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In this paper, control of fractional-order financial chaotic systems with saturated control input is investigated by means of state-
feedback control method. The saturation problem is tackled by using Gronwall-Bellman lemma and a memoryless nonlinearity
function. Based onGronwall inequality andLaplace transform technique, two sufficient conditions are achieved for the asymptotical
stability of the fractional-order financial chaotic systems with fractional orders 0 < 𝛼 ≤ 1 and 1 < 𝛼 < 2, respectively. Finally,
simulation studies are carried out to show the effectiveness of the proposed linear control method.

1. Introduction

In the past two decades, studies of chaotic systems have
received more and more attention in various fields of natural
sciences.This is because chaotic systems are rich in dynamics
and possess great sensitivity to initial conditions. Up to
now, econophysics has been raised to an alternative scientific
methodology to comprehend the highly complex dynamics
in economic and financial systems. Many economists are
working hard to explain the central features of economic
data, including erratic macroeconomic fluctuations (busi-
ness cycles), irregular microeconomic fluctuations, irregu-
lar growth, structural changes, and overlapping waves of
economic development [1, 2]. Representative effects, that
is, treated as random shocks, are political events, weather
variables, and other human factors [3–7]. Compared with
the opinion discussed above, chaos supports an endogenous
explanation of the complexity appeared in economic series.

Since chaos in financial systems was firstly studied in
1985, great impact has been put on the prominent economics
recently, because the occurrence of the chaotic phenomenon
in the economic system indicates that the macroeconomic
operation has in itself the inherent indefiniteness. Studies on
the complicated financial systems by using nonlinearmethod

are fruitful [2, 8, 9]. Controlling chaos in fractional-order
financial systems is also studied in recent years [10–18]. In
[15], an active sliding mode controller is constructed to syn-
chronize fractional-order financial chaotic systems inmaster-
slave structure. In [16], a necessary condition is introduced
to confirm the existence of 1-scroll, 2-scroll, or multiscroll
chaotic attractors in a fractional-order financial system and a
slidingmode controller is proposed. Active controlmethod is
also used in [17], and the variable-order fractional derivative
is defined in Caputo type. Wang et al. investigate impulsive
synchronization and adaptive-impulsive synchronization of a
novel financial hyperchaotic system [18]. In above literatures,
the stability analysis is carried out based on fractional-order
linear system stability theorem and only the situation where
fractional order 0 < 𝛼 ≤ 1 is concerned.

Most of real world technical systems are subjected to
input constraints, especially in financial systems. In financial
systems, input saturation does exist due to a limited size of
weather variables, political events, and other human factors.
The existence of input saturation may decrease the control
performance or cause oscillations and even lead to instability
of the system [19–21]. It is advisable for us to consider the
control of financial systems with input saturation. For the
integer-order linear and nonlinear systems, input saturation
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has received much attention from researchers in the past
decade. The sector bounded condition associated with input
nonlinearities is useful for analysis and synthesis of control
systems subject to input saturation. Then the stability of the
systemcan be formulated using Lyapunov stability theory and
invariant theory.

Though many research efforts have been put to the
fractional-order financial chaotic systems, the financial sys-
tems with saturated control input have rarely been inves-
tigated in literatures. Here, with the help of Laplace trans-
form, Mittag-Leffler function, and Gronwall inequality, a
linear controller will be derived for fractional-order financial
chaotic systems in this paper. There are some main contribu-
tions that are worth to be emphasized as follows.

(1) Two sufficient conditions are derived for the asymp-
totical stability of fractional-order financial chaotic
systems with fractional orders 0 < 𝛼 ≤ 1 and 1 <

𝛼 ≤ 2, respectively.
(2) A linear controller is given to control the fractional-

order financial chaotic system.
(3) A memoryless nonlinearity function is employed to

handle the input saturation problem in fractional-
order chaotic systems.

2. Preliminaries and System Description

2.1. Preliminaries. The Caputo definition of fractional-order
derivatives can be expressed as [21–24]

𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

0

𝑥
(𝑛)
(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,

(1)

where𝛼 represents the fractional order and the Euler function
Γ(⋅) is defined as Γ(𝜏) = ∫∞

0
𝑡
𝜏−1
𝑒
−𝑡
𝑑𝜏.

