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We propose a systematic framework for Intelligence Video Surveillance System (IVSS) with a multicamera network. The proposed
framework consists of low-cost static and PTZ cameras, target detection and tracking algorithms, and a low-cost PTZ camera
feedback control algorithm based on target information. The target detection and tracking is realized by fixed cameras using a
moving target detection and tracking algorithm; the PTZ camera is manoeuvred to actively track the target from the tracking
results of the static camera. The experiments are carried out using practical surveillance system data, and the experimental results
show that the systematic framework and algorithms presented in this paper are efficient.

1. Introduction

Moving target detection and tracking has a variety of appli-
cations in the field of computer vision, such as intelligence
video surveillance, motion analysis, action recognition, envi-
ronmental monitoring, and disaster response. Normally, it is
quite easy and intuitive for humans to see and track targets
and recognize their actions. However, establishing an auto-
matic system without any intervention by humans is very
challenging. Especially, as the size of the camera network
grows with the development of the safe and smart city, it
becomes infeasible for human operators tomanuallymonitor
multiple video streams and identify all events of possible
interest, nor even to control individual cameras in perform-
ing advanced surveillance tasks, such as actively tracking a
moving target of interest to capture one or more close-up
snapshots. Therefore, an important task of the Intelligence
Video Surveillance System (IVSS) is to design multicamera
sensor networks capable of performing visual surveillance
tasks automatically or at least with minimum human inter-
vention. The design of an autonomous visual sensor network
as a problem in resource allocation and scheduling can be
found in [1]. Existing camera networks generally consist of

fixed cameras covering a large area. This results in situations
where targets are often not covered at desirable resolutions or
viewpoints, thusmaking it difficult to analyze videos, particu-
larly when there are special requirements on the targets, such
as detection and tracking precision, target positioning, and
target identification. Since the total number of cameras is usu-
ally restricted by various factors, for example, costs and place-
ment, in order to solve this problem, works have been intro-
duced by designing a combination of a pan, tilt, zoom (PTZ)
camera with multiple PTZ or fixed cameras in a master-slave
manner to complete some practical tasks [2–7]. A typical sys-
tem containsmultiple static and PTZ cameras, the static cam-
eras can cover a large area, the moving target detection and
tracking is done by the static cameras, and the PTZ cameras
are manoeuvred to actively track the target from the tracking
results of the static cameras with a central supervisor unit. For
this purpose, it is necessary to determine the geometrical rela-
tions between cameras by the camera calibration technology
[8–11].

To detect the moving targets from video frames of the
static cameras, one of the widely used algorithms is back-
ground subtraction approach [12, 13].When the video camera
is stationary, the background scene does not change, and,
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thus, it is very easy to construct a background model [14, 15].
It is critical that background images are efficiently and accu-
rately estimated for any robust background subtraction algo-
rithms. A model of the recent history is built for each pixel
location. The classification of new pixel values is achieved
by comparing each of them with the corresponding pixel
models. Background modeling techniques can be divided
into two categories: one is the parametric techniques that use
a parametric model for each pixel location and another is the
sample-based techniques that build their model by aggregat-
ing previously observed values for each pixel location [16]. A
well-known method presented by Stauffer and Grimson [14]
uses an adaptive strategy for parametric background model-
ing. In this technique, each pixel is modeled using a separate
Gaussian mixture, which is continuously learnt by an online
approximation. Target detection at the current frame is then
performed at the pixel level by comparing its value against the
most likely backgroundGaussians determined by a threshold.
However, since its sensitivity cannot be accurately tuned, its
ability to successfully handle both high- and low-frequency
changes in the background is debatable. To overcome these
shortages, sample-based techniques [17] circumvent a part of
the parameter estimation step by building their models from
observed pixel values and enhance their robustness to noise.
They provide fast responses to high-frequency events in the
background by directly including newly observed values in
their pixel models. However, their ability to successfully
handle concomitant events evolving at various speeds is
limited, since they update their pixel models in a first-in-
first-out manner, as its adaptive ability to deal with the con-
current events with different frequencies is limited. In order
to address this issue, a random background modeling that
improves sample-based algorithms can be found in [16].

