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We propose strategies to achieve a high-throughput FPGA architecture for quasi-cyclic low-density parity-check codes based on
circulant-1 identity matrix construction. By splitting the node processing operation in the min-sum approximation algorithm,
we achieve pipelining in the layered decoding schedule without utilizing additional hardware resources. High-level synthesis
compilation is used to design and develop the architecture on the FPGA hardware platform. To validate this architecture, an
IEEE 802.11n compliant 608Mb/s decoder is implemented on the Xilinx Kintex-7 FPGA using the LabVIEW FPGA Compiler in
the LabVIEW Communication System Design Suite. Architecture scalability was leveraged to accomplish a 2.48Gb/s decoder on a
singleXilinx Kintex-7 FPGA. Further, we present rapidly prototyped experimentation of an IEEE 802.16 compliant hybrid automatic
repeat request system based on the efficient decoder architecture developed. In spite of themixed nature of data processing—digital
signal processing and finite-state machines—LabVIEW FPGA Compiler significantly reduced time to explore the system parameter
space and to optimize in terms of error performance and resource utilization. A 4x improvement in the system throughput, relative
to a CPU-based implementation, was achieved to measure the error-rate performance of the system over large, realistic data sets
using accelerated, in-hardware simulation.

1. Introduction

The year 2020 is slated to witness the first commercial
deployment of the 5th generation of wireless technology. 5G
is expected to deliver a uniform Quality of Service (QoS)
of 100Mb/s and peak data rates of up to 20Gb/s, with
over-the-air latency of less than 1ms [1]. All of this is with
the energy consumption of contemporary cellular systems.
Channel coding is crucial to achieve good performance in
a communication system. Near-capacity performing codes
such as Turbo codes [2] and Low-Density Parity-Check
(LDPC) codes [3] typically require high-complexity encoding
and decoding methods. Today, the standardization efforts
towards realizing 5G cellular systems have already begun [4].
The suitability of a particular channel coding scheme is being
discussed; and for a system realization of the size of 5G, the
evolution of requirements pertaining to channel coding is
naturally expected. In our effort to study and design channel
codes based on areas ranging from theoretical performance

evaluation up to implementation complexity analysis, we
have identified two main requirements in the development
process. The first one is flexibility for future modifications. To
facilitate this, we choose the reconfigurable FPGA platform.
Moreover, for this evolving architecture, we aim to observe
not only the theoretical complexity versus performance
trade-off, but also the implementation complexity versus
performance trade-off. This brings us to the second major
requirement, which is real-world rapid prototyping of our
methods. Figure 1 summarizes our research methodology.
Even though theoretical simulations validate a novel idea,
they fail to comprehensively assess its real-world impact.
In an effort towards designing and developing a hardware
architecture for channel coding, it is crucial to monitor the
performance of the system in real-time, on actual state-of-
the-art hardware. This helps us keep track of parameters
such as throughput, latency, and resource utilization of the
system, each time a modification is done. We would also like
to emphasize that rapid prototyping can be used not only
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Figure 1: Illustration of our research methodology for the design and development of the channel coding architecture.
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Figure 2: Illustration of the HLS compile flow.

for validating the design on real-world hardware platforms
(Sections 5.1 and 5.2), but also for speedup of theoretical
simulations (Section 5.3).

To accomplish this, in addition to the use of FPGA-
based implementation, we use a High-Level Synthesis (HLS)
compiler built in LabVIEW, namely, the LabVIEW FPGA
Compiler [5–9] the details of which (relevant to this work)
are given in Section 3. One of the main contributions of this
work is the state-of-the-art HLS technology that offers an
automated and systematic compilation flow, which generates
an optimized hardware implementation from a user’s algo-
rithm and design requirements.Thismethodology empowers
domain experts withminimumhardware knowledge to lever-
age FPGA technology in exploring, prototyping, and verify-
ing their complex domain-specific applications. As shown in
Figure 2, our compilation flow takes an application diagram
as well as high-level design requirements, such as clock rate
and throughput, and produces an optimized implementation
with resource and timing estimates. By simply modifying
application parameters and design requirements, designers
can quickly get new hardware implementations with updated
estimates. High-level design (user) requests and estimates
enable designers to easily evaluate the current model and
requirements and plan further algorithmic exploration. This
rapid design process paves the way for domain experts to
successfully accomplish the optimized design solution with
significant time and cost savings.

QC-LDPC codes or their variants (such as accumulator-
based codes [10]) that can be decoded (suboptimally) using
Belief Propagation (BP) are highly likely candidates for 5G
systems [4]. Insightful work on high-throughput (order of
Gb/s) BP-based QC-LDPC decoders is available; however,
most of such works focus on an application-specific inte-
grated circuit (ASIC) design [11, 12] which usually requires
intricate customizations at the register-transfer level (RTL)
and expert knowledge of very-large-scale integration (VLSI)
design. A sizeable subset of the above-mentioned work caters
to fully-parallel [13] or code-specific [14] architectures. From
the point of view of an evolving research solution, this
is not an attractive option for rapid prototyping. In the
relatively less explored area of FPGA-based implementation,
impressive results have recently been presented in works
such as [15–17]. However, these are based on fully-parallel
architectures which lack flexibility (code-specific) and are
limited to small block sizes (primarily due to the inhibiting
routing congestion) as discussed in the informative overview
in [18]. Since our case study is based on fully automated
generation of the hardware description language (HDL),
we compare our results with some recent HLS-based state-
of-the-art implementations [19–22] in Section 6. The main
contributions of this work are as follows. In this work,
we present a high-throughput FPGA-based IEEE 802.11n
standard compliant QC-LDPC channel decoder. With the
architectural technique of splitting of the node processing,
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we achieve the said degree of pipelining without utilizing
additional hardware resources. To demonstrate the scalability
of the architecture, we present its application to a massively-
parallel 2.48Gb/s USRP-based decoder implementation (also
demonstrated on the exhibit floor in the 2014 IEEE GLOBE-
COM conference [23]). The final contribution is a method
to rapidly prototype the experimentation of a HARQ system
based on the efficient decoder architecture developed, using
the IEEE 802.16 standard compliant QC-LDPC code. The
system not only comprises digital signal processing (DSP),
but also finite-state machines (FSM). In spite of such mixed
nature of data processing, LabVIEWFPGACompilerwas able
to significantly reduce the time to explore the overall system
parameter space and to optimize resource utilization for the
error-rate performance achieved.

The remainder of this article is organized as follows.
Section 2 provides a succinct introduction to the QC-LDPC
code structure and the corresponding decoding algorithm
considered for the architecture. The strategies for achieving
high-throughput for the stand-alone QC-LDPC decoder
are explained in Section 4. The case studies for the high-
throughput decoder, its application demonstrating scala-
bility, and the rapidly prototyped HARQ experiment are
detailed in Section 5. A survey of recent state-of-the-art
solutions is provided in Section 6. Section 7 concludes the
article.

2. Quasi-Cyclic LDPC Codes

LDPC codes are a class of linear block codes that have been
shown to achieve near-capacity performance on a broad
range of channels. Invented by Gallager [3] in 1962, they are
characterized by a Low-Density (sparse) Parity-CheckMatrix
(PCM) representation. Mathematically, an LDPC code is a
null-space of its𝑚× 𝑛 PCMH, where𝑚 denotes the number
of parity-check equations or parity-bits and 𝑛 denotes the
number of variable nodes or code bits [24]. In other words,
for a rank 𝑚 PCM H, 𝑚 is the number of redundant bits
added to the 𝑘 information bits, which together form the
codeword of length 𝑛 = 𝑘 + 𝑚. An example of a Tanner
graph representation (due to Tanner [25] who introduced
a graphical representation) is shown in Figure 3. Here, the
PCM H is the incidence matrix of a bipartite Tanner graph
comprising two sets: the check node (CN) set of 𝑚 parity-
check equations and the variable node (VN) set of 𝑛 variable
or bit nodes; the 𝑖th CN is connected to the 𝑗th VN ifH(𝑖, 𝑗) =1. The column weight 𝑑𝑐 ≪ 𝑚 and the row weight 𝑑𝑟 ≪𝑛, where row weight and column weight are defined as the
number of 1s along a row and a column, respectively. An
LDPC code is called a regular code if each CN has a degree 𝑑𝑟
and each VN has a degree 𝑑𝑐 and is called an irregular LDPC
code otherwise.

2.1. Parity-Check Matrix. The first LDPC codes by Gallager
[3] are random, which complicate the decoder implementa-
tion, mainly because a random interconnect pattern between
theVNs andCNs directly translates to a complexwire routing
circuit on hardware. QC-LDPC codes [26] belong to the class

Check nodes (CN)

Variable nodes (VN)

Figure 3: A Tanner graph where the variable nodes (VN), repre-
senting the code bits, are shown as circles and the check nodes (CN),
representing the parity-check equations, are shown as squares. Each
edge in the graph corresponds to a nonzero entry (1 for binary LDPC
codes) in the PCMH.

of structured codes that do not significantly compromise
performance relative to randomly constructed LDPC codes.

