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Systems biology has been recently applied to vaccinology to better understand immunological responses to the influenza vaccine.
Particular attention has been paid to the identification of early signatures capable of predicting vaccine immunogenicity. Building
from previous studies, we employed a recently established algorithm for signature-based clustering of expression profiles, SCUDO,
to provide new insights into why blood-derived transcriptome biomarkers often fail to predict the seroresponse to the influenza
virus vaccination. Specifically, preexisting immunity against one or more vaccine antigens, which was found to negatively affect the
seroresponse, was identified as a confounding factor able to decouple early transcriptome from later antibody responses, resulting in
the degradation of a biomarker predictive power. Finally, the broadly accepted definition of seroresponse to influenza virus vaccine,
represented by the maximum response across the vaccine-targeted strains, was compared to a composite measure integrating the
responses against all strains.This analysis revealed that compositemeasures provide amore accurate assessment of the seroresponse
to multicomponent influenza vaccines.

1. Introduction

Vaccines represent one of the most effective interventions
to control infectious diseases. Despite the many successes
[1, 2], however, we are still missing an effective vaccine
against current global pandemics such as HIV, malaria, and
tuberculosis.

Most vaccines have been developed empirically, against
pathogens characterized by limited antigenic variation and
that can be neutralized by antibodies alone. Protection
against those organisms displaying a fast rate of antigenic
variation, such as the HIV virus, or complex host-pathogen
interaction biology, such as Plasmodium falciparum, requires
vaccines that activate multiple arms of the immune response
and that do not rely only on the production of neutralizing
serum antibodies [3]. Such vaccines will only be accom-
plished through a careful design involving new-generation

antigens, designed to induce optimal and broadly protective
immune responses [4], and adjuvants, which are able to guide
the type of adaptive response to produce the most effective
forms of immunity for a specific pathogen [5].

Paramount to this novel approach will be the exploitation
of new high-throughput technologies combined with the use
of advanced algorithms to extract meaningful information
from the large sets of generated data. Conventional immuno-
logical methods, such as ELISA and flow cytometry, can
only assess a limited number of components of the immune
system at a given time and, as such, they are not suited for
addressing the complexity of the human immune system.
Novel technologies, in contrast, allow easily quantifying the
abundance of cells, RNA, proteins, and other metabolites
across different tissues with high throughput. The availabil-
ity of high dimensional data, coupled with computational
modeling, holds the potential to provide new insights into
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Table 1: Transcriptional data sets used in this study.

Set Accession Reference Samples (subjects) Platform Description

Set #1 GSE29614 Nakaya et al., Nat
Immunol 2011 27 (9) Affymetrix U133

Plus 2.0
Time course of young adults vaccinated with
influenza TIV during 2007/08 flu season

Set #2 GSE29617 Nakaya et al., Nat
Immunol 2011 80 (28) Affymetrix U133

Plus 2.0
Time course of young adults vaccinated with
influenza TIV during 2008/09 flu season

Set #3 GSE74817 Nakaya et al.,
Immunity 2015 621 (212) Affymetrix U133

Plus PM
Time course of adults vaccinated with influenza
TIV during the years 2009–2012

Set #4 GSE48018 Bucasas et al., J
Infect Dis 2011 431 (116) Illumina

HumanHT-12 V3.0
Time course of adults vaccinated with influenza
TIV

the mechanisms underlying the immunological response to
vaccination [6].

In addition to being foundational to a rational vac-
cine design, an increased understanding of the mechanisms
involved in the response to vaccination will also guide the
optimization of immunogenicity and reactogenicity profiles
of existing vaccines. Also, deciphering the early events follow-
ing vaccination will provide molecular signatures predictive
of vaccine efficacy or safety which, in turn, will enable
a prospective identification of subjects with a suboptimal
response profile and speed up future clinical trials [7].