Moving target tracking is an important processing step in
the field of computer vision and has been widely applied in
some practical applications, such as video surveillance [1],
intelligent transportation [18], and multiagent systems track-
ing and control [19]. The purpose of target tracking is to esti-
mate the position and the shape of any foreground region in
subsequent image frames. The termination of a track occurs
when a target can no longer be detected, because it leaves the
field of view, stops, and becomes static or can no longer be
distinguished from the background. The challenges in
designing a robust target tracking algorithm are caused by
occlusion, varying viewpoints, background clutter, and illu-
mination changes. During target tracking, a target is accu-
rately tracked by correctly associating a target detected in
subsequent image frames with the same identified track.
There are various approaches to completing this task. Classic
approaches include the multiple hypothesis tracker [20] and
the joint probabilistic data association filter [21].These meth-
ods and their variations commonly make use of the one-to-
one assumption, namely, that a target can generate at most
one measurement in each frame and a measurement can
originate from at most one target. However, the one-to-one
assumption is always difficult to hold in practical applications
due to the splitting and merging processes as well as the exis-
tence ofmultiple targets in the practical application scenes. In
recent years, several approaches have been proposed for

multiple targets tracking [22–25], and some applications
related to multitarget tracking have been realized by using
distributed cameras [1–3, 7, 26–28].

In this paper, we focus on the real time surveillance sys-
tem with a multicamera network, which includes static and
PTZ cameras, and the control system of active cameras. The
target detection and tracking is done by fixed cameras using a
moving target detection and tracking algorithm. Target coor-
dinates are transformed to appropriate pan and tilt values
using geometrical transformation, and then camera is moved
accordingly. The contribution of this paper lies in that we
design the real time control strategy of active cameras based
on the target information obtained by detection and tracking
algorithms.

The paper is organized as follows. The system framework
is presented in Section 2. The low-cost PTZ camera control
strategy based on target information is presented in Section 3.
The test results of target detection and tracking with a mul-
ticamera network are detailed in Section 4. Finally, we draw
some conclusion and shed light on future work in Section 5.

2. System Framework and Problem Statement

The work presented in this paper originates from a research
project on video surveillance applications in the Digital Navi-
gationCenter (DNC) at BeihangUniversity.The primary goal
of the project lies in the development of an IVSS platform.
Intelligence video surveillance in a large or complex environ-
ment requires the use of distributed multiple cameras. Since
the focal length of static cameras is fixed, they cannot be
used to realize some advanced surveillance tasks, such as
capturing high-quality videos of moving targets of interest,
actively tracking one or more moving targets of interest,
and capturing close-up image. For this reason, plenty of
researches have been dedicated to designing the combination
of a PTZ camera with multiple PTZ or fixed cameras in a
master-slave manner to complete some practical tasks [2–7,
25–28]. In this paper, we focus on some problems confronted
by the real time surveillance system with a multicamera net-
work in practical applications, in which the surveillance
system includes low-cost static and PTZ cameras as well as
algorithms.The target detection and tracking is done by fixed
cameras using a moving target detection and tracking algo-
rithm, and the target of interest is actively tracked by a PTZ
camera using a simple feedback control strategy. The whole
structure diagram is depicted in Figure 1.

3. Multicamera Target Tracking
and PTZ Camera Control

3.1. Multicamera and Multitargets Tracking. In this paper, we
focus on the design and application of a practical IVSS with a
multicamera network which consists of low-cost static and
PTZ cameras as well as algorithms. The low-cost static cam-
eras are placed at the perimeter, indoor and outdoor areas,
and used to realize targets detection and tracking by using
moving target detection and tracking algorithm.
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Figure 1: The structure diagram of IVSS with a multicamera network.

An experiment is carried out by using the video data.The
Gaussianmixturemodel [14], the randombackgroundmodel
[16], and an improved algorithm of tracking moving targets
under occlusions [29] are used for multitarget detection and
tracking, and the video data 1 is the evaluating data from
PETS database with the video image resolution of 768 × 576
pixel and the frame rate of 25 frame/s; the video data 2 is
practical surveillance system data from the DNC of Beihang
University, with the video image resolution of 352 × 288 pixel
and the frame rate of 25 frame/s.

The experimental results are shown in Figures 2, 3, 4, and
5. As can be seen from Figures 2 and 3, the tree which is
swinging in thewind is classified as foregroundmotion by the
Gaussianmixturemodel but is detected as the background by
the random background model. As can be seen from Figures
4 and 5, the target tracking algorithm is effective and has good
performance under occlusions.

3.2. Low-Cost PTZ Camera Control Strategy. The feedback
signal is unavailable for low-cost PTZ cameraswhich can only
implement one instruction within a certain time interval. In
addition, the relationship between time and the variety of
pan, tilt, and zoom is indeterminate. In order to solve this
problem, we propose a PTZ control algorithm based on the
target information feedback. The principle diagram of the
acquisition of feedback signal is illustrated in Figure 6.