The construction ofQC-LDPCcodes relies on an𝑚𝑏 × 𝑛𝑏
matrixH𝑏 sometimes called the base matrixwhich comprises
cyclically right-shifted identity and zero submatrices both of
size 𝑧 × 𝑧, where, 𝑧 ∈ Z+, 0 ≤ 𝑖𝑏 ≤ (𝑚𝑏 − 1) and 0 ≤ 𝑗𝑏 ≤(𝑛𝑏 − 1), the shift value,

𝑠 = H𝑏 (𝑖𝑏, 𝑗𝑏) ∈ S = {−1} ∪ {0, . . . , 𝑧 − 1} . (1)

The PCM matrix H is obtained by expanding H𝑏 using the
mapping,

𝑠 󳨀→ {{{
I𝑠, 𝑠 ∈ S \ {−1} ,
0, 𝑠 ∈ {−1} , (2)

where I𝑠 is an identity matrix of size 𝑧 which is cyclically
right-shifted by 𝑠 = H𝑏(𝑖𝑏, 𝑗𝑏) and 0 is the all-zero matrix of
size 𝑧 × 𝑧. As H comprises the submatrices I𝑠 and 0, it has𝑚 = 𝑚𝑏 ⋅ 𝑧 rows and 𝑛 = 𝑛𝑏 ⋅ 𝑧 columns. The base matrix for
the IEEE 802.11n (2012) standard [27] with 𝑧 = 81 is shown in
Table 1.

2.2. Scaled Min-Sum Approximation Decoding. LDPC codes
can be suboptimally decoded using the BP method [3, 28] on
the sparse bipartite Tanner graph where the CNs and VNs
communicate with each other, successively passing revised
estimates of the log-likelihood ratio (LLR) associated in
every decoding iteration. In this work, we have employed
the efficient decoding algorithm presented in [29], with
a pipelining schedule based on the row-layered decoding
technique [30], detailed in Section 4.3.

Definition 1. For 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, let V𝑗 denote
the 𝑗th bit in the length 𝑛 codeword and 𝑦𝑗 = V𝑗 + 𝑛𝑗
denote the corresponding received value from the channel
corrupted by the noise sample 𝑛𝑗. Let the variable-to-check
(VTC) message from VN 𝑗 to CN 𝑖 be 𝑞𝑖𝑗 and let the check-
to-variable (CTV) message from CN 𝑖 to VN 𝑗 be 𝑟𝑖𝑗. Let the
a posteriori probability ratio for variable node 𝑗 be denoted
as 𝑝𝑗.
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The steps of the scaled-MSA are given below.

(1) Initialization. The a posteriori probability 𝑝𝑗 for the VN 𝑗
and the CTV messages are initialized as

𝑝(0)𝑗 = ln{𝑃 (V𝑗 = 0 | 𝑦𝑗)
𝑃 (V𝑗 = 1 | 𝑦𝑗)} , 1 ≤ 𝑗 ≤ 𝑛,

𝑟(0)𝑖𝑗 = 0, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.
(3)

(2) Iterative Process. During the 𝑡th decoding iteration,

𝑞(𝑡)𝑖𝑗 = 𝑝(𝑡−1)𝑗 − 𝑟(𝑡−1)𝑖𝑗 , (4)

𝑟(𝑡)𝑖𝑗 = 𝑎 ⋅ ∏
𝑘∈N(𝑖)\{𝑗}

sign (𝑞(𝑡)𝑖𝑘 ) ⋅ min
𝑘∈N(𝑖)\{𝑗}

{󵄨󵄨󵄨󵄨󵄨𝑞(𝑡)𝑖𝑘 󵄨󵄨󵄨󵄨󵄨} , (5)

𝑝(𝑡)𝑗 = 𝑞(𝑡)𝑖𝑗 + 𝑟(𝑡)𝑖𝑗 , (6)

where 1 ≤ 𝑖 ≤ 𝑚 and 𝑘 ∈ N(𝑖) \ {𝑗} represents the set of
the VN neighbors of CN 𝑖 excluding VN 𝑗 and 𝑎 is the scaling
factor used, the rationale behind which is explained below.

(3) Decision Rule. 1 ≤ 𝑖 ≤ 𝑚,

V̂𝑗 = {{{
0, 𝑝𝑗 < 0,
1, 𝑝𝑗 ≥ 0. (7)

(4) Stopping Criteria. If k̂H𝑇 = 0 or 𝑡 = 𝑡max (maximum
number of decoding iterations), declare k̂ as the decoded
codeword.

It is well known that since the MSA is an approximation
of the sum-product algorithm (SPA) [3], the performance of
theMSA is relatively worse than the SPA [24]. However, work
such as [31] has shown that scaling the CTV messages 𝑟𝑖𝑗 can
improve the performance of the MSA. Hence, we scale the
CTV messages by a factor 𝑎 (set to 0.75) to compensate for
the performance loss due to the MSA approximation.

The standard BP algorithm is based on the so-called
flooding or two-phase schedule where each decoding iteration
comprises two phases. In the first phase, VTC messages for
all the VNs are computed and, in the second phase, the CTV
messages for all the CNs are computed, strictly in that order.
Thus, message updates from one side of the graph propagate
to the other side only in the next decoding iteration. In
the algorithm given in [29] however, message updates can
propagate across the graph in the same decoding iteration.
This provides advantages such that a single processing unit
is required for both CN and VN message updates, memory
storage is reduced on account of the on-the-fly computation
of the VTC messages 𝑞𝑖𝑗, and the algorithm converges faster
than the standard BP flooding schedule requiring fewer
decoding iterations.

3. HLS with LabVIEW FPGA Compiler

The HLS compiler in LabVIEW CSDS [32], namely, Lab-
VIEW FPGA Compiler, aims at identifying opportunities to
efficiently parallelize in the application’s algorithmic descrip-
tion, subject to requirements set by the user. Here, we
briefly describe the main techniques [5] embedded into
the LabVIEW FPGA Compiler toolset that enable efficient
high-throughput translation of the algorithm into a VHDL
description.

3.1. Memory Dependency Analysis. Loop unrolling on FPGA
platforms is a well-known compiler optimization used to
exploit parallelism [33]. However, in the presence of execu-
tion dependencies between loop iterations, loop unrolling
may not contribute to throughput improvement. An example
is shown in Figure 4(a) where an execution dependency
restricts parallelization of unrolled loops. Although loops
have been unrolled by a factor of two as shown in Figure 4(b),
the first loop copy waits until the second loop copy execution
is finished. Due to the serialized loop execution, the overall
performance is the same as the original loop, however at
the cost of more FPGA resources used by the new loop
copies.

However, if unrolling is performed only when it improves
throughput, a trade-off between throughput and resource
consumption can be achieved in the implementation. An
illustrative example is provided in Figure 5, where a feedback
node defines a data dependency across consecutive diagram
executions. A Read-After-Write (RAW) dependency between
the current memory read operation 𝑅𝑖 and a previous mem-
ory write operation𝑊𝑖−1 is shown in Figure 5(a).This depen-
dency prevents the compiler from pipelining the diagram
executions and becomes a bottleneck, restricting the overall
throughput as shown in Figure 5(b). However, if the compiler
can determine that 𝑅𝑖 never reads a memory location that is
updated by𝑊𝑖−1, then the 𝑖th diagram execution can overlap
with the (𝑖 − 1)th execution and achieve better throughput as
shown in Figure 5(c). Such an analysis is also applicable to
relax WAR andWAW dependencies.

The memory access pattern analysis in LabVIEW FPGA
Compiler mainly comprises two steps. In the first step, a
periodic access pattern is determined by monitoring all the
stateful nodes that contribute to eachmemory access pattern.
In the second step, access patterns of memory accessor pairs
are compared, and the pairwise worst iteration distance 𝑘 is
computed.This dependent iteration distance is used to create
a relaxed interiteration dependency, thus allowing pipelined
executions without any memory corruption.

