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The construction of exact solution for higher-dimensional nonlinear equation plays an important role in knowing some facts that
are not simply understood through common observations. In our work, (4+1)-dimensional nonlinear Fokas equation, which is an
important physical model, is discussed by using the extended F-expansion method and its variant. And some new exact solutions
expressed by Jacobi elliptic function, Weierstrass elliptic function, hyperbolic function, and trigonometric function are obtained.
The related results are enriched.

1. Introduction

It has recently become more interesting to obtain exact
solutions of nonlinear partial differential equations. These
equations are mathematical models of complex physical
phenomena that arise in engineering, applied mathemat-
ics, chemistry, biology, mechanics, physics, and so forth.
Thus, the investigation of the traveling wave solutions to
nonlinear evolution equations (NLEEs) plays an important
role in mathematical physics. A lot of physical models have
supported a wide variety of solitary wave solutions.

In the recent years, much efforts have been spent on
this task and many significant methods have been estab-
lished such as inverse scattering transform [1], Backlund and
Darboux transform [2], Hirota [3], homogeneous balance
method [4], symmetry reductions method [5–8], Jacobi
elliptic functionmethod [9], tanh-functionmethod [10], exp-
function method [11–13], simple equation method [14], the
meshless methods [15–20], 𝐺/𝐺-expansion method [21–23],
F-expansionmethod [24, 25], improved F-expansionmethod
[26, 27], and extended F-expansion method [28].

Wang and Li [25] developed a new algebraic method,
belonging to the simplest equation method [29–32], to seek
more new solutions of NLEEs that can be expressed as
polynomial in an elementary function which satisfies a more
general subequation than other subequations like Riccati
equation, auxiliary ordinary equation, elliptic equation, and

generalized Riccati equation. The Fans method not only
gives a unified formation to construct various traveling wave
solutions but also provides a guideline to classify the various
types of travelingwave solutions according to five parameters.
An extended F-expansion method is proposed by Yomba in
2005 by giving more solutions of the general subequation.
Using the new method, exact solutions of many NLEEs are
successfully obtained [28].

The higher-dimensional integrable model is one of the
important problems in mathematical physics which can be
obtained from several lower-dimensional integrable equa-
tions by extending Lax pairs to higher dimensions. Fokas [33]
extended the integrable Kadomtsev-Petviashvili and Davey-
Stewartson equation to present a new (4 + 1)-dimensional
(4-dimensional space and one-dimensional time) nonlinear
wave equation which is given by

4𝑢
𝑡𝑥
− 𝑢
𝑥𝑥𝑥𝑦

+ 𝑢
𝑥𝑦𝑦𝑦

+ 12𝑢
𝑥
𝑢
𝑦
+ 12𝑢𝑢

𝑥𝑦
− 6𝑢
𝑧𝑤
= 0. (1)

Due to important applications of higher-dimensional equa-
tions in real world problems, it is necessary to investigate
its analytic solutions. Therefore, (1) is studied by many
authors. In [34], Yang and Yan investigated symmetries of (1)
including point symmetries and the potential symmetries. In
[35], Lee et al. discussed the exact solutions of (1) bymodified
tanh-coth method, extended Jacobi elliptic function method,
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and the exp-function method. In [36], Kim obtained a group
of exact solutions using 𝐺/𝐺-expansion method.

In [37], we have successfully applied the extended F-
expansion method on a higher-order wave equation of KdV
type. In this work, we apply this method and its variant on
(4 + 1)-dimensional nonlinear Fokas equation for obtaining
new exact traveling solutions. Compared with [37], the
subequation is discussedmore in detail. Besides the four cases
discussed in [37], the other two cases of the subequation are
also considered, that is, ℎ

0
= ℎ
4
= 0 and ℎ

2
= ℎ
4
= 0, so we

can obtain richer results. In addition, in present paper two
forms of solution are adopted. They are (4) and (5). Equation
(4) is the same with the form in [37]. However, (5) is a new
form, by which some new solutions can be obtained. The
details can be found in Section 3.

The organization of the paper is as follows: in Section 2,
a brief description of the extended F-expansion for finding
traveling wave solutions of nonlinear equations is given. In
Section 3, we will study (1) by the extended F-expansion
methods. Finally conclusions are given in Section 4.

2. Description of the Extended
F-Expansion Methods

Based on F-expansion method, the main procedures of the
extended F-expansion method are as follows [22].

Step 1. Consider a general nonlinear PDE in the form

𝐹 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, . . .) = 0. (2)

Using 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, we can rewrite (2) as the
following nonlinear ODE:

𝐹 (𝑈,𝑈

, 𝑈

, . . .) = 0, (3)

where the prime denotes differentiation with respect to 𝜉.