Recently, several studies [8–11] have analyzed the tran-
scriptome profile of peripheral blood, or blood-derived cells,
to study immunity to the trivalent influenza vaccine (TIV)
in humans. These studies decoded the global pattern of tran-
scriptional response to TIV vaccination and independently
reported that the extent of upregulation of a set of interferon-
inducible genes, one to three days after vaccination, and of
genes involved in plasmablasts differentiation and activity,
seven days after vaccination, correlates with themagnitude of
serum functional antibody titers measured after one month.
Among those, Nakaya and colleagues [10, 11] extended this
further, by applying a machine learning algorithm to identify
sets of genes that could predict subjects’ seroresponse across
independent TIV vaccination trials.

Despite their extensive use, most machine learning
approaches only provide information in the form of disease-
or treatment-specific gene signatures, along with their asso-
ciated predictive power. This limited set of information
hardly provides any supporting evidence in the investigation
of the causes of an incorrect prediction. This is especially
true for vaccine response prediction, due to the complexity
and multicomponent nature of the immune system and the
genetic heterogeneity across patients.

With this study we sought to expand our understanding
of the early events following vaccination by looking for
transcriptional signatures, derived from peripheral blood
mononuclear cells (PBMCs), whose combined response
is associated with the magnitude of functional antibody
responses measured four weeks after vaccination. Using two
sets of published profiles covering two vaccination campaigns
(2007/2008 and 2008/2009, resp., for set #1 and set #2,
see Table 1), we identified a biomarker consisting of 207
transcripts whose early (3–7 days after vaccination) response
was capable of prospectively discriminating low- from high-
responder subjects. Following best practices in biomarker

identifications, we used one cohort (2008/2009 campaign)
for training and a different one (2007/2008 campaign) for
validation.The good performance of the identified biomarker
was further confirmed using a third set of profiles from a
separate study including vaccination campaigns spanning
a total of three years (2009/2010/2011, set #3). Despite
the consistently high prediction accuracy achieved by the
biomarker across cohorts, we noticed that not all the subjects
were correctly classified.We investigated the possible reasons
for the observed misclassifications and identified preexisting
immunity against one or more of the vaccine antigens to
be a confounding factor. While this finding confirms earlier
reports on preexisting immunity negatively affecting the
seroresponse to vaccination, we additionally identified a
difference in the response between subjects with and with-
out preexisting immunity. Specifically, we found preexisting
immunity to affect the 24 h response and to have little to
no effect on whole blood transcriptomes profiled 3 or 14
days after vaccination. Therefore, preexisting immunity can
decouple early transcriptome from later antibody responses,
resulting in the degradation of a biomarker predictive power.
This finding was confirmed using a fourth set of profiles (set
#4).

We finally related our predictions to a composite HAI
response measure, which integrates the responses to all
strains represented in the vaccine, and showed how this
can be a more informative measure for influenza vaccine
responsiveness compared to the widely accepted maximum-
across strains one.

2. Results and Discussion

We analyzed a total of four transcriptome datasets, whose
essential features are reported in Table 1.

2.1. A Biomarker of 207 Transcripts, Primarily Involved in Cell
Proliferation and Cytokine Signaling, Predicts Seroresponse to
Seasonal Influenza Vaccination. We employed an optimized
version of SCUDO [12–15], an algorithm for signature-based
clustering of expression profiles that relies on a completely
new way of addressing the classification problem. The algo-
rithm is based on the concept of subject-specific signatures,
rather than disease-specific signatures, to divide samples.
Briefly, the method first seeks to summarize the character-
istics of each sample by means of a subject-specific, rank-
based signature and then it performs a systematic, all-to-
all signature comparison to segregate samples into different
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Figure 1:Graphical representation of the analysis pipeline implemented to compute biomarkers (seeMaterials andMethods).Theanalysis started
with the dataset related to the 2008/09 TIV vaccination campaign (set #2). After a preliminary preprocessing of the dataset for removing
subjects with intermediate answer to the vaccine (“NA subjects,” maximumHAIDay 28/Day 0 across strains equal to 4) and for computing gene
fold changes (day 3/day 0 and day 7/day 0), we applied the classification algorithm SCUDO to obtain the biomarker.The classification process
on the training dataset exhibited 100% accuracy with a 10-fold cross-validation scheme. Moreover, its statistical significance was assessed by
a permutation test providing a 𝑝 value < 0.001. Finally, the identified biomarker was validated using an independent dataset (2007/08 TIV
vaccination campaign, set #1). The classification on the validation dataset exhibited 78% accuracy.