The feedback signal of the PTZ control algorithm based
on the target information feedback is obtained by computing
the distance (e.g., the horizontal direction distance Δ

𝑥
( ̸= 0)

and the vertical direction distance Δ
𝑦
( ̸= 0)) and the orien-

tation between the centers of an image and the area of the
interesting target. Here, the area of the interesting target can

be computed as 𝑠 = 𝑤 × ℎ, where 𝑤 and ℎ denote the width
and height of the area of the interesting target. The PTZ will
receive a zoom instruction when the target is smaller than the
threshold. The position of the target in the next frame would
be estimated by a Kalman filtering. Then the PTZ control
instruction for the first frame can be calculated.

3.2.1. Determination of Directions. When calculating the off-
sets of the centroid of target (COT) to the center of image
(COI) Δ𝑥 and Δ𝑦, in order to adapt the direction with large
offset, we choose the larger values of Δ𝑥 and Δ𝑦 as the
rotational direction of the PTZ camera.

3.2.2. Determination of Velocity. Based on the rotational
speed of the PTZ camera, we adopt a linear approximation to
map the relationship between the speed and the central offsets
Δ𝑥 and Δ𝑦. In real applications, all the 16-level rotational
speeds are calibrated off line.

3.2.3. Realization of theMoving Prediction Based PTZ Camera
Control. The distance between COT and COI is chosen as
the feedback and the corresponding up-down, left-right, and
zoom in-out control instructions are sent according to the
calibrated rotational speed.

In order to adjust the target to the COI in the first frame,
after the position of the interesting target is obtained, the
average speed of the target can be obtained by its historical
moving information as follows:

𝑉
𝑡

𝑥
= (1 − 𝛽)𝑉

𝑡−1

𝑥
+ 𝛽 (𝐼

𝑥
(𝑡) − 𝐼

𝑥
(𝑡 − 1)) ,

𝑉
𝑡

𝑦
= (1 − 𝛽)𝑉

𝑡−1

𝑦
+ 𝛽 (𝐼

𝑦
(𝑡) − 𝐼

𝑦
(𝑡 − 1)) ,

(1)
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(a) Original video (b) Gaussian mixture model

(c) Random background model

Figure 2: The target detection results of video data 1.

(a) Original video (b) Gaussian mixture model

(c) Random background model

Figure 3: The target detection results of video data 2.
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(a) (b)

(c) (d)

Figure 4: The target tracking results of video data 1.

(a) (b)

(c) (d)

Figure 5: The target tracking results of video data 2.
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Figure 6: The principle diagram of the acquisition of feedback
signal.

where 𝑉𝑡
𝑥
and 𝑉𝑡

𝑦
denote the average speed on 𝑥 and 𝑦 dir-

ections at time 𝑡; 𝛽 denotes the update rate of the speed; and
𝐼
𝑥
(𝑡) and 𝐼

𝑦
(𝑡) denote the positions on 𝑥 and 𝑦 directions at

time 𝑡.
The position (𝑝

𝑥
, 𝑝
𝑦
) can be estimated by using the

Kalman filtering in the next frame in order to obtain the rel-
ative offset (𝜀

𝑥
, 𝜀
𝑦
) between the target and camera as follows:

𝜀
𝑥
= Δ
𝑥
− (𝑝
𝑥
− 𝑥) ,

𝜀
𝑦
= Δ
𝑦
− (𝑝
𝑦
− 𝑦) .

(2)

The state vector and observation vector for the Kalman
filtering can be represented as [29]

X (𝑘) = [𝑥 (𝑘) , 𝑦 (𝑘) , 𝑤 (𝑘) , ℎ (𝑘) , V
𝑥
(𝑘) , V
𝑦
(𝑘)]

𝑇

,

Z (𝑘) = [𝑥 (𝑘) , 𝑦 (𝑘) , 𝑤 (𝑘) , ℎ (𝑘)]𝑇,
(3)

where 𝑥(𝑘) and 𝑦(𝑘) denote the horizontal and vertical coor-
dinates of the centroid of the moving target; 𝑤(𝑘) and ℎ(𝑘)
denote the width and height of the external rectangle of the
moving target; and V

𝑥
(𝑘) and V

𝑦
(𝑘) denote the speeds of the

target.
According to the result of (2), one can find the most

approximate integer value (𝑝, 𝑡) which can be the rotational
speed of the PTZ in the first frame,

𝑝 = argmin
𝑖

(
󵄩
󵄩
󵄩
󵄩
𝜀
𝑥
− 𝑉
𝑖

󵄩
󵄩
󵄩
󵄩𝑖∈(0,16)
) ,

𝑡 = argmin
𝑗

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝜀
𝑦
− 𝑉
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩𝑗∈(0,16)
) .