The Laplace transformof Caputo fractional derivative can
be given as

∫

∞

0

𝑒
−𝑠𝑡 𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) 𝑑𝑡 = 𝑠

𝛼
−

𝑛−1

∑

𝑘=0

𝑠
𝛼−𝑘−1

𝑥
(𝑘)
(0) . (2)

The following definition and lemmas will be used.

Definition 1. The Mittag-Leffler function with two parame-
ters can be written as

𝐸
𝛼,𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)

, (3)

where 𝛼, 𝛽 > 0 and 𝑧 ∈ 𝐶, and its Laplace transform can be
given as

L {𝑡
𝛽−1

𝐸
𝛼,𝛽

(−𝜆𝑡
𝛼
)} =

𝑠
𝛼−𝛽

𝑠
𝛼
+ 𝜆

. (4)

Lemma 2 (see [22]). If 𝐴 ∈ 𝑅
𝑛×𝑛

, 0 < 𝛼 ≤ 1, 𝛽 is an arbitrary
real number, and 𝐶 > 0 is a real constant, then

𝐸
𝛼,𝛽 (𝐴) ≤

𝐶

1 + ‖𝐴‖

, (5)

where 𝜇 ≤ | arg(eig (𝐴))| ≤ 𝜋 with 𝜇 ∈ 𝑅 satisfying 𝜋𝛼/2 <

𝜇 < min{𝜋, 𝜋𝛼}.

Lemma 3 (see [24]). If 𝑡 ∈ [0, 𝑇] and

𝑥 (𝑡) ≤ ℎ (𝑡) + ∫

𝑡

0

𝑘 (𝜏) 𝑥 (𝜏) 𝑑𝜏, (6)

where 𝑘(𝑡) ≥ 0 and all the functions involved are continuous
on the interval [0, 𝑇], then we can obtain

𝑥 (𝑡) ≤ ℎ (𝑡) + ∫

𝑡

0

𝑘 (𝜏) ℎ (𝜏) exp [∫
𝑡

𝜏

𝑘 (𝑢) 𝑑𝑢] 𝑑𝜏. (7)

Definition 4 (see [18]). A memoryless nonlinearity 𝜑(𝑡, 𝑥) :
[0,∞) × 𝑅

𝑝
→ 𝑅
𝑝 is said to satisfy a sector condition if the

following inequality holds:

(𝜑 (𝑡, 𝑥) − 𝐾1𝑥)
𝑇
(𝜑 (𝑡, 𝑥) − 𝐾2𝑥) ≤ 0, ∀𝑥 ∈ 𝑆 (8)

for constantmatrices𝐾1 and𝐾2, where𝐾2−𝐾1 is a symmetric
positive matrix and 𝑆 contains the origin.

Based on the Definition 4, the following lemma holds.

Lemma 5 (see [18]). Let

𝑆 (𝐿𝐾, 𝑢0) = {𝑥 (𝑡) ∈ 𝑅
𝑛
| −𝑢
0
≤ 𝐿𝐾𝑥 (𝑡) ≤ 𝑢0} , (9)

where 𝐿 = diag [𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
] with 0 < 𝑙

𝑖
≤ 1, ∀𝑖 = 1, 2, . . . , 𝑛,

and

𝜑 (𝑡, 𝑥 (𝑡)) = sat (𝐾𝑥 (𝑡)) − 𝐿𝐾𝑥 (𝑡) ; (10)

then the following inequalities are equivalent:

(1) (sat (𝐾𝑥(𝑡)) − 𝐿𝐾𝑥(𝑡))𝑇(sat(𝐾𝑥(𝑡)) − 𝐾𝑥(𝑡)) ≤ 0;
(2) 𝜑(𝑡, 𝑥(𝑡))𝑇(𝜑(𝑡, 𝑥(𝑡)) − (𝐾 − 𝐿𝐾)𝑥(𝑡)) ≤ 0;
(3) ‖𝜑(𝑡, 𝑥(𝑡))‖ ≤ ‖𝐾 − 𝐿𝐾‖‖𝑥(𝑡)‖.