groups. The result of the comparison can be represented in
the form of a graph, which allows for a qualitative, as opposed
to solely quantitative, interpretation of the classification
performance.Therefore, the algorithm combines the benefits
of rank-based classification, dimensionality reduction, and
the power of network analysis. The computation of subject-
specific signatures also allows the characterization of specific
differences between subjects of the same class by highlighting
intraclass variability that may cause incorrect predictions.
Subject-specific signatures can then be merged together to
obtain a unique disease-specific biomarker.

After stratifying vaccines into high responders (maxi-
mum hemagglutinin inhibition (HAI) titer fold increase >
4) and low responders (maximum HAI fold increase < 4)
according to [10], we applied SCUDO for predicting subjects’
membership to the correct category, based on transcriptome
response profiles derived from PBMCs (see Materials and
Methods and Figure 1). SCUDOproduced a biomarker of 207
transcripts whose regulation 3 or 7 days after immunization
was able to predict seroconversion with 100% and 78%
accuracy within the training (2008-2009 trial, set #2) and an
independent validation (2007-2008 trial, set #1) sets, respec-
tively (see Supplementary File S1 in Supplementary Material
available online at https://doi.org/10.1155/2017/3017632). The
length of the biomarker produced by the algorithm was opti-
mized to maximize both the classification accuracy and the
amount of information about the mechanisms responsible
for seroconversion. In a previous work [12] we showed that
the length of the signatures is not critical, because often

the same level of classification accuracy can be obtained
with a range of signature sizes. For this reason, we also
sought to identify the minimal set of genes that could
predict vaccination outcome without a significant loss in the
prediction accuracy compared to the identified biomarker.
The algorithm identified a set of 12 transcripts, which
showed prediction accuracy comparable to that of the longer
biomarker (see Supplementary File S2). Interestingly, all 12
selected transcripts were also included in the 207 transcripts
set. Similarly to the 207 transcripts biomarker, this minimal
biomarker relied on the fold change of some transcripts at day
3 and of some others at day 7 after immunization.We verified
that transcript regulation at day 3 or day 7 alone is not enough
for an accurate subject classification (not shown).

One hundred and sixty-seven (167) of the 207 transcripts
could be mapped into functionally annotated genes (see
Supplementary File S1). Functional analysis revealed that the
biomarker is enriched for genes involved in cell proliferation
(IFIT3, PML, PTPN6, PTPRU, TBRG1, WNK2, and ZEB1)
and in cytokine signaling (DDX58, IFIT3, PIK3R1, PIK3R5,
PML, PTPN6, and SKP1), supporting previous evidence of
cell- and interferon-mediated immune responses to be linked
to humoral responses to influenza vaccination. Of note, also
the CAMK4 kinase, which was experimentally shown to be
involved in the regulation of antibody response [10], was
included in the biomarker.

2.2. Preexisting Immunity Interferes with Response Outcome
Predictability. Subject classification was based on a similarity

https://doi.org/10.1155/2017/3017632
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Figure 2: Prediction of seroresponse to TIV vaccination. The graph
represents sample classification by means of the 207 transcripts
biomarker. Nodes represent subjects and the length of connecting
edges is proportional to the distance between subject signatures.
Node colors indicate subjects’ class (green for low responders and
red for high responders); darker colors represent samples included
in the validation set (2007-2008 TIV campaign, set #1), while
lighter colors represent samples in the training set (2008-2009 TIV
campaign, set #2). Node labels indicate the sample class (H for high
responders and L for low responders) and sample identifier.