3.2. Memory Access Traffic Relaxation. Loop unrolling may
not be effective if the memory access speed cannot keep up
with the data throughput request set by the user. This is
particularly true for processing intensive applications like the
ones studied and implemented in this work. LabVIEW FPGA
Compiler uses the following techniques to reduce memory
traffic such that the performance targets set by the user are
met.
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3.2.1. Memory Partitioning. Memory blocks on modern
FPGAs typically have only two ports, one of which is gener-
ally read-only. Implementing memories with more ports can
become very resource intensive and can drastically reduce
the clock rate of the design. The limited amount of memory
ports often causes accesses to get serialized. These serialized
memory access requests oftenmake computational cores idle,
thus resulting in a reduction of the system throughput [34].
Memory partitioning is the division of the original memory
block into multiple smaller memory blocks.This partitioning
effectively increases FPGA physical memory access ports to
allow simultaneous memory read and write operations, thus
minimizing the idle time of the computational cores.Memory
accessors are grouped into sets, such that accessors within
one set are guaranteed to have a nonoverlapping address
space with members of another set, allowing the compiler to
safely partition the single memory into a memory for each
set of accessors. The size of each partition is the size of the
address space for that set. The original memory is divided
into small partitions based on min-max address ranges of
memory accessor groups, and each group is mapped to a
separate partition having the matched address range.

LabVIEW FPGA Compiler statically analyzes memory
access patterns in a given application diagram and automati-
cally relaxes thememory access bottleneckwithout impacting
the execution of the high-level algorithmic description input
to it. Memory traffic is thereby reduced linearly by the
partitioning number at no additional memory space cost.

3.2.2. Memory Accessor Jamming. In many applications,
memory access is sequential and predictive. When multiple
accesses to a memory can be computed in parallel, the values
can be accessed together in one clump rather than as many
separate smaller accesses. We refer to this asmemory accessor
jamming.Thismethod creates amemory accessor group such
that accessor patterns are of the form,

𝑖 ⋅ 𝑜𝑝, 𝑖 ⋅ 𝑜𝑝 + 1, . . . , 𝑖 ⋅ 𝑜𝑝 + 𝑜𝑐, (8)

where 𝑜𝑝 is a periodic offset, 𝑖 is a loop indexer, and 𝑜𝑐 is a
constant offset that is smaller than 𝑜𝑝. The multiple accessors
in a group are jammed into a single accessor with a wide word
length. This word length is the product of the original word
length and the jamming factor value. Consequently, memory
access traffic is decreased by the value of the jamming factor.
Jammingmodifies thememory layout by increasing the word
length and reducing the address range by the jamming factor,
but it does not need any additional memory space. Jamming
is well suited for use with loop unrolling because any in-order
memory access pattern inside the loop becomes a jammable
access pattern after unrolling.

All of the above techniques have been successfully
employed by LabVIEW FPGA Compiler without any manual
intervention from the user. For instance, loop unrolling is
primarily employed to process algorithmic metrics described
in Section 2.2 for the technique of 𝑧-fold parallelization
of node metric processing as described in Section 4.2.
Here, memory access analysis captures relaxed memory
dependencies and achieves the reported throughput without

any application-specific compiler directives. Moreover, due
to the graph-based iterative decoding nature of the appli-
cation considered for this work, read-write patterns that
lend themselves to memory accessor jamming have been
identified by the tool and successfully exploited.

The authors would like to emphasize that the algorithmic
compiler (LabVIEW FPGA Compiler) translates the applica-
tion’s high-level description to VHDL. The subsequent com-
pilation of VHDL is performed by theXilinxVivado compiler,
the details of which are beyond the scope of this work.

4. Techniques for High-Throughput

To understand the high-throughput requirements for LDPC
decoding, let us first define the decoding throughput 𝑇 of an
iterative LDPC decoder.

Definition 2. Let 𝐹𝑐 be the clock frequency, 𝑛 be the code
length, 𝑁𝑖 be the number of decoding iterations, and 𝑁𝑐 be
the number of clock cycles per decoding iteration; then the
throughput of the decoder is given by𝑇 = (𝐹𝑐 ⋅𝑛)/(𝑁𝑖 ⋅𝑁𝑐) b/s.

Even though 𝑛 and 𝑁𝑖 are functions of the code and
the decoding algorithm used, 𝐹𝑐 and 𝑁𝑐 are determined by
the hardware architecture. Architectural optimization such
as the ability to operate the decoder at higher clock rates
with minimal latency between decoding iterations can help
achieve higher throughput. We have employed the following
techniques to increase the throughput given by Definition 2.

4.1. Linear Complexity Node Processing. As noted in Sec-
tion 2.2, separate processing units for CNs and VNs are not
required unlike that for the flooding schedule. The hardware
elements that process (4)–(6) are collectively referred to as the
Node Processing Unit (NPU).

Careful observation reveals that, among (4)–(6), process-
ing the CTV messages 𝑟𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, is the
most computationally intensive due to the calculation of the
sign and the minimum value of the set of magnitudes of VTC
messages 𝑞𝑖𝑘 received fromVN 𝑗 to CN 𝑖, where 𝑘 ∈ N(𝑖)\{𝑗}.
As the degree of CN 𝑖 is 𝑑𝑐𝑖 , the complexity of processing
the minimum value (in terms of the comparisons required)
is O(𝑑2𝑐𝑖). In a straightforward algorithmic description, this
translates to two nested for-loops, an outer loop that executes𝑑𝑐𝑖 times and an inner loop that executes (𝑑𝑐𝑖 − 1) times.

To achieve linear complexity O(𝑑𝑐𝑖) for the CN message
update process in our implementation, the minimum value is
computed in two phases or passes. In the first (global) pass,
the two smallest values for the CN are computed. These are
the first and the second minimum (the smallest value in the
set excluding the minimum value of the set). Subsequently,
for every incident edge on the said CN, the smallest VN
message that does not correspond to the considered edge
is selected. In other words, if the said incident edge (for
which the CN to VN message is to be sent) has the smallest
value (firstmin), then the second smallest value (secondmin)
obtained in the global pass is sent over this edge, else, the
second smallest value (secondmin) is sent.This pass is called
the second (local) pass. A similar approach is found in [11, 35].
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Table 2: Arbitrary submatrix I𝑠 inH, 0 ≤ 𝐽 ≤ 𝑛𝑏 − 1, illustrating the opportunity to parallelize 𝑧 NPUs.
VN𝑧𝐽 ⋅ ⋅ ⋅ VN𝑧𝐽+ℓ−1 VN𝑧𝐽+𝑙 VN𝑧𝐽+ℓ+1 ⋅ ⋅ ⋅ VN𝑧(𝐽+1)−1

NPU0 0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0
NPU1 0 ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 0... ... ...
NPU𝑧−2 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0
NPU𝑧−1 0 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ 0

In a straightforward algorithmic description, this translates to
two separate for-loops in tandem: first loop executes (𝑑𝑐𝑖 − 1)
times computing the first and the second minimum for the
set of VTC message values 𝑞𝑖𝑘 and the second loop executes(𝑑𝑐𝑖 − 1) times assigning the overall minimum to each branch
connecting CN 𝑖 and VN 𝑘, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛,
and 𝑘 ∈ N(𝑖) \ {𝑗}. Consequently, this reduces the complexity
from O(𝑑2𝑐𝑖) to O(𝑑𝑐𝑖). Based on the functionality of the two
passes, the NPU is divided into the Global NPU (GNPU) and
the Local NPU (LNPU). The algorithm to accomplish this is
as follows.

(1) Global Pass.The Global NPU (GNPU) processes this pass.
(i) Initialization: let ℓ denote the discrete time-steps such

that ℓ ∈ {0, 1, 2, . . . , |N(𝑖) \ {𝑗}|} and let 𝑓(ℓ) and 𝑠(ℓ)
denote the value of the first and the secondminimum
at time ℓ, respectively. The initial value at time ℓ = 0
is

𝑓(0) = 𝑠(0) = ∞. (9)

(ii) Comparison: for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, and𝑘(ℓ) ∈ N(𝑖) \ {𝑗}, note that the ordering of the set thatℓ belongs to is induced on the set that 𝑘(ℓ) belongs to.
𝑓(ℓ) = {{{

󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨 ≤ 𝑓(ℓ−1),
𝑓(ℓ−1), otherwise, (10)

𝑠(ℓ) =
{{{{{{{{{

󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨 , 𝑓(ℓ−1) < 󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨 < 𝑠(ℓ−1),
𝑓(ℓ−1), 󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨 ≤ 𝑓(ℓ−1),
𝑠(ℓ−1), otherwise.

(11)

(2) Local Pass. The Local NPU (LNPU) at time ℓ ∈ {1, 2,. . . , |N(𝑖) \ {𝑗}|} determines the actual minimum value for
each VN 𝑘(ℓ), as per the equivalence relation:

min
𝑘(ℓ)∈N(𝑖)\{𝑗}

{󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨} ≡ {{{
𝑓(ℓmax), 󵄨󵄨󵄨󵄨𝑞𝑖𝑘(ℓ)󵄨󵄨󵄨󵄨 ̸= 𝑓(ℓmax),
𝑠(ℓmax), otherwise, (12)

where ℓmax = |N(𝑖) \ {𝑗}|. Thus, the computation of the
minimum value is accomplished in linear complexity O(𝑑𝑐𝑖).
It was rightly noted by one of the reviewers that initializing
the variable𝑓(0) = ∞ is unnecessary, resulting in a redundant
iteration in (10). However, we would like to note that the
implementation was done based on (10) as given in the
algorithm.

