
Research Article
Pinning Adaptive Synchronization of Delayed Coupled
Dynamical Networks via Periodically Intermittent Control

Xueliang Liu1 and Shengbing Xu2

1School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523000, China
2City College, Dongguan University of Technology, Dongguan 523000, China

Correspondence should be addressed to Shengbing Xu; xusb2010@126.com

Received 9 April 2017; Accepted 30 August 2017; Published 9 October 2017

Academic Editor: R. Aguilar-López
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This paper investigates the exponential synchronization problem of delayed coupled dynamical networks by using adaptive pinning
periodically intermittent control. Based on the Lyapunov method, by designing adaptive feedback controller, some sufficient
conditions are presented to ensure the exponential synchronization of coupled dynamical networks with delayed coupling.
Furthermore, a numerical example is given to demonstrate the validity of the theoretical results.

1. Introduction

Complex networks have received a great deal of attention
due to their many potential practical applications [1, 2]. A
family of dynamically interacting units composes a kind of
complex networks which can exhibit a number of emerging
phenomena. Among various dynamical behaviors of complex
networks, synchronization is a significant and interesting
phenomenon, such as synchronization phenomena on the
Internet, synchronization transfer of digital or analog signals
in communication network, and synchronization related to
biological neural networks. Recently, much works have been
devoted to research the synchronization problem of complex
networks [3–5].

In the case where the network cannot synchronize by
itself, in order to drive the network to synchronize, many
effective control techniques have been reported, such as
feedback control [6], sampled-data control [7], adaptive
control [8, 9], pinning control [10], impulsive control [11],
and intermittent control [12]. In [9], the synchronization of
a class of complex network by adding an adaptive controller
to all nodes has been discussed. But in practice, it is too costly
and impractical to add controllers to all nodes in a large-
scale network. To reduce the number of controlled nodes,
pinning control is introduced [10], in which controllers are

only applied to partial nodes. This case of control techniques
has been earlier reported in paper [11–14]. In addition, the
adaptive pinning control method, which is utilized to get the
appropriate control gains effectively, has received consider-
able research attention. An adaptive pinning control method
is proposed in [15] to synchronize for a delayed complex
dynamical network with free coupling matrix. Besides these,
there are many literatures to study adaptive pinning control
problems of networks [16–18].

One the other hand, intermittent control has been widely
used in engineering fields due to its practical and easy
implementation in engineering control. In recent years,
many important and interesting results on stabilization and
synchronization of delayed dynamical networks by using
intermittent control have been obtained. Based on∞-norm,
authors in [19] investigated a class of Cohen-Grossberg
neural networks with time-varying delays by designing a
periodically intermittent controller. In [20], by using period-
ically intermittent control, Gan studied the stochastic neural
networks with leakage delay and reaction-diffusion terms;
some new and less conservative synchronization conditions
based on 𝑝-norm were derived. The pinning periodically
intermittent control is used to achieve the synchronization
of delayed complex network [21, 22]. To the best of our
knowledge, the problem of adaptive pinning synchronization
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for delayed coupled dynamical networks has received very
little research attention.

In this paper, we aim to further investigate adaptive
pinning synchronization of delayed coupled dynamical net-
work via periodically intermittent control. By using Lyapunov
stability theory and designing adaptive feedback control
gains, several criteria are given to guarantee synchroniza-
tion of delayed coupled dynamical networks. A numerical
simulation is also presented to show the effectiveness of the
proposed method.

2. Model and Preliminaries

Consider the complex network consisting of𝑁 nodes and the𝑖th node described by the following state equation:

�̇�𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑔 (𝑥𝑖 (𝑡 − 𝜏1))
+ 𝑁∑

𝑗=1

𝑔𝑖𝑗Γ𝑥𝑗 (𝑡) +
𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝜏𝑥𝑗 (𝑡 − 𝜏2) + 𝑢𝑖, (1)

where 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡)]𝑇 ∈ 𝑅𝑛 is the state
variable of node 𝑖 at time 𝑡; 𝐶 = (𝑐𝑖𝑗)𝑛×𝑛, 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛,
and𝐵 = (𝑏𝑖𝑗)𝑛×𝑛 are systemmatrices,𝑓(𝑥𝑖) = [𝑓1(𝑥𝑖1), 𝑓2(𝑥𝑖2),. . . , 𝑓𝑛(𝑥𝑖𝑛)]𝑇 and 𝑔(𝑥𝑖) = [𝑔1(𝑥𝑖1), 𝑔2(𝑥𝑖2), . . . , 𝑔𝑛(𝑥𝑖𝑛)]𝑇 are
continuous vector functions, and 𝜏1 is the internal delay. Γ =
diag(𝑑1, 𝑑2, . . . , 𝑑𝑛) and Γ𝜏 = diag(𝑑𝜏