Lemma 6. The autonomous dynamic system

𝐷
𝛼
𝑥 (𝑡) = 𝐴𝑥 (𝑡) , 𝑥 (0) = 𝑥0 (11)

is asymptotically stable if the following condition holds:




arg (eig (𝐴))


>

𝜋𝛼

2

. (12)

The stability region for 0 < 𝛼 < 1 is depicted in Figure 1.

2.2. Description of Fractional-Order Financial Chaotic Sys-
tems. The fractional-order financial chaotic systems are pro-
posed by [1]. The mathematical model describes a fractional-
order financial system including three nonlinear differential
equations. The states, 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡), represent the

interest rate, the investment demand, and the price index,
respectively. The fractional-order model of the system can be
described as

𝐶

0
𝐷
𝛼

𝑡
𝑥
1 (𝑡) = 𝑥3 (𝑡) + (𝑥2 (𝑡) − 𝑎) 𝑥1 (𝑡) ,

𝐶

0
𝐷
𝛼

𝑡
𝑥
2 (𝑡) = 1 − 𝑏𝑥2 (𝑡) − 𝑥

2

1
(𝑡) ,

𝐶

0
𝐷
𝛼

𝑡
𝑥
3 (𝑡) = −𝑥1 (𝑡) − 𝑐𝑥3 (𝑡) ,

(13)
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Figure 1: Stability region of linear system (11) with fractional order
0 < 𝛼 < 1.

where 𝑎 denotes the saving amount, 𝑏 is the cost per
investment, and 𝑐 is the elasticity of demand of commercial
market. 0 < 𝛼 < 2 is the fractional-order derivative.

3. State-Feedback Controller Design and
Stability Analysis

3.1. Fractional Order 𝛼: 0 < 𝛼 ≤ 1. Let us rewrite the
controlled system (13) as the following compact form:

𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑃𝑥 (𝑡) + 𝑓 (𝑥 (𝑡)) + [0, 1, 0]

𝑇
+ sat (𝑢 (𝑡)) ,

𝑥 (0) = 𝑥0,

(14)

where 𝑥(𝑡), 𝑢(𝑡) ∈ 𝑅
3, represent the state variables and the

control input, respectively. Consider that

𝑃 = [

[

−𝑎 0 1

0 −𝑏 0

−1 0 −𝑐

]

]

,

𝑓 (𝑥) = [

[

𝑥
1 (𝑡) 𝑥2 (𝑡)

−𝑥
2

1
(𝑡)

0

]

]

sat (𝑢) = [sat (𝑢1) , sat (𝑢2) , sat (𝑢3)]
𝑇

(15)

is the vector-valued saturation function with

sat (𝑢
𝑖
) = sign (𝑢

𝑖
)min (𝑢

0𝑖
,




𝑢
𝑖





) , 𝑖 = 1, 2, 3, (16)

where 𝑢
0𝑖
represents the symmetric saturation level of the 𝑖th

control input.
Noting that in chaotic systems the states are bounded, the

nonlinear function 𝑓(𝑥) satisfies





𝑓 (𝑥 (𝑡))





=




𝑥
1 (𝑡)





√𝑥
2

1
(𝑡) + 𝑥

2

2
(𝑡) ≤ 𝑀‖𝑥 (𝑡)‖ , (17)

where𝑀 > |𝑥
1
(𝑡)| is a constant.

Let us define the state-feedback control input as

𝑢 (𝑡) = 𝐾𝑥 (𝑡) + [0, −1, 0]
𝑇
, (18)

where𝐾 ∈ 𝑅
3×3 is the control gain matrix. Then we have

𝐶

0
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝑃𝑥 (𝑡) + [0, 1, 0]

𝑇
+ 𝑓 (𝑥 (𝑡))

+ sat (𝐾𝑥 (𝑡) + [0, −1, 0]𝑇)

= 𝐴𝑥 (𝑡) + 𝑓 (𝑥 (𝑡)) + 𝜑 (𝑡, 𝑥 (𝑡)) ,

(19)

where 𝐴 = 𝑃 + 𝐿𝐾.

Theorem 7. Consider system (14). If we choose matrices 𝐿 and
𝐾 such that| arg( eig (𝐴))| > 𝛼𝜋/2 and 𝛼‖𝐴‖ > 𝑑, then system
(14) is asymptotically stable. 𝑑 is a positive constant and will be
defined later.