4.2. 𝑧-Fold Parallelization of NPUs. The CN message com-
putation given by (5) is repeated 𝑚 times in a decoding
iteration, that is, once for each CN. A straightforward serial
implementation of this kind is slow and undesirable. Instead,
we apply a strategy based on the following understanding.

Fact 1. An arbitrary submatrix I𝑠 in the PCMH corresponds
to 𝑧 CNs connected to 𝑧 VNs on the bipartite graph, with
strictly 1 edge between each CN and VN.

This implies that no CN in this set of 𝑧 CNs given by
I𝑠 shares a VN with another CN in the same set. Table 2
illustrates such an arbitrary submatrix in H. This presents us
with an opportunity to operate 𝑧 NPUs in parallel (hereafter
referred to as an NPU array), resulting in a 𝑧-fold increase in
throughput.

4.3. Layered Decoding. In the flooding schedule discussed
in Section 2.2, all nodes on one side of the bipartite graph
can be processed in parallel. Although such a fully-parallel
implementation may seem as an attractive option for achiev-
ing high-throughput performance, it has its own drawbacks.
Firstly, it becomes quickly intractable in hardware due to
the complex interconnect pattern between the nodes of the
bipartite graph. Secondly, such an implementation usually
restricts itself to a specific code structure. Although the
efficient scaled-MSA algorithm discussed in Section 2.2 is
inherently serial in nature (as the messages are propagated
across the bipartite graph more than once every decoding
iteration), one can process multiple nodes at the same time
if the following condition is satisfied.

Fact 2. From the perspective of CN processing, two or
more CNs can be processed at the same time (i.e., they are
independent of each other) if they do not have one or more
VNs (code bits) in common.

The row-layering technique used in this work essentially
relies on the condition in Fact 2 being satisfied. In terms of
the PCM H, an arbitrary subset of rows can be processed at
the same time, provided that no two or more rows have a 1 in
the same column ofH.This subset of rows is termed as a row-
layer (hereafter referred to as a layer). In other words, given
a set L = {𝐿1, 𝐿2, . . . , 𝐿𝐼} of 𝐼 layers in H, ∀𝑢 ∈ {1, 2, . . . , 𝐼}
and ∀𝑖, 𝑖󸀠 ∈ 𝐿𝑢, then,N(𝑖) ∩N(𝑖󸀠) = 𝜙.

Observing that ∑𝐼𝑢=1 |𝐿𝑢| = 𝑚, in general, 𝐿𝑢 can be
any subset of rows as long as the rows satisfy the condition
specified by Fact 2, implying that |𝐿𝑢| ̸= |𝐿𝑢󸀠 |, ∀𝑢, 𝑢󸀠 ∈{1, 2, . . . , 𝐼} is possible. Owing to the structure of QC-LDPC
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Table 3: Illustration of message passing in row-layered decoding in a section of the PCMH𝑏.

Layers ↓ Blocks→⋅ ⋅ ⋅ 𝐵2 𝐵3 𝐵4 ⋅ ⋅ ⋅
𝐿1 ⋅ ⋅ ⋅ ↓ ↓ ↓ ⋅ ⋅ ⋅𝐿2 ⋅ ⋅ ⋅ ↓ 28 ↓ ⋅ ⋅ ⋅𝐿3 ⋅ ⋅ ⋅ ↓ ↓ ↓ ⋅ ⋅ ⋅𝐿4 ⋅ ⋅ ⋅ 53 ↓ ↓ ⋅ ⋅ ⋅𝐿5 ⋅ ⋅ ⋅ ↓ ↓ 20 ⋅ ⋅ ⋅𝐿6 ⋅ ⋅ ⋅ ↓ ↓ ↓ ⋅ ⋅ ⋅𝐿7 ⋅ ⋅ ⋅ 79 79 ↓ ⋅ ⋅ ⋅𝐿8 ⋅ ⋅ ⋅ ↓ ↓ ↓ ⋅ ⋅ ⋅𝐿9 ⋅ ⋅ ⋅ ↓ ↓ ↓ ⋅ ⋅ ⋅𝐿10 ⋅ ⋅ ⋅ 45 ↓ 70 ⋅ ⋅ ⋅𝐿11 ⋅ ⋅ ⋅ 56 ↓ 57 ⋅ ⋅ ⋅𝐿12 ⋅ ⋅ ⋅ ↓ 61 ↓ ⋅ ⋅ ⋅

To 𝐿4 To 𝐿2 To 𝐿5

codes, the choice of |𝐿𝑢| (and hence 𝐼) becomes much
obvious. Submatrices I𝑠 in H𝑏 (with row and column weight
of 1) guarantee that, for the 𝑧CNs (rows corresponding to I𝑠),
condition in Fact 2 is always satisfied. Hence, in our work, we
choose |𝐿𝑢| = |𝐿𝑢󸀠 | = 𝑧.

From the VN or column perspective, |𝐿𝑢| = 𝑧, ∀𝑢 ={1, 2, . . . , 𝐼} implies that the columns of the PCM H are also
divided into subsets of size 𝑧 (called block columns from now
on) given by the set B = {𝐵1, 𝐵2, . . . , 𝐵𝐽}, 𝐽 = 𝑛/𝑧 = 𝑛𝑏.
The VNs belonging to a block column may participate in CN
equations across several layers. We call the intersection of
a layer and a block column as a block. Two or more layers𝐿𝑢, 𝐿𝑢󸀠 are said to be dependent with respect to the block
column 𝐵𝑤 if H𝑏(𝑢, 𝑤) ̸= −1 and H𝑏(𝑢󸀠, 𝑤) ̸= −1. This is
observed in Table 3, where we can see that layers 𝐿4, 𝐿7, 𝐿10,
and 𝐿11 are dependent with respect to block column 𝐵2.
Assuming that the message update begins with layer 𝐿1 and
proceeds downward, the arrows represent the directional flow
of message updates from one layer to another. For the block
column 𝐵2, for instance, layer 𝐿7 cannot begin updating the
VNs associated with block column 𝐵2 before layer 𝐿4 has
finished updating messages for the same set of VNs and so
on.

The idea of parallelizing zNPUs seen in Section 4.2 can be
extended to layers, where 𝑧-sized arrays of NPUs can process
message updates for multiple layers, provided they are inde-
pendent with respect to the block column being processed.
In Section 4.4, we discuss pipelining methods that allow us
to overcome layer-to-layer dependency and maximize the
throughput. Before we discuss the pipelined processing of
layers implemented in our decoder, in this section, we present
a novel compact (thus efficient)matrix representation leading
to a significant improvement in throughput.We call 0 subma-
trices in H (corresponding to a −1 in Hb) as invalid blocks,
since there are no edges between the corresponding CNs and
VNs. The other submatrices I𝑠 are called valid blocks. In a
conventional approach to scheduling, for example, in [12],
message computation is done over all the valid and invalid
blocks. To avoid processing invalid blocks, we propose an

alternate representation ofH𝑏 in the form of twomatrices:𝛽𝐼,
the block index matrix, and 𝛽𝑆, the block shift matrix. 𝛽𝐼 and
𝛽𝑆 hold the index locations and the shift values (and hence
the connections between the CNs and VNs) corresponding
to only the valid blocks in H𝑏, respectively. Construction of
𝛽𝐼 is based on the following definition.

Definition 3. Construction of 𝛽𝐼 is as follows.

for 𝑢 = {1, 2, . . . , 𝐼}
set 𝑤 = 0
for 𝑗𝑏 = {1, 2, . . . , 𝑛b}

ifH𝑏(𝑢, 𝑗𝑏) ̸= −1
𝑤 = 𝑤+1;𝛽𝐼(𝑢, 𝑤) = 𝑗𝑏;𝛽𝑆(𝑢, 𝑤) = H𝑏(𝑢, 𝑗𝑏).

Let V𝑢 denote the set of valid blocks for layer 𝐿𝑢, ∀𝑢 =1, 2, . . . , 𝐼.
V𝑢 = {𝑗𝑏 : H𝑏 (𝑢, 𝑗𝑏) ̸= −1} . (13)

Let 𝐽 = max𝑢|V𝑢|; then, ∀𝑤 = {1, 2, . . . , 𝐽}, we define the
block index matrix as

𝛽𝐼 (𝑢, 𝑤) = {{{
𝑗𝑏, H𝑏 (𝑢, 𝑗𝑏) ̸= −1,
−1, otherwise. (14)

Similarly, we define 𝛽𝑆 as

𝛽𝑆 (𝑢, 𝑤) = {{{
H𝑏 (𝑢, 𝑗𝑏) , H𝑏 (𝑢, 𝑗𝑏) ̸= −1,
−1, otherwise. (15)

The block index (shift) matrix 𝛽𝐼 (𝛽𝑆) is shown in Table 4
(Table 5) for the case of the IEEE 802.11n rate-1/2 LDPC code.
To observe the benefit of this alternate representation, let us
define the following ratio.

