

𝑛−1

𝑁
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

= (1 +
𝑁𝜆

1 − 2𝜆
)

󵄩󵄩󵄩󵄩𝐴 (𝜔, 𝑥
0
) − 𝑥
0

󵄩󵄩󵄩󵄩 .

(24)

Theorem14. Let𝐸 be a real Banach space and𝑃 anormal cone
in 𝐸 with the normal constant 𝑁. Suppose that 𝐴 : Ω × 𝐸 →

𝐸 is a continuous random comparable operator satisfying the
following:

(i) if 𝑢(𝜔), V(𝜔) are random comparable, then V(𝜔) and
𝐴(𝜔, 𝑢(𝜔)), 𝑢(𝜔) and 𝐴(𝜔, V(𝜔)) are random compa-
rable and there exists 0 < 𝜆 < 1/2 such that

(𝐴 (𝜔, V (𝜔)) − 𝐴 (𝜔, 𝑢 (𝜔)))

∨ (𝐴 (𝜔, 𝑢 (𝜔)) − 𝐴 (𝜔, V (𝜔)))

≤ 𝜆 (((𝐴 (𝜔, 𝑢 (𝜔)) − V (𝜔)) ∨ (V (𝜔) − 𝐴 (𝜔, 𝑢 (𝜔))))

+ ((𝐴 (𝜔, V (𝜔)) − 𝑢 (𝜔)) ∨ (𝑢 (𝜔) − 𝐴 (𝜔, V (𝜔))))) ;

(25)

(ii) there exists 𝑥
0

∈ 𝐸 such that for any 𝜔 ∈ Ω, 𝑥
0
,

𝐴(𝜔, 𝑥
0
) are random comparable and 𝑥

0
,𝐴2(𝜔, 𝑥

0
) are

random comparable.

Then 𝐴 has a random fixed point 𝑥
∗
(𝜔). Furthermore,

the iterative sequence {𝐴
𝑛
(𝜔, 𝑥
0
)} converges to 𝑥

∗
(𝜔), where

𝐴
𝑛
(𝜔, 𝑥
0
) = 𝐴(𝜔, 𝐴

𝑛−1
(𝜔, 𝑥
0
)) and

󵄩󵄩󵄩󵄩𝑥
∗
(𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩 ≤ (1 +
𝑁𝜆

1 − 2𝜆
)

󵄩󵄩󵄩󵄩𝐴 (𝜔, 𝑥
0
) − 𝑥
0

󵄩󵄩󵄩󵄩 . (26)

Proof. For any fixed 𝜔 ∈ Ω, put

𝑥
1
(𝜔) = 𝐴 (𝜔, 𝑥

0
) , . . . , 𝑥

𝑛
(𝜔) = 𝐴 (𝜔, 𝑥

𝑛−1
(𝜔)) , . . . , 𝑛 ≥ 1.

(27)

Since 𝑥
0
and 𝐴(𝜔, 𝑥

0
), 𝑥
0
and 𝐴

2
(𝜔, 𝑥
0
) are random com-

parable, then according to (i), for any 𝑛 ≥ 1, 𝑥
𝑛
(𝜔) and

𝐴(𝜔, 𝑥
𝑛
(𝜔)),𝑥

𝑛
(𝜔) and𝐴

2
(𝜔, 𝑥
𝑛
(𝜔)) are randomcomparable;
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that is, for any 𝑛 ≥ 1, 𝑥
𝑛
(𝜔) and 𝑥

𝑛+1
(𝜔), 𝑥

𝑛
(𝜔) and 𝑥

𝑛+2
(𝜔)

are random comparable, and

𝜃 ≤ (𝑥
𝑛
(𝜔) − 𝑥

𝑛+1
(𝜔)) ∨ (𝑥

𝑛+1
(𝜔) − 𝑥

𝑛
(𝜔))

= (𝐴 (𝜔, 𝑥
𝑛−1 (𝜔)) − 𝐴 (𝜔, 𝑥

𝑛 (𝜔)))

∨ (𝐴 (𝜔, 𝑥
𝑛
(𝜔)) − 𝐴 (𝜔, 𝑥

𝑛−1
(𝜔)))

≤ 𝜆 ((𝐴 (𝜔, 𝑥
𝑛
(𝜔)) − 𝑥

𝑛−1
(𝜔))

∨ (𝑥
𝑛−1 (𝜔) − 𝐴 (𝜔, 𝑥

𝑛 (𝜔)))

+ (𝐴 (𝜔, 𝑥
𝑛−1

(𝜔)) − 𝑥
𝑛
(𝜔))

∨ (𝑥
𝑛 (𝜔) − 𝐴 (𝜔, 𝑥

𝑛−1 (𝜔))))

= 𝜆 ((𝑥
𝑛+1

(𝜔) − 𝑥
𝑛−1

(𝜔)) ∨ (𝑥
𝑛−1

(𝜔) − 𝑥
𝑛+1

(𝜔)))

≤ 𝜆 ((𝑥
𝑛+1 (𝜔) − 𝑥

𝑛 (𝜔)) ∨ (𝑥
𝑛 (𝜔) − 𝑥

𝑛+1 (𝜔))

+ (𝑥
𝑛
(𝜔) − 𝑥

𝑛−1
(𝜔))

∨ (𝑥
𝑛−1

(𝜔) − 𝑥
𝑛
(𝜔))) (by Lemma 7) .

