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Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary
spheres of balls being convex or radially concave with respect to a fan in R𝑛. As a result, the general geometric measure
representation of star-shaped probability distributions and the general stochastic representation of the corresponding random
vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses
on scaling parameters are presented, and two-dimensional sample clouds are simulated.

1. Introduction

The families of multivariate Gaussian and elliptically con-
toured distributions have served for a long time as the
main basis of numerous probabilistic models and their many
successful applications. Basics of estimation theory of ellip-
tically contoured distributions can be found in [1–3] and, for
example, [4]. Advancing needs of statistical practice as well as
longstanding challenging mathematical questions stimulated
the development of larger classes of probability laws contain-
ingmanywell knowndistributions as particular elements.We
note that [5] surveys a big part of the distribution theory in
R2. Numerous authors contributed to establishing the class of
multivariate star-shaped distributions. For a recent review of
this development, see [6]. Estimating level sets of star-shaped
densities has been dealt with in [7–10].

Several aspects of analyzing a cloud of sample points
may be of importance for the process of defining a class of
probability laws. The visual impression of the appearance
of star-shaped figures built by the points of a sample cloud
may lead to the idea that the boundaries of star-bodies,
henceforth called star-spheres, represent density level sets of a
probability law. Counting the sample points belonging to thin
layers about star-spheres then leads to the idea that a certain
function that assigns a nonnegative number to every such
star-sphere serves as the density generating function (dgf)
of a nonnegative random variable (rv) or, more generally,
as a function being proportional to the Radon-Nikodym

density of a multivariate probability law with respect to a
certain 𝜎-finite measure defined on the sample space. We
call such a function a univariate level density function of the
multivariate probability distribution.

The combination of the aspects of defining level sets of
a multivariate density and of assigning a nonnegative level
to every such set will be reflected here in a new method of
integration.This method may be considered as a heightening
and generalization of the classical principle of Cavalieri which
was modified by Torricelli. Combining integration on level
sets with that along the levels may also be considered as a
geometric disintegration method. This method is essentially
based upon certain non-Euclidean surface measures on star-
spheres. It is one of the main aims of this paper to further
develop this theory for two important types of star-spheres.
Convex bodies and star-bodies being radially concave with
respect to a fan in R𝑛 build these two classes of star-bodies.
Thus, in this paper, the focus is on considering probability
laws having the boundary of such sets as their density level
sets or their contour sets. Actually, the results in Section 3 are
mainly restricted to, possibly shifted, symmetric contour sets
being norm or antinorm spheres.

There are different ways to introduce a dfg of a continuous
probability law. Looking through the statistical and math-
ematical literature, one finds many interesting nonnegative
and suitably integrable functions which may serve as a dfg.
Another way to introduce a dfg is to analyze the structure of a
knownmultivariate density and to extract from it, if possible,
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a function which does not depend on the surface measure on
the star-spheres but depends exclusively on the levels of the
multivariate density.

It is well known that the definition of a dfg is not unique
and so is how to deal with this circumstance. Densities with
heavy tails may be of interest in (re)insurance, and densities
with light tails may be of interest in reliability theory. Both
types of densities can be modeled using each time a suitable
dfg.

Modeling the density level sets and the univariate level
density of a multivariate distribution can be done in a
combined way or separately from each other. Sometimes
a parameter may influence both the level density and the
density contour sets of a multivariate distribution. Another
parameter may be only for one of these two aspects of
importance.

The paper is organized as follows. Some basic facts from
the theory of star-shaped distributions, with an empha-
sis on geometric measure representations, are collected in
Section 2. New geometric descriptions of surface measures
on boundary spheres of balls being radially concave with
respect to a fan in R𝑛, or convex, are presented in Section 3.
Moreover, new statistical applications of geometric measure
representations of norm and antinorm contoured distribu-
tions and of stochastic representations of correspondingly
distributed random vectors are discussed there. In particular,
distributions are illustrated by simulated sample clouds.
The basics for estimating and testing hypothesis on scaling
parameters are presented at the end of Section 3. Section 4
deals with proving the new results, and a discussion of the
results can be found in the final Section 5.

2. Star-Shaped Distributions

Geometric measure representations and stochastic represen-
tations of corresponding random vectors have been proved
in [6] for general star-shaped distributionsmaking essentially
use of the notion of a star-generalized surface content mea-
sure. The latter is defined in a local way by taking derivatives
of sector volumes and is known to be equivalently defined
in an integral (in dimension two even explicitly differential
geometric) way in the cases of 𝑙

𝑛,𝑝
-spheres and ellipsoids.

For recent results and a survey of their probabilistic and
statistical applications we refer to [6]. Here, some basic facts
from star-shaped distribution theory and its applications will
be summarized.

Let a random vector 𝑌 follow the probability density
function (pdf):

𝜑
𝑔,𝐾,] (𝑥) = 𝐶 (𝑔, 𝐾) 𝑔 (𝑑

𝐾
(𝑥 − ])) , 𝑥 ∈ R

𝑛

, (1)

where ] ∈ R𝑛 is a vector of location, 𝐾 ⊂ R𝑛 is a star-
body having the origin as an inner point, 𝑑

𝐾
is the distance

function, or Minkowski functional, of the star-body 𝐾,

𝑑
𝐾

(𝑥) = inf {𝜆 ≥ 0 : 𝑥 ∈ 𝜆𝐾} , 𝑥 ∈ R
𝑛

, (2)

the function 𝑔 : [0, ∞) → [0, ∞) satisfies 0 < 𝐼(𝑔) < ∞,
where 𝐼(𝑔) = ∫

∞

0

𝑟
𝑛−1

𝑔(𝑟)𝑑𝑟, and the normalizing constant
allows the representation

𝐶 (𝑔, 𝐾) =

1

O
𝑆

(𝑆) 𝐼 (𝑔)

. (3)

Assuming that the technical Assumption 1 in [6] is satisfied
which deals with a certain smoothness property of the
boundary 𝑆 of 𝐾, O

𝑆
denotes the star-generalized surface

content measure defined on the Borel subsets of 𝑆. The prob-
ability measure corresponding to 𝜑

𝑔,𝐾,] allows the geometric
measure representation or disintegration formula:

Φ
𝑔,𝐾,] (𝐵)

= 𝐶 (𝑔, 𝐾) ∫

∞

0

𝑟
𝑛−1

𝑔 (𝑟)O
𝑆

([

1

𝑟

(𝐵 − ])] ∩ 𝑆) 𝑑𝑟,

𝐵 ∈ B
𝑛

.