Definition 4. Let 𝜆 denote the compaction ratio, which is the
ratio of the number of columns of 𝛽𝐼 (which is the same for
𝛽𝑆) to the number of columns ofH𝑏. Hence, 𝜆 = 𝐽/𝑛𝑏.
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Table 4: Block index matrix 𝛽I showing the valid blocks (bold) to be processed.

Layers ↓ Blocks→𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8𝐿1 0 4 6 8 10 12 13 −1𝐿2 0 2 4 8 9 13 14 −1𝐿3 0 4 5 8 9 14 15 −1𝐿4 0 1 4 7 8 15 16 −1𝐿5 0 3 4 7 8 16 17 −1𝐿6 0 4 6 8 11 17 18 −1𝐿7 0 1 2 6 8 12 18 19𝐿8 0 4 5 8 10 19 20 −1𝐿9 0 4 5 8 11 20 21 −1𝐿10 1 3 4 8 9 21 22 −1𝐿11 0 1 3 4 10 22 23 −1𝐿12 0 2 4 7 8 11 12 23

Table 5: Block shift matrix 𝛽S showing the right-shift values for the valid blocks to be processed.

Layers ↓ Blocks→𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8𝐿1 57 50 11 50 79 1 0 −1𝐿2 3 28 0 55 7 0 0 −1𝐿3 30 24 37 56 14 0 0 −1𝐿4 62 53 53 3 35 0 0 −1𝐿5 40 20 66 22 28 0 0 −1𝐿6 0 8 42 50 8 0 0 −1𝐿7 69 79 79 56 52 0 0 0𝐿8 65 38 57 72 27 0 0 −1𝐿9 64 14 52 30 32 0 0 −1𝐿10 45 70 0 77 9 0 0 −1𝐿11 2 56 57 35 12 0 0 −1𝐿12 24 61 60 27 51 16 1 0

The compaction ratio 𝜆 is a measure of the compaction
achieved by the alternate representation of 𝐻𝑏. Compared
to the conventional approach to scheduling node processing
based onH𝑏matrix, scheduling as per the 𝛽𝐼 and 𝛽𝑆matrices
improves throughput by 1/𝜆 times. In our case study, 𝜆 =8/24 = 1/3, thus providing a throughput gain of 1/𝜆 = 3.
Remark 5. In the QC-LDPC code in our case study, |V𝑢| =7 for all layers except layers 𝐿7 and 𝐿12 where it is 8. With
the aim of minimizing hardware complexity by maintaining
a static memory-address generation pattern (does not change
from layer-to-layer), our implementation assumes regularity
in the code. The decoder processes 8 blocks for each layer of
the 𝛽𝐼 matrix resulting in some throughput penalty.

4.4. Area Efficient Pipelining Architecture. In Section 4.3, we
saw how dependent layers for a block column cannot be
processed in parallel. For instance, in the base matrix H𝑏 in
Table 1, VNs associated with the block column 𝐵1 participate
inCNequations associatedwith all the layers except layer𝐿10,
suggesting that there is no scope of parallelization of layer
processing at all.This situation is better observed in𝛽I shown
in Table 4.

Fact 3. If a block column of 𝛽I has a particular index
value appearing in more than one layer, then the layers
corresponding to that value are dependent.

Proof. It follows directly by applying Fact 2 to Definition 3.

In other words, ∀𝑢, 𝑢󸀠 ∈ {1, 2, . . . , 𝐼}, ∀𝑤 ∈ {1, 2, . . . , 𝐽},
if 𝛽I(𝑢, 𝑤) = 𝛽I(𝑢󸀠, 𝑤), then, the layers 𝐿𝑢 and 𝐿𝑢󸀠 are
dependent. It is obvious that, to process all layers in parallel
(𝐿1 to 𝐿12 in Table 1), the condition

𝛽I (𝑢, 𝑤) ̸= 𝛽I (𝑢󸀠, 𝑤) (16)

must hold∀𝑢, 𝑢󸀠 ∈ {1, 2, . . . , 𝐼}. For the structure of𝛽I shown
in Table 4 (by definition of the code), it is not possible to
parallelize all the layers. However, a degree of parallelization
can be achieved by making the layers independent with
respect to a block column.

To accomplish this, we rearrange the 𝛽I matrix elements
from their original orderwith the following idea. If𝛽I(𝑢, 𝑤) =
𝛽I(𝑢󸀠, 𝑤), 𝑢 < 𝑢󸀠, then stagger the execution of 𝛽I(𝑢󸀠, 𝑤)
with respect to 𝛽I(𝑢, 𝑤) by moving 𝛽I(𝑢󸀠, 𝑤) to 𝛽󸀠I(𝑢󸀠, 𝑤󸀠),
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Table 6: Rearranged block index matrix 𝛽󸀠𝐼 used for our work, showing the valid blocks (bold) to be processed.

Layers ↓ Blocks→𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 𝑏8𝐿1 0 4 8 13 6 10 12 −1𝐿2 9 0 4 8 13 14 2 −1𝐿3 15 9 0 4 8 5 14 −1𝐿4 7 15 16 0 4 8 1 −1𝐿5 17 7 3 16 0 4 8 −1𝐿6 6 17 18 11 −1 0 4 8𝐿7 19 6 0 8 1 2 18 12𝐿8 4 19 5 0 8 20 10 −1𝐿9 21 4 11 5 0 8 20 −1𝐿10 1 21 4 3 22 9 8 −1𝐿11 0 1 23 4 3 22 10 −1𝐿12 8 0 2 23 4 12 7 11

𝑤 < 𝑤󸀠. Table 6 shows one such rearrangement of 𝛽I
(Table 4) for the QC-LDPC code for our case study. However,
some dependencies still remain (shown in bold and italic in
Table 6). Note that if we partition 𝛽󸀠I into two halves, 𝐿1 to 𝐿6
and 𝐿7 to 𝐿12, each half satisfies Fact 2 separately. In other
words, ∀𝑢𝑓, 𝑢󸀠𝑓 ∈ L𝑓 = {1, 2, . . . , 6}, ∀𝑤 ∈ {1, 2, . . . , 8},
𝛽I(𝑢𝑓, 𝑤) ̸= 𝛽I(𝑢󸀠𝑓, 𝑤), and ∀𝑢𝑠, 𝑢󸀠𝑠 ∈ L𝑠 = {7, 8, . . . , 12},
∀𝑤 ∈ {1, 2, . . . , 8}, 𝛽I(𝑢𝑠, 𝑤) ̸= 𝛽I(𝑢󸀠𝑠, 𝑤).

We call the set of layers L satisfying Fact 2 a superlayer.
Figure 6(a) shows the block-level view of theNPU timing dia-
gram without the pipelining of layers. As seen in Section 4.1,
the GNPU and LNPU operate in tandem and in that order,
implying that the LNPU has to wait for the GNPU updates
to finish. The layer-level picture is depicted in Figure 7(a).
This idling of the GNPU and LNPU can be avoided by intro-
ducing pipelined processing of blocks given by the following
lemma.

Lemma 6. Within a superlayer, while the LNPU processes
messages for the blocks 𝛽󸀠(𝑢, 𝑤), the GNPU can process
messages for the blocks 𝛽󸀠(𝑢 + 1, 𝑤), 𝑢 = {1, 2, . . . , |L| − 1},
and 𝑤 = {1, 2, . . . , 𝐽}.
Proof. It follows directly from the layer independence condi-
tion in Fact 2.

Figure 6(c) illustrates the block-level view of this 2-layer
pipelining scheme. It is important to note that the splitting
of the NPU process into two parts, namely, the GNPU and
the LNPU (that work in tandem), is a necessary condition for
Lemma 6 to hold. However, at the boundary of the superlayer,
Lemma 6 does not hold and pipelining has to be restarted
for the next layer as seen in the layer-level view shown in
Figure 7(c). This is the classical pipelining overhead.

Definition 7. Without loss of generality, the pipelining effi-
ciency 𝜂𝑝 is the number of layers processed per unit time per
NPU array.