1, 𝑑𝜏
2, . . . , 𝑑𝜏

𝑛) are inner
coupling matrices between the connected nodes 𝑖 and 𝑗 at
time 𝑡 and 𝑡 − 𝜏2, where 𝜏2 is the transmittal delay. 𝐺 =(𝑔𝑖𝑗)𝑁×𝑁 and 𝐺 = (𝑔𝑖𝑗)𝑁×𝑁 are the configuration matrices;
if there is a link from node 𝑖 to node 𝑗 at time 𝑡 (at time 𝑡−𝜏2),
then 𝑔𝑖𝑗 > 0 (𝑔𝑖𝑗 > 0), where 𝑗 ̸= 𝑖. Otherwise, 𝑔𝑖𝑗 = 0 (𝑔𝑖𝑗 =
0). It is assumed that 𝐺 and 𝐺 satisfy the diffusive coupling
connection, ∑𝑁

𝑗=1 𝑔𝑖𝑗 = 0 and ∑𝑁
𝑗=1 𝑔𝑖𝑗 = 0. 𝑢𝑖 ∈ 𝑅𝑛 are the

control inputs. Note that the coupling configuration matrix𝐺 and matrices 𝐴, 𝐵, 𝐶, Γ and Γ𝜏 are not assumed to be
symmetric.

The initial conditions of (1) are given by 𝑥𝑖(𝑡) = 𝑥0
𝑖 (𝑡),𝑡 ∈ [𝑡0 − 𝜏, 𝑡0], and 𝑥0

𝑖 (𝑡) ∈ 𝐶([𝑡0 − 𝜏, 𝑡0], 𝑅𝑛), where 𝜏 =
max(𝜏1, 𝜏2). To discuss global synchronization with one delay
coupling, we define the set

𝑆 = {[𝑥𝑇
1 , 𝑥𝑇

2 , . . . , 𝑥𝑇
𝑁]𝑇 | 𝑥𝑖 = 𝑥𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑁} (2)

as the synchronizationmanifold for network (1). For all 𝑠(𝑡) ∈𝑆, the dynamical equation of 𝑠(𝑡) satisfies
̇𝑠 (𝑡) = 𝐶s (𝑡) + 𝐴𝑓 (𝑠 (𝑡)) + 𝐵𝑔 (𝑠 (𝑡 − 𝜏1)) . (3)

Define error states as 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑠(𝑡) (1 ≤ 𝑖 ≤ 𝑁).
Then, we can derive the following error dynamical system:

̇𝑒𝑖 (𝑡) = 𝐶𝑒𝑖 (𝑡) + 𝐴 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))
+ 𝐵 (𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1)))
+ 𝑁∑

𝑗=1

𝑔𝑖𝑗Γ𝑒𝑗 (𝑡) +
𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝜏𝑒𝑗 (𝑡 − 𝜏2) + 𝑢𝑖,
𝑖 = 1, 2, . . . , 𝑁.

(4)

For convenience of statements, one has following
assumption.

𝐻1: There exists positive constants 𝑙𝑖, 𝑙𝑖 , 𝑖 = 1, 2, . . . , 𝑛, for
any 𝑥, 𝑦 ∈ 𝑅, such that

𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦) < 𝑙𝑖 𝑥 − 𝑦 , 𝑖 = 1, 2, . . . , 𝑛;
𝑔𝑖 (𝑥) − 𝑔𝑖 (𝑦) < 𝑙𝑖 𝑥 − 𝑦 , 𝑖 = 1, 2, . . . , 𝑛. (5)

In order to derive the main results, the following defini-
tions and lemmas are needed in this paper.

Lemma 1 (see [20]). Let 𝑤 : [𝜇 − 𝜏, +∞) → [0, +∞) be a
continuous function such that

�̇� (𝑡) ≤ −𝑎𝑤 (𝑡) + 𝑏max𝑤𝑡 (6)

is satisfied for 𝑡 ≥ 𝜇. If 𝑎 > 𝑏 > 0; then
𝑤 (𝑡) ≤ [max𝑤𝜇] 𝑒−𝜀(𝑡−𝜇), 𝑡 ≥ 𝜇, (7)

where max𝑤𝑡 = sup𝑡−𝜏≤𝑠≤𝑡𝑤(𝑠) and 𝜀 > 0 is the smallest real
root of the equation

𝜀 − 𝑎 + 𝑏𝑒𝜀𝜏 = 0. (8)

Lemma 2 (see [20]). Let 𝑤 : [𝜇 − 𝜏, +∞) → [0, +∞) be a
continuous function such that