(4)

𝐾 is called the density contour defining star-body of this
distribution and any 𝑔 under consideration is a density
generating function (dfg).The sets (𝐵−])∩𝑆(𝑟)with 𝑆(𝑟) = 𝑟𝑆

may be considered playing the role of the indivisibles within
a generalized principle of Cavalieri (which was modified
by Torricelli). The random vector 𝑌 satisfies the stochastic
representation:

𝑌

𝑑

= 𝑅 ⋅ 𝑈
𝑆
, (5)

where 𝑅 and 𝑈
𝑆
are stochastically independent, 𝑅 has the pdf

𝑓
𝑅

(𝑟) = 𝐼
(0,∞)

(𝑟)

1

𝐼 (𝑔)

𝑟
𝑛−1

𝑔 (𝑟) , (6)

and 𝑈
𝑆
follows the star-generalized uniform probability

distribution 𝜔
𝑆
on the Borel-𝜎-field B

𝑆
= B𝑛

∩ 𝑆 over 𝑆,
𝑈

𝑆
∼ 𝜔

𝑆
, and

𝑃 (𝑈
𝑆

∈ 𝐴) =

O
𝑆

(𝐴)

O
𝑆

(𝑆)

, 𝐴 ∈ B
𝑆
. (7)

Because of (7), 𝑈
𝑆
is called the star-generalized uniform basis

of 𝑌. The symbol 𝑋

𝑑

= 𝑌 means that the random vectors 𝑋

and 𝑌 follow the same probability law while 𝑋 ∼ 𝑄 indicates
that the random vector 𝑋 follows the probability distribution
𝑄.

For 𝐴 ∈ B
𝑆
, we introduce the central projection cone,

CPC (𝐴) = {𝑥 ∈ R
𝑛

:

𝑥

ℎ
𝐾

(𝑥)

∈ 𝐴} , (8)

and the star sector of star radius 𝑟,

sector (𝐴, 𝑟) = CPC (𝐴) ∩ 𝐾 (𝑟) , (9)

where

𝐾 (𝑟) = 𝑟 ⋅ 𝐾 = {(𝑟𝑥
1
, . . . , 𝑟𝑥

𝑛
)
𝑇

: (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝐾} (10)
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is a star ball of star radius 𝑟. Let 𝜇 be the Lebesgue measure in
R𝑛

. Then the star-generalized surface measure is defined on
𝑟B

𝑆
in a local approach by

O
𝑆

(𝐴) = 𝑓
󸀠

(𝑟) where 𝑓 (𝑟) = 𝜇 (sector (𝐴, 𝑟)) . (11)

Making use of the star-sphere intersection proportion
function (ipf) of a set 𝐴,

F
𝑆

(𝐴, 𝑟) = 𝜔
𝑆

([

1

𝑟

𝐴] ∩ 𝑆) , 𝑟 > 0, (12)

the disintegration representation of Φ
𝑔,𝐾,] may be written as

Φ
𝑔,𝐾,] (𝐵) =

1

𝐼 (𝑔)

∫

∞

0

𝑟
𝑛−1

𝑔 (𝑟)F
𝑆

(𝐵 − ], 𝑟) 𝑑𝑟,

𝐵 ∈ B
𝑛

.

(13)

The most immediate applications of this formula appear
in cases where the ipf is a constant or an indicator of an
interval. If, for a certain set 𝐵, the ipf takes a constant value,
𝐶, say, then Φ

𝑔,𝐾,](𝐵) is just equal to this value 𝐶.
If, for a statistic 𝑇, 𝐵(𝑡) = {𝑇 < 𝑡}, 𝑡 ∈ R, and the ipf of all

sets 𝐵(𝑡) take the constant value, 𝐶(𝑡), say, then the statistic 𝑇

is robust with respect to the dfg 𝑔; that is, the distribution of
𝑇 does not depend on 𝑔.

If, for a certain set 𝐴(𝑥), the ipf is the indicator function
of an interval, [0, 𝑏(𝑥)], say, then

𝑑

𝑑𝑥

Φ
𝑔,𝐾,] (𝐴 (𝑥)) =

𝑏
󸀠

(𝑥) 𝑏 (𝑥)
𝑛−1

𝑔 (𝑏 (𝑥))

𝐼 (𝑔)

. (14)

For specific statistical examples of such type we refer to
Section 3. Applications of (13) in cases where the ipf is more
structured are often more involved. Such a situation will be
considered in Example 7.

The main aim of this paper, however, is not only to give
attractive examples where the geometric measure represen-
tation applies but also to give nontrivial explanations of the
locally defined surface measureO

𝑆
on the basis of an integral

(or differential geometric) approach. This will be done in the
first two parts of Section 3 for the two important cases where
𝐾 is a norm or antinorm ball. As a result, in formulas (4),
(5), (7) and (13), O

𝑆
will afterwards allow additional specific

integral (or differential geometric) interpretations in the two
mentioned cases. The class

𝐶𝑆𝑡𝑆ℎ = {Φ
𝑔,𝐾,] : ] ∈ R

𝑛

, 𝐾 is a star body with 0

∈ int𝐾, 𝑔 is a dgf} ,

(15)

where int𝐾 means the interior of 𝐾, is called the class of
continuous star-shaped distributions. A random vector 𝑌

is said in [6] to belong to the bigger class of star-shaped
distributions 𝑆𝑡𝑆ℎ

(𝑛) if there are a vector ] ∈ R𝑛, a star-body𝐾

with 0 ∈ int𝐾 (and boundary 𝑆), and a nonnegative random
variable (rv) 𝑅 with cumulative distribution function (cdf) 𝐹

such that 𝑌 − ] 𝑑

= 𝑅 ⋅ 𝑈
𝑆
where 𝑈

𝑆
∼ 𝜔

𝑆
and 𝑅 and 𝑈

𝑆
are

independent. In this case, we write

𝑌 ∼ Ψ
𝐹,𝐾,],

𝑆𝑡𝑆ℎ
(𝑛)

= {Ψ
𝐹,𝐾,] : 𝐹 is the cdf of a non-negative rv,

𝐾 is a star body, 0 ∈ int𝐾, ] ∈ R
𝑛

} .

(16)

The random vector 𝑈
𝑆
is called the star-generalized uniform

basis of the class 𝑆𝑡𝑆ℎ
(𝑛). If 𝐾 is symmetric with respect to

the origin, 𝐾 = −𝐾, then the functional 𝑑
𝐾

is a norm,
𝑑
𝐾

= ‖ ⋅ ‖
𝐾
, if 𝐾 is convex, and is an antinorm, 𝑑

𝐾
=

∤ ⋅∤
𝐾
, if 𝐾 is radially concave with respect to a fan in R𝑛

.

For the latter notions, see [11]. Note that 𝑙
𝑛,𝑝
-symmetric

distributions are norm or antinorm contoured if 𝑝 ≥ 1 or
0 < 𝑝 ≤ 1, respectively. We will study general convex or
norm contoured distributions in Section 3.1 and distributions
being radially concavewith respect to a fan inR𝑛, or antinorm
contoured, in Section 3.2.Themain aim of these two sections
is to give closer descriptions of O

𝑆
being basic for both the

general stochastic representation of 𝑌 in (5) and the specific
geometric measure representations of 𝜔

𝑆
in (7) and Φ

𝑔,𝐾,]
in (4) and (13) in case 𝑌 has a density. Moreover, two-
dimensional distributions are illustrated by graphics showing
simulated sample clouds. Applications to estimating and
testing hypotheses on scaling parameters are demonstrated
in Section 3.3. The proofs of the results from Sections 3.1 and
3.2 will be presented in Section 4, and a final discussion of the
results follows in Section 5.