For the case of pipelining, two layers are shown in
Figure 7(c):

𝜂(2)𝑝 = |L||L| + 1 . (17)

Thus, we impose the following conditions on |L|:
(1) Since two layers are processed in the pipeline at any

given time,

|L| ∈ F = {𝑥 : 𝑥 is an even factor of 𝐼} . (18)

(2) Given a QC-LDPC code, |L| is a constant. This is to
facilitate a symmetric pipelining architecture which is
a scalable solution.

(3) Choice of |L| should maximize pipelining efficiency𝜂𝑝,
𝑙∗ = arg max

|L|∈F

𝜂𝑝. (19)

In our work, 𝐼 = 𝑚𝑏 = 12, F = {2, 4, 6}, and 𝑙∗ =
argmax|L|∈F𝜂𝑝 = 6. The rearranged block index matrix 𝛽󸀠I
is shown in Table 6 and the layer-level view of the pipeline
timing diagram for the same is shown in Figure 7(d).

Remark 8.

Four-Layer Pipelining. For the case of the IEEE 802.11n (2012)
QC-LDPC code chosen for this work, the pipelining of four
layers might suggest an increase in the throughput; however,
this is not the case as depicted in Figure 8. Due to the need
for two NPU arrays, the pipelining efficiency of this scheme
is

𝜂(4)𝑝 = 𝜂(2)𝑝2 . (20)
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Here, 𝑛𝛽 represents the number of columns of 𝛽󸀠I.
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Hence, we limit ourselves to pipelined processing of two
layers. To achieve further gains in throughput, without loss
of generality, parallel processing of multiple blocks can
be performed. For details on this approach of improving

throughput, the reader is referred to Appendix B. From the
perspective of memory access relaxation (Section 3.2) in
LabVIEW FPGA Compiler, the proposed 2-layer pipelining is
a suitable methodology for the FPGA internal memory with
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minimum computation given in (5). Note that, other computations in (3)–(6) are not shown for simplicity here. For both the pipelined and
the nonpipelined versions, processing schedule for the inner block processing loop is as per Figure 6 and that for the outer layer processing
loop is as per Figure 7.

a single pair of read/write port. This is because two layers
running in parallel are timely assigned to a memory read
and write port. Since this approach does not have any layer
execution postponed due to a resource limitation, we can
achieve the theoretical maximum throughput performance.
Even if pipelining more than two layers was efficient, for
such a method multiple layers need to be processed in
parallel. However, the number of layers in a parallel run is
limited by the number of ports in the shared memory. Any
layers that need processing beyond the shared memory port
number would be postponed, and this would prevent us from

achieving the theoretical maximum throughput. Deploying
multiple decoding cores (as described in Section 5.2) is
another way of improving throughput. The downside of this
approach is that thememory requirement grows linearly with
the number of parallel layers.

High-Level FPGA-Based Decoder Architecture. The high-level
decoder architecture is shown in Figure 9. The read-only
memory (ROM) holds the LDPC code parameters specified
by 𝛽󸀠𝐼 and 𝛽

󸀠
𝑠 along with other code parameters such as

the block length and the maximum number of decoding
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iterations. Initially, the a posteriori probability (APP) mem-
ory is set to the channel LLR values corresponding to all
the VNs as per (3). The barrel shifter operates on blocks of
VNs APP values of size 𝑧 × 𝑓, where 𝑓 is the fixed-point
word length used in the implementation for APP values. It
circularly rotates the values in the APP block to the right
by using the shift values from the 𝛽󸀠𝑠 matrix in the ROM,
effectively implementing the connections between the CNs
and VNs specified by the Tanner graph of the code.The cycli-
cally shifted APP memory values and the corresponding CN
message values for the block in question are fed to the array
of 𝑧 NPUs. Here, the GNPUs compute VN messages as per
(4) and the LNPUs compute CN messages as per (5). These
messages are then stored back at their respective locations in
the random-access memory (RAM) for processing the next
block. At the time of writing this paper, we have successfully
implemented two versions of the decoder.

(1) 1x. As the name suggests, only one layer is processed
at a time by the NPU array; in other words, there is no
pipelining of layers. The block-level and the layer-level view
of the pipelining are illustrated in Figures 6(b) and 7(b),
respectively.

(2) 2x. This version is based on the 2-layer pipeline pro-
cessing. Pipelining is done in software at the algorithmic
description level. The block-level and layer-level views of the
pipelined processing are shown in Figures 6(d) and 7(d),
respectively. Due to the pipelining overhead, 𝜂(2)𝑝 = 6/7 =0.86. Comparing this to the 1x version with 𝜂 = 6/12 = 0.5,
the 2x version is 𝜂(2)𝑝 /𝜂 = 1.7 times faster than the 1x version.

5. Case Studies

The techniques for improving throughput in an efficient
manner, described in Section 4, are realized on hardware
using an HLS compiler. The realization is divided into three
case studies, namely, an efficiently pipelined IEEE 802.11n
standard [27] compliant QC-LDPC decoder, an extension of
this decoder that provides a throughput of 2.48Gb/s, and
an HARQ experimentation system based on the IEEE 802.16
standard [36] QC-LDPC code. Each case study is detailed in
the following Sections.

5.1. IEEE 802.11n Compliant LDPC Decoder. To evaluate the
proposed strategies for achieving high-throughput, we have
implemented the scaled-MSA based decoder for the QC-
LDPC code in the IEEE 802.11n (2012). For this code, 𝑚𝑏 ×𝑛𝑏 = 12 × 24, 𝑧 = 27, 54, and 81 resulting in code lengths
of 𝑛 = 24 × 𝑧 = 648, 1296, and 1944 bits, respectively. Our
implementation supports the submatrix size of 𝑧 = 81 and is
thus capable of supporting all the block lengths for the rate𝑅 = 1/2 code.

We represent the input LLRs from the channel and the
CTV and VTC messages with 6 signed bits and 4 fractional
bits. Figure 10 shows the bit-error-rate (BER) performance
for the floating-point (FP) and the fixed-point (FxP) data
representation with 8 decoding iterations. As expected, the
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Figure 10: BER performance comparison between uncoded BPSK
(rightmost), rate = 1/2 LDPCwith 4 iterations using fixed-point data
representation (second from right), rate = 1/2 LDPCwith 8 iterations
using fixed-point data representation (third from right), and rate =
1/2 LDPC with 8 iterations using floating-point data representation
(leftmost).

Table 7: LDPC decoder IP FPGA resource utilization and through-
put after mapping onto the Xilinx Kintex-7 FPGA.

1x 2x
Device Kintex-7k410t Kintex-7k410t
Throughput (Mb/s) 337 608
FF (%) 9.1 5.3
BRAM (%) 4.7 6.4
DSP48 (%) 5.2 5.2
LUT (%) 8.7 8.2

fixed-point implementation suffers by about 0.5 dB compared
to the floating-point version at a BER of 10−4, and the gap
widens for lower BER values. The decoder algorithm was
described using the LabVIEW CSDS software. LabVIEW
FPGACompilerwas then used to generate the very high speed
integrated circuit (VHSIC) hardware description language
(VHDL) code from the graphical dataflow description. The
VHDL code was synthesized, placed, and routed using the
XilinxVivado compiler on theXilinx Kintex-7 FPGA available
on the NI PXIe-7975R FPGA board. The decoder achieves an
overall throughput of 608Mb/s at an operating frequency of
200MHz and a latency of 5.7 𝜇s at 4 decoding iterations with
BER performance shown in Figure 10 (blue curve). Table 7
shows that the resource usage for the 2x version (almost twice
as fast due to pipelining) is close to that of the 1x version.The
LabVIEWFPGACompiler chooses to usemore flip-flops (FF)
for data storage in the 1x version, while it uses more block
RAM (BRAM) in the 2x version.
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Table 8: Performance and resource utilization comparison, after mapping onto the FPGA, for versions with varying number of cores of the
QC-LDPC decoder implemented on the NI USRP-2953R containing the Xilinx Kintex-7 (410t) FPGA.

Cores 1 2 4 5 6
Throughput (Mb/s) 420 830 1650 2060 2476
Clock rate (MHz) 200 200 200 200 200
Time to VHDL (min) 2.08 2.08 2.08 2.02 2.04
Total compile (min) ≈36 ≈60 ≈104 ≈132 ≈145
Total slice (%) 28 44 77 85 97
LUT (%) 18 28 51 62 73
FF (%) 10 16 28 33 39
DSP (%) 5 11 21 26 32
BRAM (%) 11 18 31 38 44

Core 1
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Core 3

Core 4

Core 5

Core 6

(round robin) bit stream
Parallel/serial

(round robin)
Serial/parallel Decoded

bit stream
Encoded Packetize

Figure 11: High-level system schematic illustrating the fixed latency, parallel processing of the decoder cores.