Step 2. Suppose that the solution of ODE (3) can be written
as follows:

𝑈 (𝜉) = 𝐴
0
+

𝑛

∑
𝑖=1

(𝐴
𝑖
𝐹
𝑖

(𝜉) + 𝐵
𝑖
𝐹
−𝑖

(𝜉)) (4)

or

𝑈 (𝜉) = 𝐴
0
+

𝑛

∑
𝑖=1

(𝐴
𝑖
𝐹
𝑖

(𝜉) + 𝐵
𝑖
𝐹
𝑖−1
𝐹


(𝜉)) , (5)

where 𝐴
𝑖
, 𝐵
𝑖
(𝑖 = 1, 2, . . . 𝑛) are constants to be determined

later, 𝑛 is a positive integer that is given by the homogeneous
balance principle, and 𝐹(𝜉) satisfies the following equation:

(𝐹


(𝜉))
2

= ℎ
0
+ ℎ
1
𝐹 (𝜉) + ℎ

2
𝐹
2

(𝜉) + ℎ
3
𝐹
3

(𝜉) + ℎ
4
𝐹
4

(𝜉) ,

(6)

where ℎ
0
, ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
are constant.

Step 3. Substituting (4) or (5) along with (6) into (3) and then
setting all the coefficients of 𝐹𝑗(𝜉)𝐹𝑘(𝜉) (𝑗 = 1, 2, . . . , 𝑘 =

0, 1) of the resulting system to zero yields a set of over-
determined nonlinear algebraic equations for 𝐴

0
, 𝐴
𝑖
, 𝐵
𝑖
(𝑖 =

1, 2, . . . 𝑛).

Step 4. Assuming that the constants𝐴
0
,𝐴
𝑖
, 𝐵
𝑖
(𝑖 = 1, 2, . . . 𝑛)

can be obtained by solving the algebraic equations in Step 3
and then substituting these constants and the solutions of (6),
depending on the special conditions chosen for the ℎ

0
, ℎ
1
, ℎ
2
,

ℎ
3
, and ℎ

4
into (4) (or (5)), we can obtain the explicit solutions

of (2) immediately.

3. Exact Solutions of (1)
Making a transformation 𝑢(𝑥, 𝑦, 𝑧, 𝑡, 𝑤) = 𝜙(𝜉)with 𝜉 = 𝛼𝑥+
𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + 𝜖𝑡, (1) can be reduced to the following ODE:

(𝛼𝛽
3
− 𝛼
3
𝛽) 𝜙
(4)
+ (4𝛼𝜖 − 6𝛾𝛿) 𝜙



+ 12𝛼𝛽(𝜙

)
2

+ 12𝛼𝛽𝜙𝜙

= 0,

(7)

where 𝛼, 𝛽, 𝛾, 𝛿, and 𝜀 are nonzero constants. Balancing 𝜙(4)

and (𝜙)2 in (7), we obtain 𝑛 + 4 = 2𝑛 + 2 which gives 𝑛 = 2.
Suppose that (7) owns the solutions in the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1
𝐹 (𝜉) + 𝐴

2
𝐹
2

(𝜉) +
𝐵
1

𝐹 (𝜉)
+

𝐵
2

𝐹2 (𝜉)
. (8)

Substituting (8) and (6) into (7) and then setting all the
coefficients of 𝐹𝑘(𝑘 = −6, . . . , 6) of the resulting system to
zero, we can obtain the following results.

3.1. ℎ
3
= ℎ
4
= 0. In this situation, we obtain the following set

of nontrivial solutions:

{𝐴
1
= 𝐴
2
= 𝐵
1
= 0, 𝐵

2
= ℎ
0
(𝛼
2
− 𝛽
2
) ,

𝜖 =
−2𝛼𝛽3ℎ

2
+ 3𝛾𝛿 − 6𝛼𝛽𝐴

0
+ 2𝛼3𝛽ℎ

2

2𝛼
} ,

{𝐴
1
= 𝐵
1
= 𝐵
2
= 0, 𝐴

2
= ℎ
4
(𝛼
2
− 𝛽
2
) ,

𝜖 =
−2𝛼𝛽3ℎ

2
+ 3𝛾𝛿 − 6𝛼𝛽𝐴

0
+ 2𝛼3𝛽ℎ

2

2𝛼
} ,

{𝐴
1
= 𝐵
1
= 0, 𝐴

2
= ℎ
4
(𝛼
2
− 𝛽
2
) , 𝐵
2
= ℎ
0
(𝛼
2
− 𝛽
2
) ,

𝜖 =
−2𝛼𝛽3ℎ

2
+ 3𝛾𝛿 − 6𝛼𝛽𝐴

0
+ 2𝛼3𝛽ℎ

2

2𝛼
} ,

(9)

where 𝐴
0
, ℎ
0
, ℎ
2
, and ℎ

4
are arbitrary constants and 𝛼, 𝛽, 𝛾,

and 𝛿 are nonzero constants.
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Table 1: Solutions of 𝐹(𝜉) in 𝐹2 = ℎ
0
+ ℎ
2
𝐹2 + ℎ

4
𝐹4.