3. Results

We start the presentation of new results with a remark on
asymmetric distribution laws which seems to be very useful:
a distribution being star-shaped with respect to a fan F may
be restricted to arbitrary unions of elements ofF.

Remark 1. Let 𝐶
𝑖

∈ F, 𝑖 ∈ 𝐼 and 𝐶 = ⋃
𝑖∈𝐼

𝐶
𝑖
. Then

Φ
𝐶

𝑔,𝐾,] (𝐵)

=

O
𝑆

(𝑆)

O
𝑆

(𝑆 ∩ 𝐶)

1

𝐼 (𝑔)

∫

∞

0

𝑟
𝑛−1

𝑔 (𝑟)F
𝑆

(𝐵 − ], 𝑟) 𝑑𝑟

(17)

is a probability law on 𝐶 ∩ B𝑛.

Here, 𝐼 is a suitable index set. The proof of this result
follows immediately by conditioning.

We call the collection of all such distributions the class of
fan restricted star laws and denote it by 𝑆𝑡𝐿:

𝑆𝑡𝐿 = {Φ
𝐶

𝑔,𝐾,], 𝐶 = ⋃

𝑖∈𝐼

𝐶
𝑖
, 𝐶

𝑖
∈ F, ∀𝑖} . (18)

Elements of this distribution class are not symmetric, in
general.

3.1. Norm Contoured Distributions. Let 𝐾 be convex and
symmetric with respect to the origin throughout this section.
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Figure 1: Sample clouds of convex contoured 𝑝-generalized normal distributions (𝑛 = 2).

Our consideration is restricted therefore here to the class of
norm contoured distributions:

NC = {Ψ
𝐹,𝐾,]

∈ 𝑆𝑡𝑆ℎ
(𝑛)

: 𝐾 is the unit ball of a norm in R
𝑛

} .

(19)

Let the system of Borel sets from the upper half of the sphere
𝑆 beB+

𝑆
. For 𝐴 ∈ B+

𝑆
, put

𝐺 (𝐴)

= {𝜗 ∈ R
𝑛−1

: ∃𝜂 = 𝜂 (𝜗) with (𝜗
𝑇

, 𝜂)

𝑇

∈ 𝐴} ,

(20)

and denote, wherever it exists, the outer normal vector to the
norm sphere 𝑆 at the point (𝜗

𝑇

, 𝜂)
𝑇

∈ 𝑆 by 𝑁(𝜗). Wherever
the outer normal vector is not defined, let 𝑁(𝜗) denote the
zero element of R𝑛

. Note that the set of boundary points of
𝐾 where ∇𝜂 does not exist is countable and thus without
any influence on the value of the integral in the following
theorem. We recall that the surface content measureO

𝑆
was

locally defined in (11).

Theorem 2. In formulas (4), (5), (7) and (13), the surface
content measureO

𝑆
allows the representation

O
𝑆

(𝐴) = ∫

𝐺(𝐴)

𝑑
𝐾
∗ (𝑁 (𝜗)) 𝑑𝜗, 𝐴 ∈ B

+

𝑆
, (21)

where 𝐾
∗ is the unit ball of the norm ‖ ⋅ ‖

∗ being dual to 𝑑
𝐾

=

‖ ⋅ ‖
𝐾
.

Wewill refer to this result as to the integral or differential
geometric approach to measuring surface content on a norm
sphere based upon the dual norm geometry. We mention
that a similar representation of O

𝑆
(𝐴) follows for arbitrary

𝐴 ∈ B
𝑆
. Due to Theorem 2, if 𝐾 is convex, the surface

measureO
𝑆
henceforth allows both the local and the integral

interpretation in formulas (4), (5), (7) and (13). Moreover,

Theorem 2 reflects a certain specific aspect of duality theory
for norms.

In the next section we will deal in an analogous way
with balls being radially concave with respect to a fan in
R𝑛

.

Figures 1–3 show sample clouds of size 𝑘 = 2000 of 𝑝-
generalized Gaussian distributed two-dimensional (𝑛 = 2)
random vectors for different choices of 𝑝, 𝑝 ≥ 1. Notice that
the six frames reflect different scaling of the clouds due to
different values of 𝑝. While the sample cloud in Figure 1(a)
might seem to be similar to the illustration of the Gaussian
case the shape of the sample cloud approaches that of an axes-
aligned square if 𝑝 increases (or even tends to infinity). At
the same time, the cloud (probability mass) becomes more
and more concentrated. If, however, 𝑝 ≥ 1 is tending to
one then the shape of the sample cloud approaches that of
the diamond. At the same time, probability mass becomes
much less concentrated and the contour of the sample cloud
appears to be not as sharp as in the opposite case. Hence, the
parameter 𝑝 of such a distribution might be called a shape-
concentration parameter. Note that Figures 6–8 also present
sample clouds of convex contoured distributions but where
emphasis is, inter alia, on the effect forced by an increasing
sample size 𝑘.

Finally, let us remark that Figure 3(b) with equal rights
could be presented in the next section because 𝑙

𝑛,𝑝
-balls are

both convex and radially concave with respect to the standard
fan in R𝑛 if 𝑝 = 1.

3.2. Antinorm Contoured Distributions. Throughout the
present section, let 𝐾 denote a star-body having a positive
and continuous radial function and being symmetric with
respect to the origin and radially concave with respect to a
fan F = {𝐶

1
, 𝐶

2
, . . .} in R𝑛

. The Minkowski functional or
distance function of 𝐾 is then an antinorm, 𝑑

𝐾
=∤ ⋅ ∤, that

is, a continuous, positively homogeneous, nondegenerate,
and in F super additive function. For more details we refer
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Figure 2: Convex contoured cases far from the normal one.
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Figure 3: Two extremal convex cases.
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Figure 4: Sample clouds of radially concave contoured 𝑝-generalized normal distributions.
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Figure 5: Far reaching tails.
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(b) 𝑝 = 2,388677

Figure 6: Generalized normal distribution: (small) sample size 𝑘 = 30.
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Figure 7: Sample (medium) size 𝑘 = 850.
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Figure 8: Sample (large) size 𝑘 = 2000.

to [11]. According to all the assumptions made so far, our
consideration is restricted here to the class of antinorm
contoured distributions:

ANC = {Ψ
𝐹,𝐾,] ∈ 𝑆𝑡𝑆ℎ

(𝑛)

:

𝐾 is the unit ball of an antinorm in R
𝑛

} .