(4)

Regarding the zoom control of a PTZ camera, in order to
alleviate the difficulties of detection and tracking in the pro-
cess of rotation control due to the changing size of targets, we
first realize the P/T rotation control of the PTZ camera and
then realize zoom control only if the distance between the
COT and COI is less than a predefined threshold.

Table 1: The rotating direction of the PTZ camera.

Parameters Rotating direction
𝜀
𝑥
> 0 Left
𝜀
𝑥
< 0 Right
𝜀
𝑦
> 0 Up
𝜀
𝑦
< 0 Down

Table 2: The parameters of PTZ camera.

Parameters Performance
Image sensor 1/4

󸀠󸀠 SONY EXVIEW CCD

Effective pixels PAL: 752 (H) × 582 (V)
NTSC: 768 (H) × 494 (V)

Focal length 3.5∼98mm, 28×
Zoom speed Approx. 1.7 s (optical wide-tele)
Angle of view 55.8∼2.1∘ (wide-tele)
Aperture range 𝐹1.35∼𝐹3.7
Pan range 360∘ endless

Pan speed Pan manual speed: 0.1∘ ∼300∘/s
Pan preset speed: 540∘/s

Tilt range −5∘ ∼185∘ (auto mirror)

Tilt speed Tilt manual speed: 0.1∘ ∼240∘/s
Tilt preset speed: 400∘/s

Number of preset 256

In the process of the zoom control, the size of targets may
change intensively if the camera zooms intensively. It brings
great challenges for the algorithm of target matching and
tracking. In order to solve the problem of zooming, we adopt
a gradual type of control strategy. The control signal is sent
every time in the minimal unit and the control process is
repeated until the zooming time is satisfied.The feedback sig-
nal is computed by 𝑠/𝑆, where 𝑠 and 𝑆 denote the target area
and the area of the field of view, respectively. If 𝑠/𝑆 is smaller
than the threshold, then send an instruction to zoom-in
image. If 𝑠/𝑆 equals the threshold, the zoom-in operation
will be terminated. If 𝑠/𝑆 is larger than the threshold, the
instruction of the zoom-out image will be sent.

During the continuous frame tracking, PTZ will adopt a
slightly adjusted tracking plan and recalculate the shift of the
target 𝜀

𝑥
= 𝜀
𝑥
+Δ
𝑥
and 𝜀
𝑦
= 𝜀
𝑦
+Δ
𝑦
, and then one can obtain

the corresponding values of 𝑝 and 𝑡.The tolerance of the COI
to the COT is set as 10 pixels and the direction of the rotation
will be determined by the sign of (𝜀

𝑥
, 𝜀
𝑦
), as shown in Table 1.

Once the system sends a control instruction, the PTZ will
respondwithin a certain interval. Awhole package of the PTZ
control needs 3 instructions at most and the response time is
about 40ms. Hence, the PTZ tracking system can be run in
real time.

The control algorithm is tested in this paper. The param-
eters of the PTZ camera are listed in Table 2. When the
P/T rotational control is finished, the results of zoom = 7 to
zoom = 28 are shown in Figure 7, and the active tracking
results of moving targets are illustrated in Figure 8.

From the experimental result, we can find that the zoom-
ing is smooth and the visual effect is in accordance with the



Discrete Dynamics in Nature and Society 7

(a) Frame 42 (b) Frame 48

(c) Frame 55 (d) Frame 66

Figure 7: The control results from zoom = 7 to zoom = 28.

law of human vision. The PTZ control can guarantee the
camera to rotate with themoving target and keep the target in
the center of the field of view. In the control process of the
PTZ camera, the performance of detection and tracking algo-
rithm strongly affects the result. If the detection and tracking
algorithm performs unsatisfactorily, one will lose the target,
which makes the PTZ camera have no feedback for the
sampled video that hinders the control for the PTZ camera.

4. Experimental Test

The system presented in this paper is tested, and the param-
eters of the PTZ cameras are shown in Table 2. All cameras
that include the static andPTZ cameras are calibrated, and the
coordinates of cameras are unified into the world coordinate
system. The target detection and tracking is done by static
cameras using a moving target detection and tracking algo-
rithm; the target of interest is actively tracked by the PTZ
cameras using a simple feedback control strategy.

In the area of surveillance, we set up some important
regions, entrances and exits, and design a joint tracking sys-
tem consisting of the PTZ cameras and static cameras. The
regions of entrance and exit are the regions where the target
arrives and departs. In order to track targets in the first time,
those regions are set as the initial regions for the PTZ camera,
as illustrated in Figure 9.