Case ℎ
0

ℎ
2

ℎ
4

𝐹(𝜉)

1 1 −(𝑚2 + 1) 𝑚2 sn(𝜉), cd(𝜉)
2 1 − 𝑚

2
𝑚
2
− 1 −𝑚

2 cn(𝜉)
3 𝑚2 − 1 2 − 𝑚2 −1 dn(𝜉)
4 𝑚2 −(𝑚2 + 1) 1 ns(𝜉), dc(𝜉)
5 −𝑚2 2𝑚2 − 1 1 − 𝑚2 nc(𝜉)
6 −1 2 − 𝑚2 𝑚2 − 1 nd(𝜉)
7 1 2 − 𝑚

2
1 − 𝑚

2 sc(𝜉)
8 1 2𝑚2 − 1 −𝑚2(1 − 𝑚2) sd(𝜉)
9 1 − 𝑚

2
2 − 𝑚

2 1 cs(𝜉)
10 −𝑚2(1 − 𝑚2) 2𝑚2 − 1 1 sd(𝜉)
11 1

4

1 − 2𝑚
2

2

1

4
ns(𝜉) ± cs(𝜉)

12 1 − 𝑚2

4

1 + 𝑚2

2

1 − 𝑚2

4
nc(𝜉) ± sc(𝜉)

13 𝑚2

4

𝑚2 − 2

2

1

4
ns(𝜉) ± ds(𝜉)

14 𝑚2

4

𝑚2 − 2

2

𝑚2

4
sn(𝜉) ± 𝑖 cn(𝜉)

Substituting (9) into (8), we obtain, respectively, the foll-
owing formal solution of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
ℎ
0
(𝛼2 − 𝛽2)

𝐹2 (𝜉)
, (10)

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ ℎ
4
(𝛼
2
− 𝛽
2
) 𝐹
2

(𝜉) , (11)

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ ℎ
4
(𝛼
2
− 𝛽
2
) 𝐹
2

(𝜉)

+
ℎ
0
(𝛼2 − 𝛽2)

𝐹2 (𝜉)
,

(12)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + 𝜖𝑡 and 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖 are
determined in (9).

When ℎ
1
= ℎ
3
= 0, the general elliptic equation (6) is

reduced to the auxiliary ordinary equation

𝐹


(𝜉)
2

= ℎ
0
+ ℎ
2
𝐹
2

(𝜉) + ℎ
4
𝐹
4

(𝜉) . (13)

The solutions of (13) are given inTable 1. Combining (10)–
(12) with Table 1, many exact solutions of (1) can be obtained.
For simplicity, we just give out one case in Table 1; the other
cases can be discussed similarly.

When ℎ
0
= 1, ℎ

2
= − (𝑚2 + 1), ℎ

4
= 𝑚2, the solution of

(13) is 𝐹(𝜉) = sn(𝜉, 𝑚) or 𝐹(𝜉) = cd(𝜉, 𝑚). Substituting them
into (10)–(12), we can obtain the following Jacobi Elliptic
function solutions of (1).

Form (10), one has

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
(𝛼2 − 𝛽2)

sn2 (𝜉, 𝑚)

= 𝐴
0
+ (𝛼
2
− 𝛽
2
) ns2 (𝜉, 𝑚) ,

(14)

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
(𝛼2 − 𝛽2)

cd2 (𝜉, 𝑚)

= 𝐴
0
+ (𝛼
2
− 𝛽
2
) dc2 (𝜉, 𝑚) ,

(15)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((−2𝛼𝛽3(−𝑚2 − 1) + 3𝛾𝛿 −
6𝛼𝛽𝐴

0
+ 2𝛼3𝛽(−𝑚2 − 1))/2𝛼)𝑡.

When𝑚 → 1, sn(𝜉, 𝑚) → tanh(𝜉), solution (14) becomes

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
(𝛼2 − 𝛽2)

tanh2 (𝜉)

= 𝐴
0
+ (𝛼
2
− 𝛽
2
) coth2 (𝜉) ,

(16)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((4𝛼𝛽3 + 3𝛾𝛿 − 6𝛼𝛽𝐴
0
−

4𝛼3𝛽)/2𝛼)𝑡.
When𝑚 → 0, dc(𝜉, 𝑚) → sec(𝜉), solution (15) becomes

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
(𝛼2 − 𝛽2)

cos2 (𝜉)

= 𝐴
0
+ (𝛼
2
− 𝛽
2
) sec2 (𝜉) ,

(17)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((2𝛼𝛽
3
+ 3𝛾𝛿 − 6𝛼𝛽𝐴

0
−

2𝛼3𝛽)/2𝛼)𝑡.
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From (11), we have

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑚
2
(𝛼
2
− 𝛽
2
) sn2 (𝜉, 𝑚) , (18)

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑚
2
(𝛼
2
− 𝛽
2
) cd2 (𝜉, 𝑚) , (19)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((−2𝛼𝛽3(−𝑚2 − 1) + 3𝛾𝛿 −
6𝛼𝛽𝐴

0
+ 2𝛼3𝛽(−𝑚2 − 1))/2𝛼)𝑡.

When 𝑚 → 1, sn(𝜉, 𝑚) → tanh(𝜉), solution (18)
becomes

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ (𝛼
2
− 𝛽
2
) tanh2 (𝜉) , (20)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((4𝛼𝛽
3 + 3𝛾𝛿 − 6𝛼𝛽𝐴

0
−

4𝛼3𝛽)/2𝛼)𝑡.
From (12), we have

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
(𝛼2 − 𝛽2)

sn2 (𝜉, 𝑚)

+ 𝑚
2
(𝛼
2
− 𝛽
2
) sn2 (𝜉, 𝑚) ,

(21)

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
(𝛼2 − 𝛽2)

cd2 (𝜉, 𝑚)

+ 𝑚
2
(𝛼
2
− 𝛽
2
) cd2 (𝜉, 𝑚) .