�̇� (𝑡) ≤ 𝑎𝑤 (𝑡) + 𝑏max𝑤𝑡 (9)

is satisfied for 𝑡 ≥ 𝜇. If 𝑎 > 0, 𝑏 > 0, then
𝑤 (𝑡) ≤ max𝑤𝑡 ≤ [max𝑤𝜇] 𝑒(𝑎+𝑏)(𝑡−𝜇), 𝑡 ≥ 𝜇, (10)

wheremax𝑤𝑡 = sup𝑡−𝜏≤𝑠≤𝑡𝑤(𝑠).
Lemma 3 (see [6]). Let 𝑥, 𝑦 ∈ 𝑅𝑛. Then

2𝑥𝑇𝑦 ≤ 𝜖𝑥𝑇𝑥 + 𝜖−1𝑦𝑇𝑦, (11)

for any 𝜖 > 0.
3. Main Result

In order to realize synchronization of the couple network by
pinning periodically intermittent control, some controllers
are added to selected partial nodes, and the controllers𝑢𝑖 (1 ≤𝑖 ≤ 𝑁) can be described by

𝑢𝑖 = {{{
−𝑘𝑖 (𝑡) Γ𝑒𝑖 (𝑡) , 𝑡 ∈ [𝑛𝑇, (𝑛 + 𝜃) 𝑇)
0, 𝑡 ∈ [(𝑛 + 𝜃) 𝑇, (𝑛 + 1) 𝑇) , (12)

where 𝑇 > 0 denotes the control period, 0 < 𝜃 < 1, 𝑛 ∈ N:

𝑘𝑖 (𝑡) = {{{
𝑘𝑖 (𝑡) , 1 ≤ 𝑖 ≤ 𝑙,
0, 𝑙 + 1 ≤ 𝑖 ≤ 𝑁, (13)
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and 𝑘𝑖(𝑡) is the adaptive feedback strength for which the
update law is to be designed. When 𝑡 ∈ [𝑛𝑇, (𝑛 + 𝜃)𝑇) the
error system (4) can be rewritten as

̇𝑒𝑖 (𝑡) = 𝐶𝑒𝑖 (𝑡) + 𝐴 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))
+ 𝐵 (𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1)))
+ 𝑁∑

𝑗=1

𝑔𝑖𝑗Γ𝑒𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝜏𝑒𝑗 (t − 𝜏2) − 𝑘𝑖 (𝑡) Γ𝑒𝑖 (𝑡) ,
𝑖 = 1, 2, . . . , 𝑁.

(14)

When 𝑡 ∈ [(𝑛 + 𝜃)𝑇, (𝑛 + 1)𝑇), the error system (4) can be
rewritten as

̇𝑒𝑖 (𝑡) = 𝐶𝑒𝑖 (𝑡) + 𝐴 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))
+ 𝐵 (𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1)))
+ 𝑁∑

𝑗=1

𝑔𝑖𝑗Γ𝑒𝑗 (𝑡) +
𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝜏𝑒𝑗 (𝑡 − 𝜏2) ,
𝑖 = 1, 2, . . . , 𝑁.

(15)

Our objective is to design suitable 𝑇 and 𝜃 such that
the delayed couple network can realize synchronization. The
main results are stated as follows.

Theorem 4. Suppose that Hypothesis 𝐻1 holds, 𝜏 ≤ 𝜃𝑇 and𝜏 ≤ (1 − 𝜃)𝑇, where 𝜏 = max{𝜏1, 𝜏2}. If there exist positive
constants 𝜂, 𝑎𝑖, 𝑟𝑖, 𝜀𝑖, (𝑖 = 1, 2), such that

(i) Π1 = [
[

𝐶𝑠+𝜂𝐼𝑛 𝜀1𝐴 𝐿 𝜀2𝐵

𝜀1𝐴
𝑇 −2𝜀1𝐼𝑛 0 0

𝐿 0 −2𝜀1𝐼𝑛 0

𝜀2𝐵
𝑇 0 0 −2𝜀2𝐼𝑛

]
]