(22)

Moreover, we assume that 𝐾 belongs to a particular class of
antinorm balls, AN1, meaning that

(1) for every 𝑖 there is a 1-1-map 𝑥
𝑆,𝑖

: 𝑆
(𝑛−1)

∩ 𝐶
𝑖

→

𝑆 ∩ 𝐶
𝑖
, where 𝑆

(𝑛−1) denotes the Euclidean unit sphere
in R𝑛,

(2) for every 𝑖, for all 𝑢 ∈ 𝑆
(𝑛−1)

∩ 𝐶
𝑖
there is a hyperplane

𝑇(𝑢) satisfying 𝑇(𝑢) ⊥ 𝑢 and being an inner tangent
plane to (the boundary of) 𝐾 at 𝑥

𝑆,𝑖
(𝑢).

We define the antisupport function of 𝐾 with respect toF by

ℎ
F

𝐾
(𝑢) = ∑

𝑖

𝐼
𝐶
𝑖

(𝑢) inf {𝑢
𝑇

𝑦 : 𝑦 ∈ 𝑆 ∩ 𝐶
𝑖
} , 𝑢 ∈ R

𝑛

, (23)

and the antipolar set of 𝐾,

𝐾
𝑜

= {𝜆 (𝑢) 𝑢 : 0 ≤ 𝜆 (𝑢) ℎ
F

𝐾
(𝑢) ≤ 1, 𝑢 ∈ 𝑆

(𝑛−1)

𝐸
} , (24)

where 0 ≤ 𝜆(𝑢) ≤ ∞ if ℎ
F

𝐾
(𝑢) = 0. Let 𝑁(𝜗) be the inner

normal vector to 𝑆 at (𝜗
𝑇

, 𝜂)
𝑇

∈ 𝑆. In the sense of Remark 1 in
[6], in what follows we will simply write

∫

𝐺(𝐴)

𝑑
𝐾
𝑜 (𝑁 (𝜗)) 𝑑𝜗 instead of ∑

𝑖

∫

𝐺(𝐴∩𝐶
𝑖
)

𝑑
𝐾
𝑜 (𝑁 (𝜗)) 𝑑𝜗. (25)

Theorem 3. In formulas (4), (5), (7) and (13), the surface con-
tent measureO

𝑆
allows the representation

O
𝑆

(𝐴) = ∫

𝐺(𝐴)

𝑑
𝐾
𝑜 (𝑁 (𝜗)) 𝑑𝜗, 𝐴 ∈ B

𝑆
. (26)

In addition to the general local definition in formula (11),
the result of this theorem allows the integral or differential
geometric interpretation of the surface measure O

𝑆
in the

geometry having 𝐾
𝑜 as its unit ball. Note that the special

case where surface content of subsets of the boundary of the
antinorm ball 𝐾 = 𝐵

𝑎,𝑝
= {𝑥 ∈ R𝑛

: (∑
𝑛

𝑖=1
|𝑥

𝑖
/𝑎

𝑖
|
𝑝

)
1/𝑝

≤

1}, 0 < 𝑝 ≤ 1, 𝑎
𝑖

> 0, ∀𝑖, is measured based upon the
corresponding semiantinorm geometry has been dealt with
already in [6].

Figures 5 and 6 show sample clouds of the same sample
size and from the same distribution class as in Section 3.1
but with parameter 𝑝 chosen from the interval (0, 1). A big
proportion of probability mass can be observed tending to
the far tails of such distribution if 𝑝 is approaching zero. At
the same time one can identify several points which could be
considered being outliers if they had appeared under other
circumstances. Hence, the parameter 𝑝 of such distribution
might be called a shape-tail parameter.

3.3. Statistical Applications. This section deals with several
examples where formula (13) applies. The first three exam-
ples present relatively immediate applications while the last
example concerns a more advanced situation for calculating
the ipf.

Example 4. Let 𝑋
1
, . . . , 𝑋

𝑛
be independent rv following the

common density of the power-exponential (or 𝑝-generalized
Gaussian or 𝑝-generalized Laplace) distribution:

𝑓
𝑝

(𝑥; 𝜇, 𝜎
2

) =

𝐶
𝑝

𝜎

exp{−

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝜇

󵄨
󵄨
󵄨
󵄨

𝑝

𝑝𝜎
𝑝

} ,

𝑥 ∈ R, 𝐶
𝑝

=

𝑝
1−1/𝑝

2Γ (1/𝑝)

,

(27)

where the location parameter 𝜇 ∈ R and the shape-concen-
tration or shape-tail parameter 𝑝 > 0 are known and the
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scaling parameter 𝜎 is unknown. The maximum-likelihood
estimator (mle) of 𝜎 is

𝜎̂ = (

1

𝑛

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑋

𝑖
− 𝜇

󵄨
󵄨
󵄨
󵄨

𝑝

)

1/𝑝

, (28)

and the random vector 𝑋
(𝑛)

= (𝑋
1
, . . . , 𝑋

𝑛
)
𝑇 follows the den-

sity 𝜑
𝑔
𝑃𝐸

,𝐾,] where ] = (𝜇, . . . , 𝜇)
𝑇, 𝐾 = 𝜎𝐵

𝑝
, 𝐵

𝑝
= {𝑥 ∈ R𝑛

:

|𝑥|
𝑝

≤ 1}, |𝑥|
𝑝

= (∑
𝑛

𝑖=1
|𝑥

𝑖
|
𝑝

)
1/𝑝, and

𝑔
𝑃𝐸

(𝑟) = exp{−

𝑟
𝑝

𝑝

} , 𝑟 ≥ 0. (29)

The set𝐵
𝑝
is convex if𝑝 ≥ 1 and radially concave with respect

to the standard fan in R𝑛 if 0 < 𝑝 ≤ 1. Hence,

1

𝜎

(𝑋
(𝑛)

− ]) ∼ Φ
𝑔
𝑃𝐸

,𝐵
𝑝
,0
𝑛

(30)

follows a centered convex or radially concave contoured
distribution if 𝑝 ≥ 1 or 0 < 𝑝 ≤ 1, respectively. It turns out
that

𝑃 (𝑛 (

𝜎̂

𝜎

)

𝑝

< 𝑡) = Φ
𝑔
𝑃𝐸

,𝐵
𝑝
,0
𝑛

(𝑡
1/𝑝

𝐵
𝑝

) , (31)

and thus

𝑃 (𝑛 (

𝜎̂

𝜎

)

𝑝

< 𝑡)

=

1

𝐼 (𝑔
𝑃𝐸

)

∫

∞

0

𝑟
𝑛−1

𝑔
𝑃𝐸

(𝑟)F
𝑆
𝑝

(𝑡
1/𝑝

𝐵
𝑝

, 𝑟) 𝑑𝑟,

(32)

where 𝐼(𝑔
𝑃𝐸

) = 𝑝
𝑛/𝑝−1

Γ(𝑛/𝑝), Γ denotes the Gamma func-
tion, 𝑆

𝑝
= 𝜕𝐵

𝑝
is the 𝑝-sphere, that is, the set of boundary

points of 𝐵
𝑝
, and the 𝑝-sphere ipf of 𝑡

1/𝑝

𝐵
𝑝
is

F
𝑆
𝑝

(𝑡
1/𝑝

𝐵
𝑝

, 𝑟) = 𝐼
[0,𝑡
1/𝑝

]
(𝑟) , 𝑟 ≥ 0. (33)