(22)

When𝑚 → 1, sn(𝜉, 𝑚) → tanh(𝜉), solution (21) becomes

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ (𝛼
2
− 𝛽
2
) coth2 (𝜉)

+ (𝛼
2
− 𝛽
2
) tanh2 (𝜉) ,

(23)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((4𝛼𝛽
3 + 3𝛾𝛿 − 6𝛼𝛽𝐴

0
−

4𝛼3𝛽)/2𝛼)𝑡.
When 𝑚 → 0, cd(𝜉, 𝑚) → cos(𝜉), solution (22)

becomes (17).

Remark 1. Considering the form of (5), we can suppose that
(7) owns the solutions in the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1
𝐹 (𝜉) + 𝐴

2
𝐹
2

(𝜉)

+ 𝐵
1
𝐹


(𝜉) + 𝐵
2
𝐹 (𝜉) 𝐹



(𝜉) .

(24)

Substituting (24) and (13) into (7) and then setting all the
coefficients of 𝐹𝑗(𝜉)𝐹𝑘(𝜉) (𝑗 = 0, 1, . . . , 5, 𝑘 = 0, 1) of the
resulting system to zero, we can obtain the following result:

{𝐴
1
= 𝐵
2
= 0, 𝐴

2
=
ℎ
4

2
(𝛼
2
− 𝛽
2
) , 𝐵
1
= ±

√ℎ
4

2
(𝛼
2
− 𝛽
2
) ,

𝜖 =
𝛼3𝛽ℎ
2
− 𝛼𝛽3ℎ

2
− 12𝛼𝛽𝐴

0
+ 6𝛾𝛿

4𝛼
} ,

(25)

where ℎ
0
, ℎ
2
, and 𝐴

0
are arbitrary constants, ℎ

4
> 0, and 𝛼,

𝛽, 𝛾, and 𝛿 are nonzero constants.

Substituting (25) into (24), we obtain the following formal
solution of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
ℎ
4

2
(𝛼
2
− 𝛽
2
) 𝐹
2

(𝜉)

±
√ℎ
4

2
(𝛼
2
− 𝛽
2
) 𝐹


(𝜉) .

(26)

Combining (26) with Table 1, many exact solutions of (1)
can be obtained. For simplicity, we just give out one case in
Table 1.

When ℎ
0
= 1, ℎ

2
= −(𝑚2 + 1), ℎ

4
= 𝑚2, the solution of

(13) is 𝐹(𝜉) = sn(𝜉, 𝑚) or 𝐹(𝜉) = cd(𝜉, 𝑚). Substituting them
into (10)–(12), we can obtain the following Jacobi Elliptic
function solutions of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡)

= 𝐴
0
+
𝑚2

2
(𝛼
2
− 𝛽
2
) sn2 (𝜉, 𝑚)

±
𝑚

2
(𝛼
2
− 𝛽
2
) cn (𝜉, 𝑚) dn (𝜉, 𝑚) ,

(27)

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡)

= 𝐴
0
+
𝑚2

2
(𝛼
2
− 𝛽
2
) cd2 (𝜉, 𝑚)

±
𝑚

2
(1 − 𝑚

2
) (𝛼
2
− 𝛽
2
) sn (𝜉, 𝑚) nd2 (𝜉, 𝑚) ,

(28)

where 𝜉 = 𝛼𝑥+𝛽𝑦+𝛾𝑧+𝛿𝑤+((𝛼3𝛽(−𝑚2−1)−𝛼𝛽3(−𝑚2−1)
−12𝛼𝛽𝐴

0
+ 6𝛿𝛾)/4𝛼)𝑡.

When 𝑚 → 1, sn(𝜉, 𝑚) → tanh(𝜉), cn(𝜉, 𝑚) →

sech(𝜉), and dn(𝜉, 𝑚) → sech(𝜉), solution (27) becomes

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡)

= 𝐴
0
+
1

2
(𝛼
2
− 𝛽
2
) tanh2 (𝜉)

±
1

2
(𝛼
2
− 𝛽
2
) sech2 (𝜉)

= 𝐴
0
+
𝛼2 − 𝛽2

2
(1 − 2sech2 (𝜉)) ,

(29)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((−2𝛼3𝛽 + 2𝛼𝛽3 − 12𝛼𝛽𝐴
0
+

6𝛿𝛾)/4𝛼)𝑡.
Some typical wave figures are given as follows. (14) is an

unbounded periodic wave solution, as shown in Figure 1(a).
As𝑚 increases, the period also increases gradually, as shown
in Figure 1(b). When𝑚 → 1, it becomes unbounded solitary
wave solution, as shown in Figure 1(c). (18) is a smooth peri-
odic wave solution, as shown in Figure 2(a). As 𝑚 increases,
the period also increases gradually, as shown in Figure 2(b).
When 𝑚 → 1, it becomes a solitary wave solution, as shown
in Figure 2(c).The figures of other solutions are similar, so we
do not give them out.
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Figure 1: 2-D figures of solution (14) with 𝛼 = 2, 𝛽 = 1, 𝐴
0
= 1 in the intervals 𝜉 ∈ [−6, 6].