map that could be represented in the form of a graph in
which nodes correspond to subjects and edge length encodes
the level of similarity between subject-specific signatures
(short edge = high similarity, long edge = low similarity, and
no edge = negligible similarity). This provided a graphical
representation of the underlying sample structure (Figure 2)
showing how the biomarker successfully stratified the tested
subjects into high responders and low responders. One of
the two misclassified subjects, subject H29, showed some
similarity with members from both clusters, reflecting a
suboptimal signature performance. The other misclassified
subject, subject L39, was closely associated with the high
responders group despite its modest HAI response. This
same subject was consistently misclassified also by the 12
transcripts biomarker.

As a further validation of the identified biomarker, we
tested it on an additional set of transcriptional profiles
derived from three independent vaccination campaigns.
Specifically, we used the testing cohort described in Nakaya
et al. [11], which is related to the TIV vaccination campaigns
of 2009, 2010, and 2011 (set #3). The testing cohort includes
21 subjects out of a total of 212, selected because only for
them the classification in high/low responders was avail-
able. Despite the fact that none of the subjects from these
vaccination campaigns were used for training and that the
data was collected as part of a different study, we obtained
a classification accuracy of 81% (4 out of 21 subjects were
misclassified; see Figure 3), which is in close agreement with
what was reported in the original study [11].

Motivated by the consistently good performance of the
biomarker across cohorts, we conducted an investigation on
the possible reasons explaining why some subjects escape
correct classification. Focusing on subject L39 as a represen-
tative case, we identified a correlation with an unusually high

Figure 3: Additional validation of the 207 transcripts biomarker.
The graph represents samples classification by means of the 207
transcripts biomarker of subjects included in the testing group
of [11], which is related to the TIV vaccination campaigns of
2009, 2010, and 2011 (set #3). Nodes represent subjects and the
length of connecting edges is proportional to the distance between
subjects’ signatures. Node colors indicate subjects’ class (green for
low responders and red for high responders). Node labels indicate
the year of the vaccination campaign, sample class (H for high
responders and L for low responders), and sample identifier. Four
out of 21 subjects were misclassified (subjects 2009 H68, 2010 H58,
2011 H1133, and 2009 L32).

level of preexisting antibodies against the strain H3N2 (HAI
titer = 2560), which possibly interfered with the subject’s
seroresponse. This particular evidence was in line with the
several independent studies that reported that the existence of
preexisting immunity (defined as the presence of preimmune
antigen-specific antibodies) is associated with a reduced
vaccine responsiveness [16–18]. Subject L39’s proximity to
the high responders cluster (Figure 2) indicates that these
experienced a similar transcriptional response to the vaccine
stimulus, suggesting that the seroresponse inhibition played
by preexisting immunity depends onmechanisms that are not
captured by the day 3 or day 7 PBMCs transcriptomes.

In order to substantiate this conclusion, which was
derived from a single subject, we run a further investiga-
tion aimed at characterizing the influence of preimmune
antigen-specific antibodies on the transcriptional response
to influenza vaccination. Whole Blood (WB) transcriptomes,
assessed in a pool of 119 healthy individuals vaccinated with
a 2008-2009 trivalent influenza vaccine [8], were used for
this analysis (set #4). From the initial pool, subjects were
selected and stratified based on their baseline antigen-specific
antibody level. Fifteen (15) subjects were found to have
negligible preexisting immunity to the vaccine (maximum
HAI titer across the three antigens ≤ 16) while 20 showed
signs of preexposure to one or more of the vaccine antigens
(maximum HAI titer across the three antigens ≥ 512). Tran-
scriptome responses (fold changes from baseline measured 1,
3, and 14 days after vaccination) were then compared among
the two groups.Due to inconsistencies (use ofWB rather than
PBMCs and lack of day 7 transcriptome profiling) between
this and the previously introduced studies, it was not possible
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Figure 4: Differentially responsive genes in subjects with low and high preexisting immunity to the influenza vaccine, set #4. Volcano plots
showing the differences in gene responsiveness (fold change from baseline) between subjects with high (High) and low (Low) baseline
antibody titers (HAIDay 0). 𝑌-axes represent the 𝑞-values computed by adjusting Wilcoxon test 𝑝 values using the Benjamini-Hochberg
procedure. 𝑋-axes represent the difference in the median fold change from baseline response between subjects with high and low baseline
immunity. Results are reported for day 1 (a), day 3 (b), and day 14 (c) time points.