Consequently,

𝑃 (𝑛 (

𝜎̂

𝜎

)

𝑝

< 𝑡) =

1

𝐼 (𝑔
𝑃𝐸

)

∫

𝑡
1/𝑝

0

𝑟
𝑛−1

𝑔
𝑃𝐸

(𝑟) 𝑑𝑟; (34)

that is, 𝑛(𝜎̂/𝜎)
𝑝 follows the𝜒

𝑝

𝑔
𝑃𝐸

-density with 𝑛 d.f. introduced
in [12]:

𝑡 󳨃󳨀→

𝑡
𝑛/𝑝−1

𝑒
−𝑡/𝑝

𝑝
𝑛/𝑝

Γ (𝑛/𝑝)

= 𝑓
𝜒

𝑛,𝑔
𝑃𝐸

,𝑝
(𝑡) , 𝑡 > 0. (35)

This exact distributional result allows constructing confi-
dence intervals for and testing hypotheses on the scaling
parameter 𝜎.

Example 5. We consider independent rv 𝑋
1
, . . . , 𝑋

𝑛
follow-

ing the densities

𝑓
𝑝

(𝑥; 𝜇
𝑖
, 𝜎

2

𝑎
2

𝑖
) =

𝐶
𝑝

𝜎𝑎
𝑖

exp{−

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝜇

𝑖

󵄨
󵄨
󵄨
󵄨

𝑝

𝑝 (𝜎𝑎
𝑖
)
𝑝

} , 𝑥 ∈ R, (36)

where 𝜇
𝑖

∈ R, 𝑝 > 0, 𝑎
𝑖

> 0 are known and 𝜎 > 0 is an
unknown common scaling parameter.Themle of𝜎 allows the
functional representation

𝜎̂ =

1

𝑛
1/𝑝

󵄨
󵄨
󵄨
󵄨
𝑋

(𝑛)
− ]󵄨

󵄨
󵄨
󵄨𝑎,𝑝

, (37)

where 𝑋
(𝑛)

= (𝑋
1
, . . . , 𝑋

𝑛
)
𝑇, ] = (𝜇

1
, . . . , 𝜇

𝑛
)
𝑇, and

|𝑥|
𝑎,𝑝

= (

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
𝑖

𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

)

1/𝑝

, 𝑥 ∈ R
𝑛

. (38)

The density of 𝑋
(𝑛)

is

𝑓
𝑋
(𝑛)

(𝑥) =

𝐶
𝑛

𝑝

𝜎
𝑛
𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛

𝑔
𝑃𝐸

(𝑑
𝜎𝐵
𝑎,𝑝

(𝑥 − ])) , (39)

and thus

𝑃 (𝑛 (

𝜎̂

𝜎

)

𝑝

< 𝑡) = Φ
𝑔
𝑃𝐸

,𝐵
𝑎,𝑝

,0
𝑛

(𝑡
1/𝑝

𝐵
𝑎,𝑝

) , (40)

where 𝐵
𝑎,𝑝

= {𝑥 ∈ R𝑛

: |𝑥|
𝑎,𝑝

≤ 1}. Note thatF
𝑆
𝑎,𝑝

(𝑡
1/𝑝

𝐵
𝑎,𝑝

, 𝑟)

does not depend on 𝑎. Hence, 𝑛(𝜎̂/𝜎)
𝑝 follows the 𝜒

𝑝

𝑔
𝑃𝐸

-
distribution with 𝑛 d.f., independently of 𝑎 = (𝑎

1
, . . . , 𝑎

𝑛
)
𝑇.

While Examples 4 and 5 are restricted to the 𝑝-
generalizedGaussian or Laplace distributionwhich is defined
using the dfg 𝑔

𝑃𝐸
, 𝑝 > 0, Example 6 deals with measuring

the same sets as before but with measures having another
level distribution, especially allowing lighter and heavier
distribution tails. Such tailsmay be of interest in various types
of applications.

Example 6. Let us assume that 𝑌 follows the probability
distribution law Φ

𝑔,𝐾,] with ] ∈ R𝑛, 𝐾 = 𝐵
𝜎𝑎,𝑝

and dfg 𝑔.
Examples of dfg are, besides 𝑔

𝑃𝐸
, the Kotz type dgf𝑔

𝐾
defined

by 𝑔
𝐾

(𝑟) = 𝑟
𝑀−1

𝑒
−𝛽𝑟
𝛾

, 𝛽, 𝛾 > 0, 𝑀 + 𝑛 > 1, and the Pearson-
VII-type dfg 𝑔

𝑃𝑇7
defined by 𝑔

𝑃𝑇7
(𝑟) = (1 + 𝑟/𝑚)

−𝑀, 𝑀 > 𝑛,
𝑚 > 0. Note that the Student- andCauchy-type dfg are special
cases of 𝑔

𝑃𝑇7
and that

𝐼 (𝑔
𝑃𝐸

) = 𝑝
𝑛/𝑝−1

Γ (

𝑛

𝑝

) ,

𝐼 (𝑔
𝐾

) =

Γ ((𝑛 + 𝑀 − 1) /𝛾)

𝛾𝛽
(𝑛+𝑀−1)/𝛾

,

𝐼 (𝑔
𝑃𝑇7

) = 𝑚
𝑛

𝐵 (𝑀 − 𝑛, 𝑛) ,

(41)

where 𝐵 denotes the beta function. It follows, with 𝐵
𝜎𝑎,𝑝

=

𝜎𝐵
𝑎,𝑝

and

𝑃 (𝑌 − ] ∈ 𝑡
1/𝑝

𝐵
𝜎𝑎,𝑝

)

=

1

𝐼 (𝑔)

∫

∞

0

𝑟
𝑛−1

𝑔 (𝑟)F
𝑆
𝑎,𝑝

(𝑡
1/𝑝

𝐵
𝜎𝑎,𝑝

, 𝑟) 𝑑𝑟

=

1

𝐼 (𝑔)

∫

𝑡
1/𝑝

0

𝑟
𝑛−1

𝑔 (𝑟) 𝑑𝑟,

(42)



Journal of Probability and Statistics 9

that, independently of 𝑎,

𝑑

𝑑𝑡

𝑃 (𝑛 (

𝜎̂

𝜎

)

𝑝

< 𝑡)

=

𝑑

𝑑𝑡

𝑃 (

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑌
1

− ]
1

𝑎
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑌
𝑛

− ]
𝑛

𝑎
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

< 𝑡)

=

𝑡
𝑛/𝑝−1

𝑔 (𝑡
1/𝑝

)

𝑝𝐼 (𝑔)

= 𝑓
𝜒

𝑛,𝑔,𝑝
(𝑡) .

(43)

Note that our earlier representation of this density in [13]
differs from the present one because of the (slightly) different
notation for the dfg 𝑔.