≤ 0,
(ii) Π2 = [ (−𝜂+𝑎1)𝐼𝑁+𝑑𝑗𝐺

𝑠−𝐾∗ (1/2)𝑑𝜏𝑗𝐺

(1/2)𝑑𝜏𝑗𝐺
𝑇 −𝑟1𝐼𝑁

] ≤ 0,
(iii) Π3 = [ (−𝜂−𝑎2)𝐼𝑁+𝑑𝑗𝐺

𝑠 (1/2)𝑑𝜏𝑗𝐺

(1/2)𝑑𝜏𝑗𝐺
𝑇 −𝑟2𝐼𝑁

] ≤ 0,
(iv) 𝑎1 > 𝑟1 + 𝑞,
(v) 𝜔 = 𝜀 − 2(𝑎1 + 𝑎2 + (𝑟2 − 𝑟1)𝑒𝜀𝜏)(1 − 𝜃) > 0,

where𝐶𝑠 = (1/2)(𝐶+𝐶𝑇),𝐾 = diag(𝑘∗
1 , . . . , 𝑘∗

𝑙 , 0, . . . , 0), 𝑞 =
max{𝑙2𝑖 /2𝜀2, 𝑖 = 1, . . . , 𝑛}, and 𝜀 > 0 is the unique positive
solution of the equation 𝜀 − 2𝑎1 + 2(𝑟 + 𝑞)𝑒𝜀𝜏 = 0, and choosing
the adaptive law

�̇�𝑖 (𝑡) = 𝜃𝑖𝑒𝑇𝑖 (𝑡) Γ𝑒𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑙, (16)

then the controlled couple network (1) is globally exponentially
synchronized.

Proof. Construct the following Lyapunov function:

𝑉 (𝑡) = 1
2

𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡) 𝑒𝑖 (𝑡) + 1
2

𝑙∑
𝑖=1

1
𝜃𝑖 �̃�

2
𝑖 , (17)

where �̃�𝑖 = 𝑘𝑖(𝑡) − 𝑘∗
𝑖 and 𝑘∗

𝑖 , 𝑖 = 1, 2, . . . , 𝑙, are positive
constants.

Then the derivative of𝑉(𝑡)with respect to time 𝑡 along the
solutions of (14) and (15) can be calculated as follows: when𝑛𝑇 ≤ 𝑡 < (𝑛 + 𝜃)𝑇, for 𝑛 = 0, 1, 2, . . ., we get

�̇� (𝑡) = 𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡){{{
𝐶𝑒𝑖 (𝑡) + 𝐴 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))

+ 𝐵 (𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1))) +
𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝑒𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝜏𝑒𝑗 (𝑡 − 𝜏2) − 𝑘𝑖 (𝑡) Γ𝑒𝑖 (𝑡)}}}
+ 𝑙∑

𝑖=1

1
𝜃𝑖 (𝑘𝑖 (𝑡)

− 𝑘∗
𝑖 ) �̇�𝑖 (𝑡) =

𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡){{{
𝐶𝑒𝑖 (𝑡)

+ 𝐴 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))
+ 𝐵 (𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1))) +

𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝑒𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝑔𝑖𝑗Γ𝜏𝑒𝑗 (𝑡 − 𝜏2)}}}
− 𝑙∑

𝑖=1

𝑘𝑖 (𝑡) 𝑒𝑇𝑖 (𝑡) Γ𝑒𝑖 (𝑡)

+ 𝑙∑
𝑖=1

1
𝜃𝑖 (𝑘𝑖 (𝑡) − 𝑘∗

𝑖 ) �̇�𝑖 (𝑡) .

(18)

Based on Lemma 3, we have

𝑒𝑇𝑖 (𝑡) 𝐴 (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)))
≤ 𝜀12 𝑒𝑇𝑖 (𝑡) 𝐴𝐴𝑇𝑒𝑇𝑖 (𝑡)

+ 1
2𝜀1

𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡))2

≤ 1
2𝑒𝑇𝑖 (𝑡) (𝜀1𝐴𝐴𝑇 + 1

𝜀1 𝐿𝐿) 𝑒𝑖 (𝑡) ,

(19)

𝑒𝑇𝑖 (𝑡) 𝐵 (𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1)))
≤ 𝜀22 𝑒𝑇𝑖 (𝑡) 𝐵𝐵𝑇𝑒𝑇𝑖 (𝑡)

+ 1
2𝜀2

𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) − 𝑔 (𝑠 (𝑡 − 𝜏1))2

≤ 𝜀22 𝑒𝑇𝑖 (𝑡) 𝐵𝐵𝑇𝑒𝑖 (𝑡)
+ 1
2𝜀2 𝑒

𝑇
𝑖 (𝑡 − 𝜏1) 𝐿𝐿𝑒𝑖 (𝑡 − 𝜏1) ,

(20)

where 𝐿 = diag(𝑙1, 𝑙2, . . . , 𝑙𝑛), and 𝐿 = diag(𝑙1, 𝑙2, . . . , 𝑙𝑛).
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Substituting (16) into the following expression, one has

𝑙∑
𝑖=1

1
𝜃𝑖 (𝑘𝑖 (𝑡) − 𝑘∗

𝑖 ) �̇�𝑖 (𝑡) −
𝑙∑

𝑖=1

𝑘𝑖 (𝑡) 𝑒𝑇𝑖 (𝑡) Γ𝑒𝑖 (𝑡)

= − 𝑙∑
𝑖=1

𝑘∗
𝑖 𝑒𝑇𝑖 (𝑡) Γ𝑒𝑖 (𝑡) .