Remark 9. The clock rate selection in the HLS compiler
generally determines pipeline stage depth of each primitive
operation. For example, a higher target clock rate would
result in a deeper pipeline stage. This requires more FPGA
resources and a relatively longer compile time. Various
target clock rates were tested, and the one offering the
highest throughput in time with the most optimal resource
utilization was chosen for the subsequent VHDL compile
(e.g., 200MHz for the compiles shown in Table 8). It is
important to note that theHLS compiler provides an accurate
throughput and resource estimation after it generates VHDL.
This throughput and resource estimation time is short as
recorded in the results tables (e.g., Table 8) as Time to
VHDL. The user can easily find the optimal clock rate
in terms of maximal throughput and optimized resource
utilization.

5.2. Case Study: A 2.48Gb/s QC-LDPC Decoder on the Xilinx
Kintex-7 FPGA. On account of the scalability and reconfig-
urability of the decoder architecture in [37], it is possible
to achieve high-throughput by employing multiple decoder
cores in parallel as detailed in [38]. As shown in Figure 11,
the encoded bit stream is packetized into frames of equal
size and distributed for decoding in a round-robin manner
to the cores operating in parallel. The main contribution of
this approach is the elimination of a complicated buffering

and handshake mechanism which increases the development
time and adds hardware overhead. This is mainly due to

(1) fixed latency of decoding the frames across all cores,
(2) time-staggered operation of cores,
(3) tightly controlled execution of the round-robin serial-

parallel-serial conversion process.

To validate the multicore decoder architecture, in this case
study, we chose the IEEE 802.11n (2012) QC-LDPC code for
which𝑚𝑏 ×𝑛𝑏 = 12×24, 𝑧 = 27, 54, and 81 resulting in code
lengths of 𝑛 = 24 × 𝑧 = 648, 1296, and 1944 bits, respectively,
and a code rate 𝑅 = 1/2. The decoder core (described in
Section 5.1) was compiled for a clock rate of 200MHz and
achieves a throughput of 420Mb/s (first column in Table 8)
with pipelining as described in Section 4.4.

The multicore decoder was developed in stages. The first
stage is the aforementioned pipelined decoder core to which
additional cores were added incrementally as per the scheme
depicted in Figure 11. We have listed the resource utilization
and the throughput performance for each stage in Table 8 for
a qualitative comparison.

5.3. Rapid Prototyping of Hybrid-ARQ System. Hybrid-ARQ
(HARQ) is a transmission technique that combines Forward
Error Correction (FEC) with ARQ. In HARQ, a suitable FEC
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Figure 12: HARQ system schematic for one node. Overall, the system simulation uses two nodes (BS and UE).

code protects the data and error-detection code bits. In its
simplest form, the FEC encoded packet—referred to as a
Redundancy Version (RV) in this context—is transmitted as
per the ARQ mechanism protocol. If the receiver is able to
decode the data, it sends an acknowledgement (ACK) back
to the transmitter. However, if it fails to recover the data,
the receiver sends a negative acknowledgement (NAK) or
retransmission request to the transmitter. In this scenario,
the FEC simply increases the probability of successful trans-
mission, thus reducing the average number of transmissions
required in an ARQ scheme. HARQ has twomodes of opera-
tion: Type-I and Type-II. In Type-I, a current retransmission
is chase-combined [39]with a previously buffered (and failed)
retransmission and then decoded. In Type-II HARQ, in the
event of a decoding failure, additional code bits are transmit-
ted in every subsequent retransmission. Since, in this mode,
all code bits are not transmitted every retransmission, the
efficiency of this scheme is higher. However, the complexity
is also higher compared to Type-I.

To study the performance of the two HARQ schemes
(Type-I and Type-II), we have implemented a baseband
bidirectional link with two transceiver nodes. This can be
compared to a downlink connection between a base station
(BS) and user equipment (UE) with a data channel and a
feedback channel. Each node is capable of running theHARQ
protocol in its two modes. In our work, the BS (initiator of
the transmission) operates in the master mode and the UE
operates in the slave mode. A high-level description of the
overall system with several subsystems is shown in Figure 12
and the media access control- (MAC-) level operation is
described in Appendix A. At the initiator node, each data
packet of length 𝑘 = 1152 is encoded with an LDPC
mother code of rate 𝑅 = 1/2 and the Cyclic Redundancy
Check (CRC) value for it is simultaneously computed. The
RV generator selects bits from the encoded data to form RVs
as per the code rate adaptation algorithm [40]. The header
is encoded with a rate 1/9 repetition code. Finally, the RV is
appended to the header and sent over the channel.

At the receiver node, header bits are decoded and the RV
combiner uses the information in the header to combine the
received signal values for Type-Imode or Type-IImode. CRC
values from the header and the decoded data are compared
to generate a feedback for the initiator node. The feedback
(1-bit ACK/NAK) is coded with a rate 1/40 repetition code
before sending over the channel. We assume an error-free
feedback for this experiment, which is guaranteed by the rate1/40 repetition code over the SNR range in consideration.

5.3.1. LabVIEW FPGA Compiler for Ease of Experimentation.
The HARQ system comprises subsystems that can be
classified into two main categories based on the nature
of the processing they perform. The bit-manipulation
subsystems—akin to digital signal processing (DSP)—follow
a pattern of processing that does not change significantly
on a per transmission basis. In other words, they are more
or less stateless. The channel encoders and decoders are
examples of this category. The protocol-sensitive subsystems
on the other hand have to perform functions that are highly
sensitive to the state of the system in a given transmission.
For instance, the HARQ controller, the RV generator, and the
RV combiner maintain a state [40]. With a few examples, this
section highlights the ease ofmodification in a short time that
LabVIEW FPGA Compiler provides across subsystems which
is otherwise not possible for a purely HDL-based description.

Protocol-Sensitive Subsystem Modification. The HARQ con-
troller is essentially a finite-state machine (FSM). For a
reliable and an efficient implementation of an FSM on an
FPGA, the designer needs to take care of issues such as
clock and input signal timing, state encoding scheme, and
the choice of the coding style [41]. Modification to the MAC-
level protocol directly affects the FSM in our work. For
details on the MAC-level operation of the HARQ protocol,
the reader is referred to Appendix A. For instance, during
experimentation, the frame structure is likely to undergo
modifications. Any modification to the frame structure
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Figure 15: Schematic depiction of the description of a 9x repetition encoder in LabVIEW FPGA (subsequently compiled to VHDL). Note
that the logic required is specific to the codeword size 𝑛.

affects nearly all subsystems. One such example is illustrated
in Figures 13 and 14 where the 𝑖th field (of length 𝑙𝑖 bits) of
the header is read to process output 𝑑𝑖 which is further used
to process the data. The description in Figure 13 is agnostic
to the modification at the HDL level and the designer can
implement a change withoutHDL domain expertise, whereas
in Figure 14 one can see that the description is specific to
the subsystem in which the header is being used. Modifying
the length of a field, for instance, requires modification of
counter logic and adjustment of the delay value. This needs
to be repeated for all subsystems that are affected by this
change. In contrast, LabVIEW FPGA Compiler automatically
generates the counter logic and delay values in Figure 14
by propagating the field-length values into the algorithm in
Figure 13, allowing the same algorithmic description to be
reused for different values of the field-length.

Bit-Manipulation Subsystem Modification. The channel cod-
ing subsystems, namely, the LDPC and repetition encoders
and decoders, are at the core of the HARQ system. Lab-
VIEW FPGA Compiler also eases the implementation of bit-
manipulation subsystems like these. For example, the 9x
repetition encoder description in LabVIEW FPGA is shown
in Figure 15. Comparing this to the algorithmic description
shown in Figure 16, it is evident that modification without
much time and effort is facilitated by LabVIEW FPGA
Compiler. It is important to emphasize here that LabVIEW
FPGA provides a high-level abstraction to VHDL. However,
it is not the same as the algorithmic description that we
refer to, throughout this brief. This is because LabVIEW
FPGA is a lower-level description language relative to the
algorithmic description that is input to LabVIEW FPGA
Compiler.
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5.3.2. Results. The HARQ system has been implemented on
the Xilinx Kintex-7 series of FPGAs and the algorithmic
description was input using LabVIEW CSDS. We chose these
sets of tools as the FPGA is available in the NI USRP 2943R
series used for real-world prototyping of our research. At
the time of writing this paper, the system performance has
been evaluated for the IEEE 802.16 (2012) [36] set of QC-
LDPC codes. We would like to emphasize here that owing
to the ease of modification, we can, in short development
cycles, replace the channel codes with other code structures
being researched such as the one described in [42]. The
error-rate performance for 1k frames of codeword size of𝑛 = 2304 is shown in Figure 17. The residual Frame
Error-Rate (FER) accounts for the errors that the HARQ
protocol failed to correct, whereas the FER accounts for
errors that happen without the use of the HARQ protocol.
The data throughput of the system, defined as 𝑅/𝑅𝑇𝑁, and
the throughput averaged over the frames per SNR point are
plotted in Figure 18. As expected, the performance of the
system is improved with HARQ at the cost of a decrease in
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Figure 18:Throughput performance of Type-I andType-II schemes.