Example 7. Let 𝑋
𝑖

∼ 𝑓
𝑝

(⋅; 0, 𝜎
1
), 𝑖 = 1, . . . , 𝑛

1
, and 𝑌

𝑖
∼

𝑓
𝑝

(⋅; 0, 𝜎
2
), 𝑖 = 1, . . . , 𝑛

2
, where 𝑝 > 0 is known and

𝜎
1
, 𝜎

2
> 0 are unknown. These rv are assumed to be

completely independent. We define 𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
1

)
𝑇 and

𝑌 = (𝑌
1
, . . . , 𝑌

𝑛
2

)
𝑇. It follows from the well known theory

of exponential families that the statistic 𝑇 = (|𝑋|
𝑝

𝑝
, |𝑌|

𝑝

𝑝
) is

sufficient for (𝜎
1
, 𝜎

2
). The rv 𝑍 = (𝑋

𝑇

𝑌
𝑇

)
𝑇 has the density

𝑓
𝑍

((𝑥
𝑇

, 𝑦
𝑇

)

𝑇

) =

𝐶
𝑛
1
+𝑛
2

𝑝

𝜎
𝑛
1

1
𝜎
𝑛
2

2

𝑔
𝑃𝐸

(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑥

𝑇

, 𝑦
𝑇

)

𝑇󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑝,𝜎
1
,𝜎
2

) ,

𝑥 ∈ R
𝑛
1

, 𝑦 ∈ R
𝑛
2

(44)

with

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑥

𝑇

, 𝑦
𝑇

)

𝑇󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑝,𝜎
1
,𝜎
2

= (

|𝑥|
𝑝

𝑝

𝜎
𝑝

1

+

󵄨
󵄨
󵄨
󵄨
𝑦

󵄨
󵄨
󵄨
󵄨

𝑝

𝑝

𝜎
𝑝

2

)

1/𝑝

. (45)

Thus, for every measurable function ℎ : R2

+
→ R,

𝑃 (ℎ (𝑇) < 𝑡) = Φ
𝑔
𝑃𝐸

,𝐵
𝑝,𝜎
1
,𝜎
2

(𝐵 (𝑡)) , (46)

𝐵(𝑡) = {(𝑥
𝑇

, 𝑦
𝑇

)
𝑇

: ℎ(|𝑥|
𝑝

𝑝
, |𝑦|

𝑝

𝑝
) < 𝑡}, 𝐵

𝑝,𝜎
1
,𝜎
2

= {(𝑥
𝑇

, 𝑦
𝑇

)
𝑇

∈

R𝑛
1
+𝑛
2

: |(𝑥
𝑇

, 𝑦
𝑇

)
𝑇

|
𝑝,𝜎
1
,𝜎
2

≤ 1}.

Applications of formula (46) allow the derivation of
geometric measure representations of exact distributions of
statistics such as 𝛼|𝑋|

𝑝

𝑝
+ 𝛽|𝑌|

𝑝

𝑝
, |𝑋|

𝑝

𝑝
/|𝑌|

𝑝

𝑝
and |𝑋|

𝑝

𝑝
/(|𝑋|

𝑝

𝑝
+

|𝑌|
𝑝

𝑝
), under the nonstandard model assumptions made here.
A nonconstant ipf of the set 𝐵(𝑡) has been dealt with

for different functions ℎ and under different parameter
assumptions in earlier papers of the author and several
coauthors; see [6].

Example 8. For data in [14] reporting the profits at the box
office and the number of sold home videos, in [15] the authors
study fitting a linear regression model with random errors
distributed according to an exponential power distribution.
When analyzing the residuals they present Q-Q-plots for
both the exponential power distribution with the estimated
parameter 𝑝 = 2,386877 and the normal distribution (𝑝 = 2).
The observer’s subjective impression after a visual inspection

of these plots may be that one cannot really be sure in
preferring one of the two error models, this way.

This example, whichwas presented by the authors only for
the purpose of showing the use of the functions implemented
by them to fit a linear regression model if errors are possibly
exponentially power distributed, gives rise to throwing up in
a similar two-dimensional situation the following standard
question of statistical practice: how large should a sample size
be tomake a practical decision based upon a visual inspection
“relatively safe”? In particular, how large should a sample size
be for the observer being able to visually choose between
the two two-dimensional 𝑝-generalized normal distributions
with parameters 𝑝 = 2 and 𝑝 = 2,388677?

This question, clearly, is not formulated in a strong
mathematical way andwill not be answered in suchway, here.
Instead, we present Figures 6–8 showing that one can hardly
distinguish this way between the parameters 𝑝 = 2 and 𝑝 =
2,388677 of the two-dimensional 𝑝-generalized normal dis-
tribution even if sample sizes are large. As a consequence, one
may ask, for example, for a mathematical method yielding a
sure decision about the first decimal place of parameter𝑝, say.
For a certain general 20-percent sensitivity and 𝑔-robustness
principle, established when dealing with another particular
problem, we refer to Application 2 and Section 3 in [16].

Example 9.
(a) Simulation in Dimension One. There are several possibili-
ties for simulating the𝑝-generalized normal distribution.The
𝑝-generalized polar method and the 𝑝-generalized rejecting
polar method are established in [17] and compared with
several methods known from the literature. Moreover, the
resulting recommendation for using which of the methods
in which situation is realized in the 𝑅-module “pgnorm”; see
[18].
(b) Simulation in Dimension Two. If dimension is 𝑛 = 2 and
𝐾 = 𝐵

𝑝
for some 𝑝 > 0 then 𝑆 = {(𝑥

1
, 𝑥

2
)
𝑇

∈ R2

:

|𝑥
1
|
𝑝

+ |𝑥
2
|
𝑝

= 1}. A random vector (𝑈
𝑝,1

, 𝑈
𝑝,2

)
𝑇 following

the star-generalized uniformdistribution𝜔
𝑆
onB

𝑆
allows the

stochastic representation

(𝑈
𝑝,1

, 𝑈
𝑝,2

)

𝑇 𝑑

= (cos
𝑝

(Φ) , sin
𝑝

(Φ))

𝑇

, (47)

where the generalized trigonometric functions

cos
𝑝

(𝜑) =

cos𝜑

𝑁
𝑝

(𝜑)

,

sin
𝑝

(𝜑) =

sin𝜑

𝑁
𝑝

(𝜑)

with 𝑁
𝑝

(𝜑) = (
󵄨
󵄨
󵄨
󵄨
sin𝜑

󵄨
󵄨
󵄨
󵄨

𝑝

+
󵄨
󵄨
󵄨
󵄨
cos𝜑

󵄨
󵄨
󵄨
󵄨

𝑝

)

1/𝑝

(48)

are introduced in [12] and applied to the class of 𝑙
𝑛,𝑝
-

symmetric distributions in [13], and the polar angle Φ has the
pdf

𝑓
Φ

(𝜑) =

𝑝Γ (2/𝑝)

4 (Γ (1/𝑝) 𝑁
𝑝

(𝜑))

2
𝐼
(0,2𝜋)

(𝜑) . (49)
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(a) 𝑓
𝑅
(𝑟) = 𝑓(𝑟; 1/3; 1.6, 2.6; 3, 4)
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(b) 𝑓
𝑅
(𝑟) = 𝑓(𝑟; 2/3; 1.9, 2.9; 3, 4)

Figure 9: Two-layer 𝑙
2,𝑝
-symmetric distributions sampled in 𝑘 = 2000 independent trials with 𝑝 = 2,388677.
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(a) 𝑘 = 1200
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(b) 𝑘 = 300

Figure 10: Independent realizations of two-layer 𝑙
2,𝑝
-symmetrically distributed random points where 𝑝 and 𝑓

𝑅
are as in Figure 9(b).