(21)

Using exchange of rows and columns, it is easy to get

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑒𝑇𝑖 (𝑡) 𝑔𝑖𝑗Γ𝑒𝑗 (𝑡) =
𝑛∑

𝑗=1

𝑑𝑗𝑒𝑇𝑖 (𝑡) 𝐺𝑒𝑗 (𝑡) , (22)

where 𝑒𝑗(𝑡) = [𝑒1𝑗(𝑡), 𝑒2𝑗(𝑡), . . . , 𝑒𝑁𝑗(𝑡)]𝑇.
By following the similar steps denoted in (22), we get that

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑔𝑖𝑗𝑒𝑇𝑖 (𝑡) Γ𝜏𝑒𝑗 (𝑡 − 𝜏2) =
𝑛∑

𝑗=1

𝑑𝜏
𝑗𝑒𝑇𝑗 (𝑡) 𝐺𝑒𝑗 (𝑡 − 𝜏2) ,

𝑙∑
𝑖=1

𝑘∗
𝑖 𝑒𝑇𝑖 (𝑡) Γ𝑒𝑖 (𝑡) =

𝑛∑
𝑗=1

𝑑𝑗𝑒𝑇𝑗 (𝑡) 𝐾∗𝑒𝑗 (𝑡) ,
(23)

where𝐾∗ = diag(𝑘∗
1 , 𝑘∗

2 , . . . , 𝑘∗
𝑙 , 0, . . . , 0).

Substituting (19)–(23) into (18), we have

�̇� (𝑡)
≤ 𝑁∑

𝑖=1

𝑒𝑇𝑖 (𝑡) (𝐶 + 1
2𝜀1𝐴𝐴𝑇 + 1

2𝜀1 𝐿𝐿 + 𝜀22 𝐵𝐵𝑇) 𝑒𝑖 (𝑡)

+ 𝑛∑
𝑗=1

𝑒𝑇𝑗 (𝑡) [𝑑𝑗 (𝐺 − 𝐾) 𝑒𝑗 (𝑡) + 𝑑𝜏
𝑗𝐺𝑒𝑗 (𝑡 − 𝜏2)]

+ 1
2𝜀2

𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡 − 𝜏1) 𝐿𝐿𝑒𝑖 (𝑡 − 𝜏1) .

(24)

Define 𝑞 = max{𝑙2𝑖 /2𝜀2, 𝑖 = 1, 2, . . . , 𝑛}, and based on
conditions (i) and (ii) of Theorem 4, one gets

�̇� (𝑡) ≤ 𝑁∑
𝑖=1

(−𝑎1𝑒𝑇𝑖 (𝑡) 𝑒𝑖 (𝑡) + 𝑞𝑒𝑇𝑖 (𝑡 − 𝜏1) 𝑒𝑖 (𝑡 − 𝜏1)
+ 𝑟1𝑒𝑇𝑖 (𝑡 − 𝜏2) 𝑒𝑖 (𝑡 − 𝜏2)) ≤ −2𝑎1𝑉 (𝑡) + 2 (𝑞 + 𝑟1)
⋅ sup
𝑡−𝜏≤𝑠≤𝑡

𝑉 (𝑠) .
(25)

Similarly, based on condition (i) and (iii) of Theorem 4,
when (𝑛 + 𝜃)𝑇 ≤ 𝑡 ≤ (𝑛 + 1)𝑇, we have

�̇� (𝑡)
≤ 𝑁∑

𝑖=1

𝑒𝑇𝑖 (𝑡) (𝐶 + 1
2𝜀1𝐴𝐴𝑇 + 1

2𝜀1 𝐿𝐿 + 𝜀22 𝐵𝐵𝑇) 𝑒𝑖 (𝑡)

+ 𝑛∑
𝑗=1

𝑒𝑇𝑗 (𝑡) [𝑑𝑗𝐺𝑒𝑗 (𝑡) + 𝑑𝜏
𝑗𝐺𝑒𝑗 (𝑡 − 𝜏2)]

+ 1
2𝜀2

𝑁∑
𝑖=1

𝑒𝑇𝑖 (𝑡 − 𝜏1) 𝐿𝐿𝑒𝑖 (𝑡 − 𝜏1)
≤ 2𝑎2𝑉 (𝑡) + 2 (𝑞 + 𝑟2) sup

𝑡−𝜏≤𝑠≤𝑡
𝑉 (𝑠) .