to apply SCUDO to this dataset for confirmatory purposes.
We note that our use of WB gene expression profiles is
not ideal to confirm a hypothesis originally formulated
while observing PBMC profiles. However previous studies
have shown that there is a substantial overlap between
the transcriptional responses for these two cell lines for a
number of conditions similar to ours (see, e.g., Bondar et
al. [19], for the case of inflammatory response). Thus the
general evolution of transcriptional profiles in WB following
vaccination is highly suggestive of those in PBMC and
provides strong support if not conclusive evidence for our

hypothesis of negligible influence of preexisting immunity on
transcriptional response at days 3–7 after vaccination.

Differential gene expression analysis identified 118 tran-
scripts whose response 1 day following vaccination dif-
fered among subjects with high and low preimmune status
(Figure 4(a)). Among these, 77 were found to be more
responsive in subjects with high baseline immunity, while 41
were less responsive (see Supplementary File S3). Functional
analysis of these genes did not result in any enriched gene
ontology (data not shown). Nonetheless, multiple genes par-
ticipating in the inflammatory response (IL10, KRT1, PELI1,
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Figure 5:Rationale for the computation of the titer response score.Thescore integrates the responses obtainedwith the three strains represented
in the TIV (H1N1, H3N2, and influenza B) by summing the logarithmic deviations of the HAIDay 28/Day 0 ratios from the threshold value of
the class to which the subject belongs (2 for low responders, 8 for high responders). The circles of different radius on the top of the figure
represent how the TRS was encoded as node size in Figure 6.

and PLGYRP1) were present. Interestingly, IL10, KRT1, and
PGLYRP1, all negative regulators of inflammatory response,
were more responsive in subjects with preexisting immunity,
while PELI1, a TRIF-dependent Toll-like receptor agonist,
was less responsive in this group (Figure 4(a)). This specific
response pattern suggests that preexisting immunity may
act as negative feedback on innate immune activation when
triggered by a recurring antigen. Differently, later time points
(≥3 days after vaccination) did not show such a strong effect
(Figures 4(b) and 4(c)). Only two interferon-inducible genes,
HERC5 and RSAD2, were found to be more responsive
in individuals with no preexisting immunity 3 days after
vaccination.

Overall, these findings are in agreement with our ini-
tial hypothesis that while preexisting immunity can inhibit
seroresponse to influenza vaccination, it does not affect
peripheral blood-derived transcriptome profiles assessed 3 or
more days after vaccination. This directly translates in the
inability of transcriptional biomarkers, based on information
collected from peripheral bloodstream 3 or more days after
vaccination, to correctly account for the preimmune status of
a vaccines.

It must be noted, however, that most of the subjects (28
out of 30) employed in this specific analysis were serore-
sponders (maximum HAIDay 28/Day 0 fold increase across
strains > 4), making the proper assessment of transcriptional
differences between responder and nonresponder subjects
in case of presence or absence of preexisting immunity not
possible.