For a graphical representation of this function, we refer to
[17].

Let 𝑍 be uniformly distributed on the interval (0, 1),
𝑧
1
, . . . , 𝑧

𝑘
being realizations of it in 𝑘 independent trials, and

put 𝐹
Φ

(𝜑) = ∫

𝜑

0

𝑓
Φ

(𝜓)𝑑𝜓, 0 < 𝜑 < 2𝜋. Numerically solving
the equations

𝐹
Φ

(𝜑
𝑖
) = 𝑧

𝑖
with starting value 𝜑

𝑖,0
= 2𝜋𝑧

𝑖
,

𝑖 = 1, . . . , 𝑘,

(50)

yields the realizations (𝑢
(1)

𝑝,1
, 𝑢

(1)

𝑝,2
), . . . , (𝑢

(𝑘)

𝑝,1
, 𝑢

(𝑘)

𝑝,2
) of

(𝑈
𝑝,1

, 𝑈
𝑝,2

)
𝑇 from 𝑘 independent trials.

Moreover, let the random variable 𝑅 independently of
(𝑈

𝑝,1
, 𝑈

𝑝,2
)
𝑇 follow the density 𝑓

𝑅
(𝑟) = 𝑓(𝑟; 1/3; 1.6, 2.6; 3, 4)

where, with suitably chosen 𝑎 < 𝑏 < 𝑐 < 𝑑,

𝑓 (𝑟; 𝑝; 𝑎, 𝑏; 𝑐, 𝑑) = 𝑝𝐼
(𝑎,𝑏)

(𝑟) + (1 − 𝑝) 𝐼
(𝑐,𝑑)

(𝑟) ,

0 < 𝑝 < 1.

(51)

If 𝑟
1
, . . . , 𝑟

𝑘
are realizations of𝑅 in independent trials then

𝑦
𝑖

= 𝑟
𝑖
(𝑢

(𝑖)

𝑝,1
, 𝑢

(𝑖)

𝑝,2
), 𝑖 = 1, . . . , 𝑘, are realizations of a so-called

two-layer 𝑙
2,𝑝
-symmetrically distributed random vector 𝑌

which are represented in Figure 9(a). Similarly, Figure 9(b)
is drawn with 𝑓

𝑅
(𝑟) = 𝑓(𝑟; 2/3; 1.9, 2.9; 3, 4). Still using the

latter function but having smaller sample sizes, Figure 10 is
generated. It turns out that it becomes impossible to further
visually distinguish between the two layers for sample sizes
becoming too small.

We remark additionally that Figures 9 and 10 do not
represent elliptically contoured distributions as one might
argue at first glance.This again supports the above discussion
on introducing 20-percent 𝑔-robust decisions.

Finally, we notice that Figures 1–8 are generated with the
level density function of the two-dimensional 𝑝-generalized
normal density:

𝑓
𝑅

(𝑟) =

1

𝑝
2/𝑝−1

Γ (2/𝑝)

𝑟𝑒
−𝑟
𝑝

/𝑝

, 𝑟 > 0. (52)
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4. Proofs

The general method of proof in this paper can be divided into
two main parts. Using the properties of the support function
of a convex body, ℎ

𝐾
, in the first part it will be shown that

the absolute value of the Jacobian of a certain transformation
may be interpreted in terms of the normal vector 𝑁 to the
boundary of 𝐾. This allows according to Lemma 1 in [6]
representing the surface measureO

𝑆
as an integral of ℎ

𝐾
(𝑁).

The second part of the method of proof deals with a relation
between the functional ℎ

𝐾
(𝑁) and theMinkowski functional

of a suitably defined set 𝐾
∗, or 𝐾

𝑜. While, in the convex case,
𝐾

∗ is extensively studied, 𝐾
𝑜 yet has to be found in the most

general case when 𝐾 is radially concave with respect to a fan
in R𝑛.

Proof of Theorem 2. The support function of the convex body
𝐾 is defined as

ℎ
𝐾

(𝑢) = sup {𝑢
𝑇

𝑦 : 𝑦 ∈ 𝐾} , 𝑢 ∈ R
𝑛

. (53)

Recall that if 𝑢 ∈ 𝑆
(𝑛−1) then ℎ

𝐾
(𝑢) describes the distance

from the origin to the hyperplane with outer normal vector 𝑢

and supporting 𝐾. For compactness and continuity reasons,
the supremum is always attained:

∀𝑢 ∈ 𝑆
(𝑛−1)

∃𝑥
𝑆

(𝑢) ∈ 𝑆 : ℎ
𝐾

(𝑢) = 𝑢
𝑇

𝑥
𝑆

(𝑢) . (54)

The set of all such points 𝑥
𝑆
is called the supporting set of𝐾 at

𝑢. If the norm is smooth then 𝑥
𝑆
(𝑢) ∈ 𝑆 ∩ 𝑇(𝑢) where 𝑇(𝑢) is

the tangent hyperplane to 𝑆 at the point 𝑥
𝑆
(𝑢)with𝑇(𝑢) being

orthogonal to 𝑢. If 𝐾 is strongly convex then the supporting
set of 𝐾 at 𝑢 consists of just one point, thus 𝑥

𝑆
(𝑢) being then

always uniquely defined. Note that it may happen that a point
𝜉 ∈ 𝑆 satisfies 𝜉 = 𝑥

𝑆
(𝑢) for more than one point 𝑢 ∈ 𝑆

(𝑛−1).
To see this, assume that 𝑆 contains corner points and let 𝜉 be
such a corner point of 𝑆. As a consequence, even the union of
all supporting sets of a convex body may be finite.

According to Lemma 1 in [6],

O
𝑆

(𝐴) = ∫

𝐺(𝐴)

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜗

𝑇

, 𝜂 (𝜗)) 𝑁 (𝜗)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜗, (55)

where the function 𝜗 󳨃→ 𝜂(𝜗) is chosen such that 𝑑
𝐾

((𝜗
𝑇,

𝜂(𝜗))
𝑇

) = 1 describes the boundary 𝑆 of 𝐾. Note that here
𝑥 = (𝜗

𝑇

, 𝜂(𝜗))
𝑇

∈ 𝑆 and a.e. 𝑁(𝜗) = (∇𝜂(𝜗), −1)
𝑇 is the outer

normal vector of 𝑆 at (𝜗
𝑇

, 𝜂(𝜗))
𝑇, and thus (𝜗

𝑇

, 𝜂(𝜗))𝑁(𝜗) > 0.
It follows from (54) that

ℎ
𝐾

(𝑛 (𝜗)) = 𝑛 (𝜗)
𝑇

(𝜗
𝑇

, 𝜂 (𝜗))

𝑇

,

𝑛 (𝜗) =

𝑁 (𝜗)

|𝑁 (𝜗)|
𝐸

,

(56)

where | ⋅ |
𝐸
means the Euclidean norm. By the homogeneity

property of ℎ
𝐾
,

O
𝑆

(𝐴) = ∫

𝐺(𝐴)

ℎ
𝐾

(𝑁 (𝜗)) 𝑑𝜗. (57)

The theorem follows by the well known fact that ℎ
𝐾

= 𝑑
𝐾
∗ .