3.2.ℎ
0
= ℎ
4
= 0. In this situation,we have the following result:

{𝐴
2
= 𝐵
1
= 𝐵
2
= 0, 𝐴

1
=
ℎ
3

4
(𝛼
2
− 𝛽
2
) ,

𝜖 =
−𝛼𝛽3ℎ

2
+ 𝛼3𝛽ℎ

2
+ 6𝛾𝛿 − 12𝛼𝛽𝐴

0

4𝛼
} ,

(30)

where 𝐴
0
, ℎ
1
, ℎ
2
, and ℎ

3
are arbitrary constants.

Substituting (30) into (8), we obtain the following formal
solution of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
ℎ
3

4
(𝛼
2
− 𝛽
2
) 𝐹 (𝜉) , (31)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + 𝜖𝑡 and 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖 are
determined in (30).

When ℎ
0
= ℎ
4
= 0, the general elliptic equation (6) is

reduced to the auxiliary ordinary equation

𝐹


(𝜉)
2

= ℎ
1
𝐹 (𝜉) + ℎ

2
𝐹
2

(𝜉) + ℎ
3
𝐹
3

(𝜉) . (32)

Combining (31) with solutions of (32), many exact solu-
tions of (1) can be obtained.The process is similar to the case
of ℎ
1
= ℎ
3
= 0; we omit it.
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Figure 2: 2-D figures of solution (18) with 𝛼 = 2, 𝛽 = 1, 𝐴
0
= 1 in the intervals 𝜉 ∈ [−6, 6].

3.3.ℎ
0
= ℎ
1
= 0. In this situation,we have the following result:

{𝐵
1
= 𝐵
2
= 0, 𝐴

1
=
ℎ
3

2
(𝛼
2
− 𝛽
2
) ,

𝐴
2
=
ℎ2
3

4ℎ
2

(𝛼
2
− 𝛽
2
) , ℎ
4
=
ℎ2
3

4ℎ
2

,

𝜖 =
−ℎ
2
𝛽3𝛼 + 6𝛾𝛿 − 12𝐴

0
𝛽𝛼 + ℎ

2
𝛽𝛼3

4𝛼
} ,

(33)

where 𝐴
0
, ℎ
2
, and ℎ

3
are arbitrary constants.

Substituting (33) into (8), we obtain the following formal
solution of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
ℎ
3

2
(𝛼
2
− 𝛽
2
) 𝐹 (𝜉)

+
ℎ
2

3

4ℎ
2

(𝛼
2
− 𝛽
2
) 𝐹(𝜉)

2

,

(34)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + 𝜖𝑡 and 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖 are
determined in (33).

When ℎ
0
= ℎ
1
= 0, the general elliptic equation (6) is

reduced to the auxiliary ordinary equation

𝐹


(𝜉)
2

= ℎ
2
𝐹(𝜉)
2

+ ℎ
3
𝐹
3

(𝜉) + ℎ
4
𝐹
4

(𝜉) . (35)
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Table 2: Solutions of (33) with Δ = ℎ2
3
− 4ℎ
2
ℎ
4
, 𝜀 = ±1.

Case ℎ
2
, Δ 𝐹(𝜉) Case ℎ

2
, Δ 𝐹(𝜉)

1 ℎ
2
> 0

−ℎ
2
ℎ
3
sech2((√ℎ

2
/2)𝜉)

ℎ2
3
− ℎ
2
ℎ
4
(1 + 𝜀 tanh((√ℎ

2
/2)𝜉)
2

2 ℎ
2
> 0

−ℎ
2
ℎ
3
csch2((√ℎ

2
/2)𝜉)

ℎ2
3
− ℎ
2
ℎ
4
(1 + 𝜀 coth((√ℎ

2
/2)𝜉)
2

3 ℎ
2
> 0, Δ > 0

2ℎ
2
sech(√ℎ

2
𝜉)

𝜀√Δ − ℎ
3
sech(√ℎ

2
𝜉)

4 ℎ
2
< 0, Δ > 0

2ℎ
2
sec(√−ℎ

2
𝜉)

𝜀√Δ − ℎ
3
sec(√−ℎ

2
𝜉)

5 ℎ
2
> 0, Δ < 0

2ℎ
2
csch(√ℎ

2
𝜉)

𝜀√−Δ − ℎ
3
csch(√ℎ

2
𝜉)

6 ℎ
2
< 0, Δ > 0

2ℎ
2
csc(√−ℎ

2
𝜉)

𝜀√Δ − ℎ
3
csc(√−ℎ

2
𝜉)

7 ℎ
2
> 0, ℎ

4
> 0

−ℎ
2
sech2((√ℎ

2
/2)𝜉)

ℎ
3
+ 2𝜀√ℎ

2
ℎ
4
tanh((√ℎ

2
/2)𝜉)

8 ℎ
2
< 0, ℎ

4
> 0

−ℎ
2
sec2((√−ℎ

2
/2)𝜉)

ℎ
3
+ 2𝜀√−ℎ

2
ℎ
4
tan((√−ℎ

2
/2)𝜉)

9 ℎ
2
> 0, ℎ

4
> 0

ℎ
2
csch2((√ℎ

2
/2)𝜉)

ℎ
3
+ 2𝜀√ℎ

2
ℎ
4
coth((√ℎ

2
/2)𝜉)

10 ℎ
2
< 0, ℎ

4
> 0

−ℎ
2
csc2((√−ℎ

2
/2)𝜉)