(28)

So

𝜃 ≤ (𝑥
𝑛+1

(𝜔) − 𝑥
𝑛
(𝜔)) ∨ (𝑥

𝑛
(𝜔) − 𝑥

𝑛+1
(𝜔))

≤ (
𝜆

1 − 𝜆
) ((𝑥
𝑛
(𝜔) − 𝑥

𝑛−1
(𝜔)) ∨ (𝑥

𝑛−1
(𝜔) − 𝑥

𝑛
(𝜔)))

≤ ⋅ ⋅ ⋅

≤ (
𝜆

1 − 𝜆
)

𝑛

((𝑥
1 (𝜔) − 𝑥

0
) ∨ (𝑥

0
− 𝑥
1 (𝜔))) .

(29)

The normality of 𝑃 implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 (𝜔) − 𝑥
𝑛
(𝜔)

󵄩󵄩󵄩󵄩 ≤ 𝑁(
𝜆

1 − 𝜆
)

𝑛

󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥
0

󵄩󵄩󵄩󵄩 . (30)

Since 0 < 𝜆 < 1/2, {𝑥
𝑛
(𝜔)} is a Cauchy sequence in 𝐸. Hence

there exists 𝑥
∗
(𝜔) ∈ 𝐸 such that 𝑥

𝑛
(𝜔) → 𝑥

∗
(𝜔) (𝑛 → ∞).

By the continuity of 𝐴(𝜔, ⋅), it is easy to see that

𝐴 (𝜔, 𝑥
∗
(𝜔)) = lim

𝑛→∞
𝐴 (𝜔, 𝑥

𝑛 (𝜔)) = lim
𝑛→∞

𝑥
𝑛+1 (𝜔) = 𝑥

∗
(𝜔) .

(31)

Using a proof similar to that of Theorem 10, it is not
difficult to prove that 𝑥

∗
(𝜔) : Ω → 𝐸 is a random fixed

point of 𝐴 and
󵄩󵄩󵄩󵄩𝑥
∗
(𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 (𝜔) − 𝑥
0

󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 (𝜔) − 𝑥
𝑖−1

(𝜔)
󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

𝑛

∑

𝑖=2

(
𝜆

1 − 𝜆
)

𝑖−1

𝑁
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

≤

∞

∑

𝑛=2

(
𝜆

1 − 𝜆
)

𝑛−1

𝑁
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥1 (𝜔) − 𝑥

0

󵄩󵄩󵄩󵄩

= (1 +
𝑁𝜆

1 − 2𝜆
)

󵄩󵄩󵄩󵄩𝐴 (𝜔, 𝑥
0
) − 𝑥
0

󵄩󵄩󵄩󵄩 .

(32)

3. Applications

We consider the following random Hammerstein integral
equation:

𝑥 (𝜔, 𝑡) = 𝐴𝑥 (𝜔, 𝑡) = ∫

+∞

−∞

𝑘 (𝜔, 𝑠, 𝑡) (1 + √𝑥 (𝜔, 𝑠)) 𝑑𝑠.

(33)

Suppose that

(i) the kernel 𝑘(𝜔, 𝑠, 𝑡) is nonnegative random continu-
ous on Ω × 𝑅

1
× 𝑅
1 satisfying

1

12
≤ ∫

+∞

−∞

𝑘 (𝜔, 𝑠, 𝑡) 𝑑𝑠 ≤
1

2
; (34)

(ii) for any bounded continuous functions 𝑢(𝑡), V(𝑡)
satisfying the following condition,

1

9
≤ 𝑢 (𝑡) , V (𝑡) ≤ 1, (35)

there exists 𝛽 ∈ (0, 1) such that for any 𝜔 ∈ Ω,

∫

+∞

−∞

𝑘 (𝜔, 𝑠, 𝑡)
󵄨󵄨󵄨󵄨󵄨
√V (𝑠) − √𝑢 (𝑠)

󵄨󵄨󵄨󵄨󵄨
≤ 𝛽 |V (𝑠) − 𝑢 (𝑠)| . (36)

Then (33) has a unique random solution 𝑥(𝜔).

Proof. Since the kernel 𝑘(𝜔, 𝑠, 𝑡) is nonnegative random
continuous on Ω × 𝑅

1
× 𝑅
1, 𝐴 : Ω × 𝑅

1
→ 𝑅
1 is a random

operator. Set 𝑢
0

= 1/9 and V
0

= 1; from (34), we get that
𝐴 : Ω × [𝑢

0
, V
0
] → [𝑢

0
, V
0
]. For any 𝜔 ∈ Ω, put 𝛽(𝜔) = 𝛽;

from (36), we obtain that𝐴 is a random comparable operator.
Thus we prove that (33) has a unique random solution 𝑥(𝜔)

byTheorem 11.
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Remark 15. The operator 𝐴 defined by (33) is a random
increasing operator (of course, it is random comparable), but
just fromTheorem 2.3 of Li and Duan [9], we cannot get the
conclusion because 𝐴 does not satisfy the condition (ii) of
Theorem 2.3 of Li and Duan [9]. However, by Theorem 11 of
this work, we can easily get the conclusion. Thus, from this
application, it is shown that some of the results in this work
generalize and extend the corresponding results in [9] again.
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[1] A. Špaček, “Zufällige gleichungen,” Czechoslovak Mathematical
Journal, vol. 5, no. 4, pp. 462–466, 1955.
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