2.3. Maximum HAI Response across Strains Is an Oversimpli-
fied Measure for Assessing Influenza Vaccine Responsiveness.
The outcome of a classification strongly depends on the
definition of the response categories. For this reason we
devised a titer response score (TRS; see Materials and Meth-
ods, Figure 5 and Supplementary File S4) that integrated the
responses obtained from all the three strains represented in
the TIV and investigated how this is related to the maximum
response across strains. Figure 6 represents TRS responses,
encoded as node radius, mapped on the classification graph
of Figure 2. According to the TRS, subjects showing more
extreme responses will be assigned higher scores and, there-
fore, will appear as bigger nodes in the graph. Interestingly,
subjects with high TRS were placed in peripheral regions
of the graph, with smaller nodes populating more central
regions. This is indicative of the fact that subjects with high
TRSwere better discriminated (greater distance betweenhigh
and low responder groups) by the biomarker. Coherently
with these observations, bothmisclassified subjects (H29 and
L39) had a small TRS, indicating that their membership in
their predicted class, the wrong one, was not strong. Subject
H29, which was classified as high responder based on the
response relative to the H3N2 strain (HAIDay 28/Day 0 = 32),
did not respond as strongly against the other two strains
(see Supplementary File S4). Similarly, while most of the low
responders did not respond to any of the strains (HAIDay 28 =

HAIDay 0), subject L39 showed a 2-fold increase in the HAI
titer against the H1N1 strain (see Supplementary File S4).
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Figure 6: Prediction of seroresponse to TIV vaccination. The graph
represents sample classification by means of the 207 transcripts
biomarker as in Figure 2, but here the node size encodes the
titer response score (bigger nodes correspond to higher indices, as
displayed in Figure 5). Nodes represent subjects and the length of
connecting edges is proportional to the distance between subject
signatures. Node colors indicate subjects class (green for low
responders and red for high responders); darker colors represent
samples included in the validation set (2007-2008 TIV campaign, set
#1), while lighter colors represent samples in the training set (2008-
2009 TIV campaign, set #2). Node labels indicate the sample class
(H for high responders and L for low responders) and the sample
identifier.

Overall, this evidence indicates that while using the
maximum HAI fold change across strains may be accurate
enough for the discrimination between high responders and
low responders, composite measures integrating information
from all strains represented in the vaccine provide a more
informative measure.

3. Conclusions

Overall, we have identified a set of 207 transcripts, derived
from PBMCs, whose early (3–7 days) regulation after vac-
cination was predictive of the magnitude of later (1 month)
serum antibody response. Overall, this biomarker performed
similarly to the one described in the original work pub-
lished by Nakaya et al. [10], by providing a 100% within-
dataset classification accuracy and a cross-datasets accuracy
of 81% (see Figure 3). Moreover, the applied classification
method provided a graphical representation of the classi-
fication result, which enabled for a qualitative, as opposed
to solely quantitative, interpretation of the results obtained.
This provided the opportunity to investigate on the possible
reasons behind the observed misclassifications and allowed
identifying preexisting immunity, against one or more of the
vaccine antigens represented in the vaccine, to be a possible
confounding factor. Specifically, preexisting immunity, which
was found to negatively affect the seroresponse, was shown to
have little to no effect on whole blood transcriptome profiles
assessed 3, or more, days after vaccination. This implies
a decoupling of early transcriptome from later antibody
responses, highlighting a major limitation in transcriptome-
based biomarkers.

Differently from 3 and later days responses, 24-hour
whole blood transcriptomes revealed substantial differences
in gene responsiveness between subjects with preexisting

immunity and subjects without it. Part of these differences
included a decreased responsiveness of the transcriptional
inflammatory response in subjects with preexisting immu-
nity, providing a first clue of a possible mechanistic link
between preimmune HAI titers and reduced serological
response to influenza vaccination.

The present study represents an example of how inno-
vative computational tools can improve our data mining
capabilities and helps to reveal latent factors that can impact
the response to vaccination. We envision that extending this
analysis pipeline to other studies will help in identifying
additional confounding factors and produce more accurate
predictions.