ℎ
3
+ 2𝜀√−ℎ

2
ℎ
4
cot((√−ℎ

2
/2)𝜉)

11 ℎ
2
> 0, Δ = 0

−ℎ
2

ℎ
3

(1 + 𝜀 tanh(
√ℎ
2

2
) 𝜉) 12 ℎ

2
> 0, Δ = 0

−ℎ
2

ℎ
3

(1 + 𝜀 coth(
√ℎ
2

2
) 𝜉)

13 ℎ
2
> 0

4ℎ
2
exp (𝜀√ℎ

2
𝜉)

(exp (𝜀√ℎ
2
𝜉) − ℎ

3
)
2

− 4ℎ
2
ℎ
4

14 ℎ
2
> 0, ℎ

3
= 0

4ℎ
2
exp (𝜀√ℎ

2
𝜉)

1 − 4ℎ
2
ℎ
4
exp (2𝜀√ℎ

2
𝜉)

If ℎ
2
> 0, ℎ2

3
− 4ℎ
2
ℎ
4
= 0, the solutions of (35) are given

by the following:

𝐹
1
(𝜉) =

−ℎ
2

ℎ
3

(1 ± coth(
√ℎ
2

2
𝜉 + 𝜉
0
)) ,

𝐹
2
(𝜉) =

−ℎ
2

ℎ
3

(1 ± tanh(
√ℎ
2

2
𝜉 + 𝜉
0
)) ,

(36)

where 𝜉
0
is arbitrary constant.

Substituting (36) into (34), we obtain the following hyper-
bolic function solutions of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
−
ℎ
2

2
(𝛼
2
− 𝛽
2
) (1 ± coth (𝜉 + 𝜉

0
))

+
ℎ
2

4
(𝛼
2
− 𝛽
2
) (1 ± coth (𝜉 + 𝜉

0
))
2

,

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
−
ℎ
2

2
(𝛼
2
− 𝛽
2
) (1 ± tanh (𝜉 + 𝜉

0
))

+
ℎ
2

4
(𝛼
2
− 𝛽
2
) (1 ± tanh (𝜉 + 𝜉

0
))
2

,

(37)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((−ℎ
2
𝛽3𝛼 + 6𝛾𝛿 − 12𝐴

0
𝛽𝛼 +

ℎ
2
𝛽𝛼3)/4𝛼)𝑡.

Remark 2. Considering the form of (5), we can suppose that
(7) owns the solutions in the form

𝜙 (𝜉) = 𝐴
0
+ 𝐴
1
𝐹 (𝜉) + 𝐴

2
𝐹
2

(𝜉)

+ 𝐵
1
𝐹


(𝜉) + 𝐵
2
𝐹 (𝜉) 𝐹



(𝜉) .

(38)

Substituting (38) and (35) into (7) and then setting all the
coefficients of 𝐹𝑗(𝜉)𝐹𝑘(𝜉) (𝑗 = 0, 1, . . . , 5, 𝑘 = 0, 1) of the
resulting system to zero, we can obtain the following result:

{𝐴
0
= 𝐴
0
, 𝐴
1
=
ℎ
3

4
(𝛼
2
− 𝛽
2
) , 𝐴
2
=
ℎ
4

2
(𝛼
2
− 𝛽
2
) ,

𝐵
1
= ±

√ℎ
4

2
(𝛼
2
− 𝛽
2
) , 𝐵
2
= 0,

𝜖 =
𝛼3𝛽ℎ
2
− 𝛼𝛽3ℎ

2
− 12𝛼𝛽𝐴

0
+ 6𝛿𝛾

4𝛼
} ,

(39)

where ℎ
0
, ℎ
2
, and 𝐴

0
are arbitrary constants, ℎ

4
⩾ 0, and 𝛼,

𝛽, 𝛾, and 𝛿 are nonzero constants.
The solutions of (35) are given in Table 2.
Substituting (39) into (38), we obtain the following formal

solution of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡)

= 𝐴
0
+
ℎ
3

4
(𝛼
2
− 𝛽
2
) 𝐹 (𝜉)

+
ℎ
4

2
(𝛼
2
− 𝛽
2
) 𝐹
2

(𝜉) ±
√ℎ
4

2
(𝛼
2
− 𝛽
2
) 𝐹


(𝜉) ,

(40)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + 𝜖𝑡 and 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖 are
determined in (39).
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Combining (40) with Table 2, many exact solutions of (1)
can be obtained. For simplicity, we do not list them carefully.
Using case 2 in Table 2, we can obtain the following type
of wave figures. Figures 3(a) and 3(b) are kink waves and
Figure 3(c) is new type of singular wave. It is interesting that
they are dependent on Δ = ℎ2

3
− 4ℎ
2
ℎ
4
.

3.4. ℎ
0
̸= 0, ℎ
1
̸= 0, ℎ
2
̸= 0, ℎ
3
̸= 0, ℎ
4
̸= 0. In this case, there

exists three parameters 𝑟, 𝑝, and 𝑞 such that

(𝐹


(𝜉))
2

= ℎ
0
+ ℎ
1
𝐹 (𝜉) + ℎ

2
𝐹
2

(𝜉)

+ ℎ
3
𝐹
3

(𝜉) + ℎ
4
𝐹
4

(𝜉)

= (𝑟 + 𝑝𝐹 (𝜉) + 𝑞𝐹
2

(𝜉))
2

.