Table 9: Performance and resource utilization, after mapping onto
the FPGA, for the HARQ system (that supports both Type-I and
Type-II mode of operation) on the NI USRP-2953R containing the
Xilinx Kintex-7 (410t) FPGA.

Utilization
Clock rate (MHz) 80
Time to generate VHDL (min) 5
Total slice (%) 54
LUT (%) 32
FF (%) 19
DSP (%) 12
BRAM (%) 30

the throughput. The FPGA resource utilization for the same
is given in Table 9.

Scalable Simulation Speedup. Each time any change in the
system ismade, there is a need to evaluate the performance of
the system. This is especially true for testing code structures
under research. Error-rate performance in excess of 108 bits
is required to observe phenomena such as the error-floor
of a code [24]. This makes time-efficient simulations not
only a luxury but a necessity. In our implementation, while
developing a real-world prototype we also get the benefit of
a 4x speedup in simulation time using a decoder without
pipelining. We measured the execution time for 10k frames
over 40 SNR values. We used the IEEE 802.16 (2012) specified(2304, 1152)QC-LDPC code, with a 1/9 and a 1/40 repetition
code for the header and the feedback, respectively. The
decoder was set to perform 4 decoding iterations.

On a host machine, aDell Precision T3600 3.6GHzQuad
Core Xeon (i7) with a 16GB RAM, it took about 4.28min,
whereas on our FPGA testbed it took about 1.02min resulting
in a 4x speedup with a one time time-to-compile of approxi-
mately 45min. While the time-to-compile seems significant,
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Table 10: Comparative survey of the state-of-the-art. Note that, while there are multiple implementation case studies in [19, 21], we only
list here those cases which are the closest in terms of the QC-LDPC code used in our case study, namely the IEEE 802.11n (WiFi) (1944,
972) QC-LDPC code with 𝑧 = 81. ∗Development time (wherever reported) quantifies the programming effort required. This measure of the
programming effort has been defined in [20] and is adopted here to facilitate an unambiguous comparison. In our work, the development
effort is of the order of a few days of programming effort, once the algorithm to be implemented is finalized; including the total compile time
which is of the order of tens of minutes.

Work→ Andrade et al. [19] Pratas et al. [20] Andrade et al. [21] Scheiber et al. [22] This work

HLS Technology Altera
OpenCL

Maxeler
MaxCompiler

Altera
OpenCL

Xilinx
Vivado HLS

National Instruments
LabVIEW FPGA

Compiler
Standard IEEE WiMAX ETSI DVB-S2 IEEE WiFi IEEE WiFi IEEE WiFi
LDPC Parameters (𝑛, 𝑘, 𝑧) (1152, 576, 48) (64800, 32400,—) (1944, 972, 81) (648, 324, 27) (1944, 972, 81)
BP Decoding Schedule flooding flooding flooding layered serial and layered
Throughput (Mb/s) 103.9 540 21 13.4 608
Decoding Iterations 10 10 10 3 4
Developement Time∗ n.a. ∼weeks n.a. n.a. ∼days
FPGA Device Altera

Stratix 5 D5
Xilinx

Virtex-5 LX330T
Altera

Stratix 5 D5
Xilinx

Spartan-6 LX150T
Xilinx

Kintex-7 K410T
Fixed-point Precision (total
bits) 8 n.a. n.a. n.a. 10

Clock Rate (MHz) 222.6 150 157 122 200
LUT (%) 42.9 n.a. 41 3 8.2
FF (%) 42.3 n.a. 36 2 5.3
BRAM (%) 75.3 n.a. 67 20.9 6.4
DSP (%) 3.8 n.a. 0 0 5.2
n.a.: not available (i.e. not reported in the cited work).

once compiled, for several trials with larger datasets (orders
ofmagnitude larger than experimental value specified above),
this time becomes insignificant.

6. A Comparative Survey of State of the Art

A survey of the state of the art for channel code architectures
and their implementation using HLS technology reveals that
insightful work on the topic has been done. In this section,
we list some of the notable contemporary works. While there
are a myriad of LDPC architecture designs implemented on
the FPGA platform, here we restrict ourselves to a subset of
those works that utilize HLS technology. In this section, we
list some of the notable contemporary works that fall into this
category.

The performance of an implementation depends on a
host of factors such as the vendor specific device(s) with
its associated HLS technology and the type of channel
code in consideration. Thus, the intent of the authors is
not to claim an all-encompassing performance comparison
demonstrating gains or losses with respect to each other, but
to provide the reader with a qualitative survey of the state
of the art. Table 10 lists works [19–22] based on the settings
from each that are chosen according to the proximity of their
relevance to our work.

7. Conclusion

We use an HLS compiler that without expert-level hard-
ware domain knowledge enables us to reliably prototype
our research in a short amount of time. With techniques

such as timing estimation, pipelining, loop unrolling, and
memory inference from arrays, LabVIEW FPGA Compiler
compiles untimed dataflow algorithms written with loops,
arrays, and feedback into VHDL descriptions that achieve
a high clock rate and high-throughput. The employed HLS
technology significantly reduced the time to explore the
system parameter space and optimized it in terms of the
error-rate performance and the resource utilization. We
propose techniques to achieve a high-throughput FPGA
architecture for aQC-LDPC code.The strategies are validated
by implementing a standard compliant QC-LDPC decoder
on an FPGA.The decoder architecture is scaled up to achieve
another highly-parallel realization that has a throughput of
2.48Gb/s. The HLS compilation process is used to rapidly
prototype a HARQ experimentation system using LDPC
codes that not only comprises bit-manipulation subsystems
but also protocol-sensitive subsystems. This facilitated the
error-rate performance measurement of the system over
large, realistic data sets at a 4x greater speed than the
conventional CPU-based experimentation. Finally, the use
of HLS and reconfigurable hardware platforms holds the
promise of realizing the architecture suited for the evolving
research requirements of 5G wireless technology.

Appendix

A. MAC-Level HARQ Operation

Here, we briefly discuss the operation of the protocol-
sensitive subsystems (Section 5.3.1) in the HARQ system for
the interested reader. Without loss of generality, for 𝑁 RVs
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and the maximum number of retransmissions set to RTNmax,
the MAC-level operation of the HARQ protocol is shown
in Figure 19 for the master mode and Figure 20 for slave
mode. For Type-I scheme of HARQ, the RV generator does
not puncture any bits and sends the wholemother codeword
every transmit instance, whereas, in the Type-II scheme, it
generates RVs as detailed in [40].

At the receiver, for the Type-I scheme of HARQ, the 𝑖th
transmit instance performs B𝑖 = B𝑖−1 +RV𝑖, where B denotes
the buffer contents and |B| = 𝑛 with B0 = 0. For the Type-II
scheme, the RV combiner performs B[𝜎(𝑗)] = RV𝑖(𝑗), where0 ≤ 𝑖 ≤ (𝑁−1), 0 ≤ 𝑗 ≤ (|RV| − 1), and 𝜎(𝑗) is the position of
the 𝑗th code bit in the mother codeword determined by the
puncturing method.

B. Parallelizing Block Columns

In Section 4, it was concluded that increasing the number
of layers to more than two layers in the pipeline provides
diminishing returns in efficiency of the pipelining scheme.

Here, we present a technique for a multifold increase in
throughput by processing multiple blocks in a particular
layer. We would like to note that this technique has not
been implemented in any of the case studies provided in
this article. To gain further throughput improvement, in this
approach, we take advantage of the following fact. There is
no message exchange across the blocks of a particular layer.
In other words, message exchange (and hence dependency)
happens only in the vertical direction in 𝛽󸀠I, where, ∀𝑢 ∈{1, 2, . . . , 𝐼} and ∀𝑤,𝑤󸀠 ∈ {1, 2, . . . , 𝐽},

𝛽
󸀠
I (𝑢, 𝑤) ̸= 𝛽󸀠I (𝑢, 𝑤󸀠) . (B.1)

The matrix 𝛽󸀠I is defined in Section 4.4. In the pipelined
version, the NPU array processes each block (within a layer)
sequentially as shown in Figure 21. However, if we split the
blocks into two sets and process each set independent of the
other (requiring 2 NPU arrays), we can double the through-
put. Owing to this fact, we call this version as the 4x version.
Similarly, by employing 4 NPU arrays, we have the 8x version
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and finally, if we employ 8 NPU arrays, we have the 16x
version, thus increasing throughput gradually at each stage.
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