(26)

In the following, we will prove that conditions (iv) and (v)
imply

𝑉 (𝑡) = sup
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒−𝜔𝑡, 𝑡 ≥ 0. (27)

Take 𝑀0 = max−𝜏≤𝑠≤0𝑉(𝑠) and 𝑊(𝑡) = 𝑒𝜀𝑡𝑉(𝑡). For 0 ≤𝑡 ≤ 𝜃𝑇, based on (25) and by using Lemma 1, we obtain

𝑉 (𝑡) ≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒−𝜀𝑡, (28)

where 𝜀 > 0 is the smallest real root of the equation

𝜀 − 2𝑎1 + 2 (𝑞 + 𝑟1) 𝑒𝜀𝜏 = 0. (29)

Thus, we have

𝑊(𝑡) ≤ 𝑀0. (30)

For 𝜃𝑇 ≤ 𝑡 ≤ 𝑇, based on (26), we have

�̇� (𝑡) ≤ 𝜀𝑊 (𝑡)
+ 2𝑒𝜀𝑡 (𝑎2𝑉 (𝑡) + (𝑟2 + 𝑞) sup

𝑡−𝜏≤𝑠≤𝑡
𝑉 (𝑠))

≤ (𝜀 + 2𝑎2)𝑊 (𝑡) + 2 (𝑟2 + 𝑞) 𝑒𝜀𝜏 sup
𝑡−𝜏≤𝑠≤𝑡

𝑊(𝑠) .
(31)

From Lemma 2, and noting that 𝜀−2𝑎1 +2(𝑞+ 𝑟1)𝑒𝜀𝜏 = 0,
we obtain

𝑊(𝑡) ≤ sup
𝜃𝑇−𝜏≤𝑠≤𝜃𝑇

𝑊(𝑠) 𝑒(𝜀+2𝑎2+2(𝑟2+𝑞)𝑒𝜀𝜏)(𝑡−𝜃𝑇)

≤ 𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(𝑡−𝜃𝑇)

≤ 𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(1−𝜃)𝑡.
(32)

For𝑇 ≤ 𝑡 < (1+𝜃)𝑇, based on (25) and by using Lemma 1,
we obtain

𝑉 (𝑡) ≤ sup
𝑇−𝜏≤𝑠≤𝑇

𝑉 (𝑠) 𝑒−𝜀(𝑡−𝑇). (33)

Consider that 2(𝑎1 + 𝑎2 + (𝑟2 − 𝑟1)𝑒𝜀𝜏) − 𝜀 > 0; then
𝑊(𝑡) ≤ sup

𝑇−𝜏≤𝑠≤𝑇

𝑊(𝑠) 𝑒𝜀(𝑇−𝑠)

≤ sup
𝑇−𝜏≤𝑠≤𝑇

𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(𝑠−𝜃𝑇)−𝜀𝑠+𝜀𝑇

≤ 𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(1−𝜃)𝑇
≤ 𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(1−𝜃)𝑡.

(34)
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For (1 + 𝜃)𝑇 ≤ 𝑡 < 2𝑇, one can repeat the same argument
and get similar results to (31) and (32). It can be deduced from
Lemma 2 that

𝑊(𝑡)
≤ sup

(1+𝜃)𝑇−𝜏≤𝑠≤(1+𝜃)𝑇

𝑊(𝑠) 𝑒(𝜀+2(𝑟2+𝑞)𝑒𝜀𝜏+2𝑎2)(𝑡−(1+𝜃)𝑇)

≤ 𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(1−𝜃)𝑡.
(35)

By induction, we can derive the following estimation of𝑊(𝑡) for any integer 𝑛. For 𝑛𝑇 ≤ 𝑡 < (𝑛 + 1)𝑇
𝑊 (𝑡) ≤ 𝑀0𝑒2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(1−𝜃)𝑡. (36)

Form the definition of 𝑊(𝑡) and condition (v) of
Theorem 4, we obtain

𝑉 (𝑡) ≤ 𝑀0𝑒−(𝜀−2(𝑎1+𝑎2+(𝑟2−𝑟1)𝑒𝜀𝜏)(1−𝜃))𝑡 = 𝑀0𝑒−𝜔𝑡,
𝑡 ≥ 0. (37)

This implies the conclusion and the proof is complete.

When Γ = 0, only delayed coupling exists in the networks.
One has the following corollary.