Proof of Theorem 3. We consider (𝜗
𝑇

, 𝜂(𝜗))
𝑇

∈ 𝑆 ∩ 𝐶
𝑖
and

denote the (a.e. defined) inner normal vector to the boundary
𝑆 of the antinorm ball 𝐾 at (𝜗

𝑇

, 𝜂(𝜗))
𝑇 by 𝑁(𝜗). Further we

put 𝑛(𝜗) = 𝑁(𝜗)/|𝑁(𝜗)|
2
and 𝑢 = −𝑛(𝜗). Then 𝑢 ∈ 𝑆

(𝑛−1)

∩ 𝐶
𝑖

and because 𝐾 ∈ AN1,
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
(𝜗

𝑇

, 𝜂 (𝜗))

𝑇

𝑛 (𝜗)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑇

𝑆,𝑖
(𝑛 (𝜗)) 𝑛 (𝜗)

󵄨
󵄨
󵄨
󵄨
󵄨

= inf {𝑛
𝑇

(𝜗) 𝑦 : 𝑦 ∈ 𝑆 ∩ 𝐶
𝑖
} .

(58)

Thus, |(𝜗
𝑇

, 𝜂(𝜗))
𝑇

𝑛(𝜗)| = ℎ
F

𝐾
(𝑛(𝜗)), and

O
𝑆

(𝐴) = ∫

𝐺(𝐴)

ℎ
F

𝐾
(𝑁 (𝜗)) 𝑑𝜗. (59)

The proof will be finished by the following lemma.

Lemma 10. The antisupport function of 𝐾 with respect toF is
equal to the distance function of 𝐾

𝑜, ℎ
F

𝐾
= 𝑑

𝐾
𝑜 .

Proof. The radial function of the radially concave star-shaped
set 𝐾

𝑜 is, on the one hand, by definition

󰜚
𝐾
𝑜 (𝑢) = sup {𝜆 ≥ 0 : 𝜆𝑢 ∈ 𝐾

𝑜

} =

1

ℎ
F

𝐾
(𝑢)

,

𝑢 ∈ 𝑆
(𝑛−1)

,

(60)

and allows, on the other hand, the representation

󰜚
𝐾
𝑜 (𝑢) = sup {𝜆 ≥ 0 : 𝑢 ∈

1

𝜆

𝐾
𝑜

}

=

1

inf {𝜇 ≥ 0 : 𝑢 ∈ 𝜇𝐾
𝑜
}

=

1

𝑑
𝐾
𝑜 (𝑢)

.

(61)

Thus ℎ
F

𝐾
= 𝑑

𝐾
𝑜 .

5. Discussion

To make both the similarity and the difference between
Theorems 2 and 3 more visible, let us remark that 𝐾

∗ allows
a representation looking similar to that of 𝐾

𝑜:

𝐾
∗

= {𝑦 ∈ R
𝑛

: 𝑦
𝑇

𝑥 ≤ 1, ∀𝑥 ∈ 𝐾}

= {𝜆 (𝑢) 𝑢 : 0 ≤ 𝜆 (𝑢) ℎ
𝐾

(𝑢) ≤ 1, 𝑢 ∈ 𝑆
(𝑛−1)

} .

(62)

For dealing with a combined example where both Theorems
2 and 3 apply, we recall that the function 𝑥 󳨃→ |𝑥|

𝑎,𝑝
is a norm

if 𝑝 ≥ 1 and, according to [11], an antinorm if 0 < 𝑝 ≤ 1.
Thus, 𝐾 = 𝐵

𝑎,𝑝
is convex if 𝑝 ≥ 1 and radially concave with

respect to the standard fan F if 0 < 𝑝 ≤ 1. Let 𝑞 be defined
by the equation 1/𝑝 + 1/𝑞 = 1, and 1/𝑎 = (1/𝑎

1
, . . . , 1/𝑎

𝑛
)
𝑇.

Note that if 𝑝 > 1 then 𝐾
∗

= 𝐵
1/𝑎,𝑞

, and if 0 < 𝑝 < 1 then
𝑞 < 0 and

𝐾
𝑜

= {𝑥 ∈ R
𝑛

:

𝑛

∑

𝑖=1

1

󵄨
󵄨
󵄨
󵄨
𝑎
𝑖
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

|𝑞|

≥ 1} (63)
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is a semiantinorm ball. For an illustration of such sets, see
[11]. Note that 𝑎 and 𝑝 are independently dealt with when
constructing the sets 𝐾

∗ and 𝐾
𝑜.

Remark 11. In the applications of Theorem 2, the surface
content of [(1/𝑟)(𝐵 − ])] ∩ 𝑆 (which may be considered as an
indivisible of the set 𝐵 − ]) is always measured with respect
to the metric 𝑑

𝐾
∗ . Successful applications of this generalized

method of indivisibles are surveyed in [6].The representation
of Theorem 2 generalizes those presented in the latter and
several earlier papers.

Remark 12. The set 𝐾
𝑜 in Section 3.2 is radially concave; thus

𝑑
𝐾
𝑜 is a semiantinorm.

Proof. We show that if 𝑥
1
and 𝑥

2
are from 𝐾

𝑜

∩ 𝐶 for some
𝐶 ∈ F then 𝜆𝑥

1
+ (1 − 𝜆)𝑥

2
∈ 𝐾

𝑜

∩ 𝐶 for 0 < 𝜆 < 1, where
𝐾

𝑜 means the complement of the set 𝐾
𝑜. Let 𝑥

1
= 𝜆

1
𝑢
1
, 𝑥

2
=

𝜆
2
𝑢
2
with 𝑢

𝑖
∈ 𝑆

(𝑛−1), 𝜆
𝑖

≥ 1/ℎ
F

𝐾
(𝑢

𝑖
), 𝑖 = 1, 2. Then

ℎ
F

𝐾
(𝜆𝑥

1
+ (1 − 𝜆) 𝑥

2
)

= ℎ
F

𝐾
(𝜆𝜆

1
𝑢
1
) + ℎ

F

𝐾
((1 − 𝜆) 𝜆

2
𝑢
2
)

≥

𝜆𝜆
1

𝜆
1

+

(1 − 𝜆) 𝜆
2

𝜆
2

= 1.

(64)
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