(41)

Equation (41) is satisfied only if the following relations hold:

ℎ
0
= 𝑟
2
, ℎ

1
= 2𝑟𝑝, ℎ

2
= 2𝑟𝑞 + 𝑝

2
,

ℎ
3
= 2𝑝𝑞, ℎ

4
= 𝑞
2
.

(42)

Equation (33) is the general Riccati equation. The solu-
tions of (41) are listed in [12]. There are 24 group solutions
named 𝜙𝐼

𝑖
, (𝑖 = 1, 2, . . . 24), which we do not list for simplicity.

Substituting (41) and (8) into (7) and then setting all the
coefficients of 𝐹𝑘 (𝑘 = −5, . . . , 5) of the resulting system to
zero, we can obtain the following results:

{𝐴
0
= 𝐴
0
, 𝐵
1
= 𝐵
2
= 0, 𝐴

1
= 𝑝𝑞 (𝛼

2
− 𝛽
2
) ,

𝐴
2
= 𝑞
2
(𝛼
2
− 𝛽
2
) ,

𝜖 = (8𝛼
3
𝛽𝑞𝑟 + 𝛼

3
𝛽𝑝
2
− 𝛼𝛽
3
𝑝
2

−12𝛼𝛽𝐴
0
− 8𝛼𝛽

3
𝑞𝑟 + 6𝛾𝛿)

× (4𝛼)
−1 }

(43)

{𝐴
0
= 𝐴
0
, 𝐴
1
= 𝐴
2
= 0, 𝐵

1
= 𝑟𝑝 (𝛼

2
− 𝛽
2
) ,

𝐵
2
= 𝑟
2
(𝛼
2
− 𝛽
2
) ,

𝜖 = (8𝛼
3
𝛽𝑞𝑟 + 𝛼

3
𝛽𝑝
2
− 𝛼𝛽
3
𝑝
2

−12𝛼𝛽𝐴
0
− 8𝛼𝛽

3
𝑞𝑟 + 6𝛾𝛿)

× (4𝛼)
−1
} ,

(44)

where 𝑟, 𝑝, and 𝑞 are arbitrary constants, and

{𝐴
0
= 𝐴
0
, 𝐴
1
= 𝐵
1
= 𝑝 = 0,

𝐴
2
= 𝑞
2
(𝛼
2
− 𝛽
2
) , 𝐵
2
= 𝑟
2
(𝛼
2
− 𝛽
2
) ,

𝜖 =
4𝛼3𝛽𝑞𝑟 − 6𝛼𝛽𝐴

0
− 4𝛼𝛽3𝑞𝑟 + 3𝛾𝛿

2𝛼
} ,

(45)

where 𝑟 and 𝑞 are arbitrary constants.

Substituting (43)–(45) into (8), we obtain, respectively,
the following formal solutions of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑝𝑞 (𝛼

2
− 𝛽
2
) 𝐹 (𝜉)

+ 𝑞
2
(𝛼
2
− 𝛽
2
) 𝐹(𝜉)

2

,

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑟𝑝 (𝛼

2
− 𝛽
2
) 𝐹(𝜉)

−1

+ 𝑟
2
(𝛼
2
− 𝛽
2
) 𝐹(𝜉)

−2

,

(46)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((8𝛼3𝛽𝑞𝑟 + 𝛼3𝛽𝑝2 − 𝛼𝛽3𝑝2 −
12𝛼𝛽𝐴

0
− 8𝛼𝛽3𝑞𝑟 + 6𝛾𝛿)/4𝛼)𝑡, and

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑞
2
(𝛼
2
− 𝛽
2
) 𝐹(𝜉)

2

+ 𝑟
2
(𝛼
2
− 𝛽
2
) 𝐹(𝜉)

−2

,

(47)

where 𝜉 = 𝛼𝑥+𝛽𝑦+𝛾𝑧+𝛿𝑤+ ((4𝛼3𝛽𝑞𝑟− 6𝛼𝛽𝐴
0
−4𝛼𝛽3𝑞𝑟 +

3𝛾𝛿)/2𝛼)𝑡.
Substituting solutions of (41) 𝐹(𝜉) = 𝜙𝐼

𝑖
, (𝑖 = 1, 2, . . . 24)

into (46)–(47), we can obtain a lot of solutions of (1). We just
give one example.

When 𝑝2 − 4𝑝𝑞 > 0 and 𝑝𝑞 ̸= 0, 𝜙𝐼
1
= −(1/2𝑞)(𝑝 +

√𝑝2 − 4𝑞𝑟 tanh((√𝑝2 − 4𝑞𝑟/2)𝜉)). Substituting 𝜙𝐼
1
into (46)

and (51), we have

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑝𝑞 (𝛼

2
− 𝛽
2
) 𝜙
𝐼

1

+ 𝑞
2
(𝛼
2
− 𝛽
2
) 𝜙
𝐼

1

2

,

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑟𝑝 (𝛼

2
− 𝛽
2
) 𝜙
𝐼

1
− 1

+ 𝑟
2
(𝛼
2
− 𝛽
2
) 𝜙
𝐼

1

−2

,

(48)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + ((8𝛼3𝛽𝑞𝑟 + 𝛼3𝛽𝑝2 − 𝛼𝛽3𝑝2 −
12𝛼𝛽𝐴

0
− 8𝛼𝛽

3
𝑞𝑟 + 6𝛾𝛿)/4𝛼)𝑡.