Corollary 5. Suppose that Hypothesis 𝐻1 holds, 𝜏 ≤ 𝜃𝑇 and𝜏 ≤ (1 − 𝜃)𝑇 where 𝜏 = 𝜏2. If there exist positive constants𝜂, 𝑎𝑖, 𝑟𝑖, 𝜀𝑖, (𝑖 = 1, 2), such that
(i) Π1 = [

[
𝐶𝑠+𝜂𝐼𝑛 𝜀1𝐴 𝐿 𝜀2𝐵

𝜀1𝐴
𝑇 −2𝜀1𝐼𝑛 0 0

𝐿 0 −2𝜀1𝐼𝑛 0

𝜀2𝐵
𝑇 0 0 −2𝜀2𝐼𝑛

]
]

≤ 0,

(ii) Π2 = [ (−𝜂+𝑎1)𝐼𝑁−𝐾
∗ (1/2)𝑑𝜏𝑗𝐺

(1/2)𝑑𝜏𝑗𝐺
𝑇 −𝑟1𝐼𝑁

] ≤ 0,
(iii) Π3 = [ (−𝜂−𝑎2)𝐼𝑁 (1/2)𝑑𝜏𝑗𝐺

(1/2)𝑑𝜏𝑗𝐺
𝑇 −𝑟2𝐼𝑁

] ≤ 0,
(iv) 𝑎1 > 𝑟1 + 𝑞,
(v) 𝜔 = 𝜀 − 2(𝑎1 + 𝑎2 + (𝑟2 − 𝑟1)𝑒𝜀𝜏)(1 − 𝜃) > 0,

where 𝐾 = diag(𝑘∗
1 , . . . , 𝑘∗

𝑙 , 0, . . . , 0), 𝑞 = max{𝑙2𝑖 /2𝜀2, 𝑖 =1, . . . , 𝑛}, and 𝜀 > 0 is the unique positive solution of the
equation 𝜀 − 2𝑎1 + 2(𝑟 + 𝑞)𝑒𝜀𝜏 = 0, and choosing the adaptive
law as (16), then the controlled couple network (1) is globally
exponentially synchronized.

When Γ𝜏 = 0, there is no delayed coupling in the coupled
networks.

Corollary 6. Suppose that Hypothesis 𝐻1 holds, 𝜏 ≤ 𝜃𝑇 and𝜏 ≤ (1 − 𝜃)𝑇 where 𝜏 = 𝜏1. If there exist positive constants𝜂, 𝑎𝑖, 𝑟𝑖, 𝜀𝑖, (𝑖 = 1, 2), such that
(i) Π1 = [

[
𝐶𝑠+𝜂𝐼𝑛 𝜀1𝐴 𝐿 𝜀2𝐵

𝜀1𝐴
𝑇 −2𝜀1𝐼𝑛 0 0

𝐿 0 −2𝜀1𝐼𝑛 0

𝜀2𝐵
𝑇 0 0 −2𝜀2𝐼𝑛

]
]

≤ 0,
(ii) Π2 = (−𝜂 + 𝑎1)𝐼𝑁 + 𝑑𝑗𝐺𝑠 − 𝐾∗ ≤ 0,
(iii) Π3 = (−𝜂 − 𝑎2)𝐼𝑁 + 𝑑𝑗𝐺𝑠 ≤ 0,

(iv) 𝑎1 > 𝑞 = max{𝑙2𝑖 /2𝜀2, 𝑖 = 1, . . . , 𝑛},
(v) 𝜔 = 𝜀 − 2(𝑎1 + 𝑎2)(1 − 𝜃) > 0,

where 𝐾 = diag(𝑘∗
1 , . . . , 𝑘∗

𝑙 , 0, . . . , 0) and 𝜀 > 0 is the unique
positive solution of the equation 𝜀 − 2𝑎1 + 2(𝑟 + 𝑞)𝑒𝜀𝜏 = 0, and
choosing the adaptive law as (16), then the controlled couple
network (1) is globally exponentially synchronized.

4. Numerical Simulation

In this section, we present a numerical simulation to illustrate
the feasibility and effectiveness of our results.