The area of surveillance is between the office building A
and the wall. The regions “a,” “b,” “c,” “d,” and “e” are the
regions covered by the static cameras (the corresponding
number of cameras is camera 1, camera 2,. . ., camera 5), where
region “a” is the start of the road which connects the gate and
other roads and also the region that targets must cross when
they are entering or departing.Therefore, the region “a” is set
as the entrance region and is set as preset 1 with the initial
preset of the PTZ camera. The region “c” is more important
than other regions, and thus it is set as the important preset,
that is, preset 2. The important preset possesses a higher
monitoring authority than the other preset.

When a target enters the area of surveillance and turns up
in the entrance region “a,” the static camera covering region
“a”will detect the target and track it.Meanwhile, a “Call initial
preset 1” instruction will be sent to the control system of the
PTZ camera. The PTZ camera will turn to the initial preset
1 and the target will be actively tracked by the active control
algorithm; following that the channel for the instruction of
“Call initial preset 1” will be cut off to prevent the circum-
stances of unclear targets. When a target enters region “c,” the
static camera covering region “c” will be in charge and a “Call
preset 2” instruction will be sent to the control system of the
PTZ camera. The PTZ camera will turn to preset 2 and the
target will be actively tracked.

The relay tracking results of a single walkingman in cam-
eras 1 and 2 are illustrated in Figure 10, and those in cameras
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(a) Frame 14 (b) Frame 15

(c) Frame 17 (d) Frame 20

Figure 8: The tracking result of the moving objects by controlling continuously PTZ camera.

Gate

Building A

Building B

abde c

Figure 9: The placement of static and PTZ cameras.

2 and 3 are shown in Figure 11. From the experimental results,
we canfind that the system is capable of continuously tracking
targets in different camera views.

When a target enters the entrance region of the surveil-
lance area, the static camera will detect the target and the PTZ
camera will be adjusted from patrol state to initial preset 1.
When the target turns up in the view of camera 3, namely,
the important region, it will be detected, and corresponding
instructions will be sent. The PTZ camera will be shifted to
preset 2.The feedback instructionwill be formed by the target

information and the PTZ camera will be controlled to track
the targets. The test result is shown in Figure 12.

5. Conclusion and Future Work

In this paper, the comprehensive design and implementation
of the IVSS platform based on a multicamera network were
presented. The system is composed of the low-cost static and
PTZ cameras, the target detection and tracking algorithms,
and the low-cost PTZ camera feedback control algorithm
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(a) (b)

Figure 10: The continuous tracking results between camera 1 and camera 2.

(a) (b)

Figure 11: The continuous tracking results between camera 2 and camera 3.

based on target information. The target detection and track-
ing is done by static cameras using a moving target detection
and tracking algorithm; the PTZ camera is commanded to
track actively the target from the tracking results of the static
cameras, and the target information is transformed to the
appropriate pan and tilt values using the geometrical trans-
formation, such that the camera is moved accordingly. The
test results of the target detection and tracking, active target
tracking algorithm, and multicamera target tracking system
were reported. Although the development of the multiple
target active tracking based on a multicamera network is still
challenging when there are more targets to be monitored in
the scene than PTZ cameras, we believe that the developed
low-cost PTZ control algorithm and scheduling strategy can
be widely applied to IVVS and extended to other visual
analysis systems.

The multicamera system that can realize the multitarget
tracking and active target tracking was verified by a prac-
tical IVVS. In addition, the low-cost PTZ camera control
algorithm and scheduling strategy were preliminary realized

too. However, the algorithm of controlling and scheduling
multiple PTZ cameras is undeveloped. Further research
works will be required to develop and test these algorithms,
and the tests of these algorithms in the practical IVVS will be
carried out as well.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This project is supported by the key program of the National
Natural Science Foundation of China (Grant no. 61039003),
the National Natural Science Foundation of China (Grant
no. 41274038), the Aeronautical Science Foundation of China
(Grant no. 2013ZC51027), the Aerospace Innovation Founda-
tion of China (CASC201102), and the Fundamental Research
Funds for the Central Universities.



10 Discrete Dynamics in Nature and Society

(a) Tracking target for static camera (b) Tracking target into important resign

(c) PTZ automatic patrolling (d) PTZ from patrolling mode to preset 2

(e) Frame 512 for PTZ camera tracking (f) Frame 879 for PTZ camera tracking

(g) Frame 1143 for PTZ camera tracking (h) Frame 1866 for PTZ camera tracking

Figure 12: The active tracking results of PTZ camera.
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