When 𝑝 = 0, 𝑞𝑟 < 0, 𝜙 = 𝑟 tanh(√−𝑞𝑟𝜉). Substituting 𝜙
into (47), we have

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+ 𝑞
2
(𝛼
2
− 𝛽
2
) 𝜙
2

+ 𝑟
2
(𝛼
2
− 𝛽
2
) 𝜙
−2
,

(49)

where 𝜉 = 𝛼𝑥+𝛽𝑦+𝛾𝑧+𝛿𝑤+ ((4𝛼3𝛽𝑞𝑟− 6𝛼𝛽𝐴
0
−4𝛼𝛽3𝑞𝑟 +

3𝛾𝛿)/2𝛼)𝑡.

3.5. ℎ
0
̸= 0, ℎ
1
̸= 0, ℎ
2
= 0, ℎ

3
̸= 0, ℎ
4
̸= 0. In this case, there

exists three parameters 𝑟, 𝑝, and 𝑞 such that

(𝐹


(𝜉))
2

= ℎ
0
+ ℎ
1
𝐹 (𝜉) + ℎ

3
𝐹
3

(𝜉) + ℎ
4
𝐹
4

(𝜉)

= (𝑟 + 𝑝𝐹 (𝜉) + 𝑞𝐹
2

(𝜉))
2

.

(50)

Equation (50) is satisfied only if the following relations hold:

ℎ
0
= 𝑟
2
, ℎ

1
= 2𝑟𝑝, ℎ

3
= 2𝑝𝑞, ℎ

4
= 𝑞
2
.

(51)
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u
x

−6 −4 −2 2 4 6

10

5

0

−5

−10

(a) ℎ
3
= 1(Δ < 0)

u

x

−6 −4 −2 2 4 60

20

10

−10

−20

(b) ℎ
3
= 2(Δ = 0)

u

x

−6 −4 −2 2 4 60

150

100

50

−50

(c) ℎ
3
= 3(Δ > 0)

Figure 3: 2-D figures of solution (40) with 𝛼 = 2, 𝛽 = 1, 𝐴
0
= 0, ℎ

2
= ℎ
4
= 1 in the intervals 𝜉 ∈ [−6, 6].

The following constraint should exist between 𝑟, 𝑝, and 𝑞
parameters:

𝑝
2
= −2𝑞𝑟, 𝑞𝑟 < 0. (52)

Therefore, we can discuss the solution of (1) similarly as
3.4 under the condition (52). Here, we omit it.

3.6. ℎ
2
= 0, ℎ

4
= 0. In this situation, we have the following

result:

𝐴
2
= 𝐵
1
= 𝐵
2
= 0, 𝐴

1
=
ℎ
3

4
(𝛼
2
− 𝛽
2
) ,

𝜖 = −
3

2

−𝛾𝛿 + 2𝐴
0
𝛽𝛼

𝛼
.

(53)

Substituting (53) into (8), we obtain the following formal
solution of (1):

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
ℎ
3

4
(𝛼
2
− 𝛽
2
) 𝐹 (𝜉) , (54)

where 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 + 𝜖𝑡 and 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖 are
determined in (53).

When ℎ
2
= ℎ
3
= 0, the general elliptic equation (6) is

reduced to the auxiliary ordinary equation

𝐹


(𝜉)
2

= ℎ
0
+ ℎ
1
𝐹 (𝜉) + ℎ

3
𝐹
3

(𝜉) . (55)
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The solution of (55) is theWeierstrass elliptic doubly periodic
type solution is as follows:

𝐹 (𝜉) = ℘(
√ℎ
3

2
𝜉, 𝑔
2
, 𝑔
3
) , ℎ

3
> 0. (56)

Substituting (56) into (54), the solution of (1) is

𝑢 (𝑥, 𝑦, 𝑧, 𝑤, 𝑡) = 𝐴
0
+
ℎ
3

4
(𝛼
2
− 𝛽
2
) ℘(

√ℎ
3

2
𝜉, 𝑔
2
, 𝑔
3
) ,

ℎ
3
> 0,

(57)

where 𝑔
2
= −4ℎ

1
/ℎ
3
and 𝑔

3
= −4ℎ

0
/ℎ
3
.

4. Conclusions

The investigation of the exact solutions of higher-dimen-
sional integrable models is one of the important problems
in mathematical physics. In our work, (4 + 1)-dimensional
nonlinear Fokas equation (1), which is an important physical
model, is discussed by using the extended F-expansion
method and its variant. Some new exact solutions expressed
by Jacobi elliptic function, Weierstrass elliptic function,
hyperbolic function, and trigonometric function are obtained
and some typical wave figures are given including periodic
wave, solitary wave, kink wave, and some new types. The
correctness of all the solutions is verified by substituting them
into original equation (1). Comparing with [34–36], it is easy
to see that our method is more straightforward and the form
of the solutions obtained in our paper is alsomore simple and
many solutions are new. The related results are enriched.
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