Consider the coupled network (1) consisting of 6 identical
Chua oscillators with time delayed nonlinearity. The dynam-
ics of the Chua oscillator is given by

�̇�𝑖 (𝑡) = 𝐶𝑥𝑖 (𝑡) + 𝐴𝑓 (𝑥𝑖 (𝑡)) + 𝐵𝑔 (𝑥𝑖 (𝑡 − 𝜏1)) , (38)

where 𝑥𝑖(𝑡) ∈ 𝑅3, 𝜏1 = 0.02, 𝑓(𝑥𝑖(𝑡)) = (−(1/2)𝛿(𝛼 −𝛽)(|𝑥𝑖1(𝑡) + 1| − |𝑥𝑖1(𝑡) − 1|), 0, 0)𝑇, and 𝑔(𝑥𝑖(𝑡 − 𝜏1)) =(−𝜉𝛾 sin(V𝑥𝑖1(𝑡 − 𝜏1)), 0, 0)𝑇:

𝐶 = [[[
[

−𝛿 (1 + 𝛽) 𝛿 0
1 −1 1
0 −𝜉 −𝜖

]]]
]
,

𝐴 = [[[
[

1 0 0
0 0 0
0 0 0

]]]
]
,

𝐵 = [[[
[

0 0 0
0 0 0
1 0 0

]]]
]
,

𝛿 = 10,
𝜖 = 0.1636,
𝜉 = 19.53,
𝛼 = −1.4325,
𝛽 = −0.7831,
V = 0.5,
𝛾 = 0.2;

(39)

the other parameters of network are given as follows:

Γ = 2𝐼2,
Γ𝜏 = 0.1𝐼2,
𝜏2 = 0.1,
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Figure 1: Dynamical behavior of the synchronization manifold 𝑠(𝑡).

𝐺 = 10

[[[[[[[[[[[[[
[

−5 1 1 1 1 1
1 −5 1 1 1 1
1 1 −5 1 1 1
1 1 1 −5 1 1
1 1 1 1 −5 1
1 1 1 1 1 −5

]]]]]]]]]]]]]
]

,

𝐺 =

[[[[[[[[[[[[[
[

−2 1 1 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
0 0 0 1 1 −2

]]]]]]]]]]]]]
]

.

(40)

The dynamical behavior of the synchronization manifold 𝑠(𝑡)
is shown in Figure 1.

It is easy to verify that nonlinear functions 𝑓(⋅) and 𝑔(⋅)
satisfy the Lipschitz condition with 𝑙1 = (1/2)𝛿(𝛽 − 𝛼), 𝑙2 =𝜉𝛾V. By using the MATLAB LMI toolbox, a feasible solution
of condition (i) of Theorem 4 is obtained as follows:

𝜀1 = 6.5041,
𝜀2 = 2.0684,
𝜂 = −12.56.

(41)

In this simulation, we add the adaptive feedback controllers
to the 1st, 2nd, and 3rd nodes. Let 𝑇 = 1, 𝜃 = 0.2, 𝜔 =0.1, 𝑎1 = 20, 𝑎2 = 13, 𝑟1 = 2, 𝑟2 = 0.2, and 𝐾∗ =
diag(500, 500, 500, 0, 0, 0); thus the condition in Theorem 4
is satisfied. According to Theorem 4, the coupled net-
work (1) can be achieved pinning adaptive synchronization.
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Figure 2: The trajectories of the state variables of 𝑥𝑖1(𝑡), (𝑖 =1, 2, . . . , 6) in the controlled network (1) and synchronization mani-
fold 𝑠1(𝑡).
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Figure 3: The trajectories of the state variables of 𝑥𝑖2(𝑡), (𝑖 = 1, 2,. . . , 6) in the controlled network (1) and synchronization manifold𝑠2(𝑡).

The initial conditions of the numerical simulation are as
follows:

𝑋0 = [𝑥0
𝑖 (𝑡) 𝑥0

2 (𝑡) ⋅ ⋅ ⋅ 𝑥0
6 (𝑡) 𝑠 (𝑡)]

= [[[
[

−1 −0.8 −0.6 −0.4 −2 2 −2
1 0.8 0.6 −0.4 2 −0.4 0.5
0.5 0.3 1 −2 −0.4 0.4 1

]]]
]
. (42)

The simulation results are given in Figures 2–5. The
trajectories of the state variables 𝑥𝑖(𝑡) and synchronization
manifold are illustrated in Figures 2–4. From these figures,
we can see that all nodes 𝑥𝑖(𝑡) tend to the synchronization
manifold 𝑠(𝑡). The time evolution of the feedback control
gains 𝑘𝑖(𝑡) (𝑖 = 1, 2, 3) is shown in Figure 5.
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Figure 4: The trajectories of the state variables of 𝑥𝑖2(𝑡), (𝑖 = 1, 2,. . . , 6) in the controlled network (1) and synchronization manifold𝑠3(𝑡).
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Figure 5: Time evolution of the control gains 𝑘1, 𝑘2, 𝑘3.

5. Conclusion

In this paper, we have investigated the exponential synchro-
nization problem for neural networks by pinning periodically
intermittent control. Based on Lyapunov stability theory
and periodically intermittent control method, some novel
conditions for synchronization are derived. Furthermore,
numerical simulations have verified the effectiveness of the
presented method.
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