4. Materials and Methods

Definition and testing of the biomarkers were based on data
published by Nakaya et al. [10, 11]. Gene expression derived
from peripheral blood mononuclear cells and HAI response
data were downloaded from the Gene Expression Omnibus
repository (GEO, https://www.ncbi.nlm.nih.gov/geo) using
the two accession identifiers GSE29614 and GSE29617 for
the 2007-2008 and 2008-2009 vaccination trials, respectively.
Gene expression data were imported using the ArrayEx-
press Bioconductor package and processed using the RMA
normalization procedure. Gene-level expression data were
derived by computing the geometric mean of multiple probes
mapping to the same gene, where applicable. The dataset
related to the additional validation presented in Figure 3 was
downloaded from the GEO repository using the accession
identifier GSE74817. Analysis of differential gene expression
between subjects with high and low baseline HAI titers was
performed on the dataset published in [8] and downloaded
from GEO using the accession identifier GSE48018. In that
study, 119 healthy individuals vaccinated with a 2008-2009
trivalent influenza vaccinewere profiled for bothwhole blood
transcriptome and HAI responses. Fifteen (15) subjects had
a preimmune HAI titer ≤ 16 (maximum across strains) and
were considered to be naive to the vaccine. In order to
generate a contrast group comparable in size, 20 subjects with
a HAI titer ≥ 512 (maximum across strains) were selected
as high-preimmune individuals. After removing genes that
did not show substantial variation across the entire dataset
(log 2 interquartile range ≤ 0.5), fold changes from baseline
in gene expression were computed for both groups 1, 3, and
14 days after vaccination. Gene responsiveness was then com-
pared between the two groups through the Mann-Whitney-
Wilcoxon test and resulting 𝑝 values were corrected for
multiple testing using the Benjamini-Hochberg procedure.
Transcripts with a 𝑞-value ≤ 0.05 were assumed to be affected
by preexisting immunity.

According to [10], seroresponder and nonseroresponder
subjects were identified based on whether they achieved
a maximum HAIDay 28/Day 0 fold increase across strains >
4 or <4, respectively. Afterwards, day 3 and day 7 fold
changes from baseline transcript abundances were employed
for the prediction of subjects’ class membership using an
enhanced version of the previously described classification

https://www.ncbi.nlm.nih.gov/geo
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algorithm SCUDO [12, 13, 15].The present version of SCUDO
has been extended to increase its discriminatory power
and equipped with a parameter optimizer that allows the
automatic selection of the algorithm parameters according to
user-defined criteria as we did to compute the transcriptional
biomarker presented in [20, 21].

SCUDO is a rank-based classification method and this
makes the computation normalization-free.Therefore, we did
not apply any data preprocessing with batch effect removal
algorithms (e.g., quantile normalization) before running
SCUDO [12]. This feature of the classification algorithm
played a crucial role in the additional validation presented in
Figure 3, in which samples from separate datasets could be
tested without taking batch effects into account.

The classification accuracy of the analysis was evaluated
using a 10-fold cross-validation scheme over the training
dataset (2008-2009 trial) and by validating over another
independent dataset (2007-2008 trial). Statistical significance
of the identified biomarkers was assessed by comparing the
classification accuracy of the method with the accuracy of
an empirical null distribution obtained by 10000 random
permutations of the transcript labels (permutation test 𝑝
value < 0.001). An overview of the analysis pipeline is
provided in Figure 1. The robustness of the identified 207
transcripts biomarker was further assessed by applying it to
independent TIV vaccination campaigns (2009, 2010, and
2011 campaigns included in GSE74817).

The titer response score (TRS; Figures 5 and 6 and Supple-
mentary File S4) was generated by integrating the responses
obtained with all the three strains represented in the TIV
vaccine. Differently from a previously proposed integrated
antibody response measure [8], the TRS of each subject was
computed as the sum of the logarithmic deviations of the
three considered HAIDay 28/Day 0 ratios from the threshold
value of the class to which the subject belongs (2 for low
responders, 8 for high responders). An additional penalty
was added for subjects with high (>160) baseline HAI titers.
Additional information can be found in the Supplementary
File S4.
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