Proof. Taking Laplace transform on (19), we can obtain

𝑠
𝛼
𝑋 (𝑠) = 𝑠

𝛼−1
𝑥
0
+ 𝐴𝑋 (𝑠) +L {𝑓 (𝑥)} +L {𝜑 (𝑡, 𝑥)} , (20)

where 𝑋(𝑠) represents the Laplace transform of 𝑥(𝑡). Let 𝐼
denote the 3 × 3 identity matrix; we have

𝑋 (𝑠) = (𝐼𝑠
𝛼
− 𝐴)
−1
(𝑠
𝛼−1

𝑥
0
+L {𝑓 (𝑥)} +L {𝜑 (𝑡, 𝑥)}) .

(21)

By taking Laplace inverse transform on (21), we get the
solution of system (14):

𝑥 (𝑡) = 𝐸𝑞,1 (𝐴(𝑡)
𝛼
) 𝑥
0
+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× 𝐸
𝛼,𝛼

(𝐴(𝑡 − 𝜏)
𝛼
) 𝑓 (𝑥) 𝑑𝜏

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝑡 − 𝜏)
𝛼
) 𝜑 (𝑡, 𝑥) 𝑑𝜏.

(22)

According to Lemma 2, we know there exist some con-
stants 𝑐

𝑖
> 0, 𝑖 = 1, 2, such that

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼
+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑐
2

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼





𝑓 (𝑥)





𝑑𝜏

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑐
2

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼





𝜑 (𝑡, 𝑥)





𝑑𝜏.

(23)

Then (23) can be rewritten as

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼
+𝑀∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑐2

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼
‖𝑥 (𝑡)‖ 𝑑𝜏

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑐
2

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼





𝜑 (𝑡, 𝑥)





𝑑𝜏.

(24)

From Definition 4 and Lemma 5, we know that 𝜑(𝑡, 𝑥(𝑡))
satisfies





𝜑 (𝑡, 𝑥 (𝑡))





≤ ‖𝐾 − 𝐿𝐾‖ ‖𝑥 (𝑡)‖ . (25)
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Let 𝑑 = 𝑀𝑐
2
+ 𝑐
2
‖𝐾 − 𝐿𝐾‖; we can obtain

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼
+ 𝑑∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼
‖𝑥 (𝑡)‖ 𝑑𝜏.

(26)

By using Lemma 3, we have

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼

+ ∫

𝑡

0

𝑑𝑐
1(𝑡 − 𝜏)

𝛼−1 


𝑥
0






(1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼
) (1 + ‖𝐴‖ 𝜏

𝛼
)

× exp(∫
𝑡

𝜏

𝑑(𝑡 − 𝑦)
𝛼−1

1 + ‖𝐴‖ (𝑡 − 𝑦)
𝛼 𝑑𝑦)𝑑𝜏

=

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼

+ ∫

𝑡

0

𝑑𝑐1(𝑡 − 𝜏)
𝛼−1 



𝑥
0






(1 + ‖𝐴‖ 𝜏
𝛼
) (1 + ‖𝐴‖ (𝑡 − 𝜏)

𝛼
)
1−𝑐/𝛼‖𝐴‖

𝑑𝜏

≤

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼

+ 𝑑𝑐
1





𝑥
0





‖𝐴‖
𝑑/𝛼‖𝐴‖−2

∫

𝑡

0

(𝑡 − 𝜏)
𝑑/‖𝐴‖−1

𝜏
−𝛼
𝑑𝜏

=

𝑐
1





𝑥
0






1 + ‖𝐴‖ 𝑡
𝛼
+ 𝑑𝑐
1





𝑥
0





‖𝐴‖
𝑐/𝛼‖𝐴‖−2

×

Γ (𝑑/ ‖𝐴‖) Γ (1 − 𝛼)

Γ (1 + 𝑑/ ‖𝐴‖ − 𝛼)

𝑡
𝑑/‖𝐴‖−𝛼

.

(27)

Since 𝛼‖𝐴‖ > 𝑑, from (27) we can conclude that

lim
𝑡→∞

‖𝑥 (𝑡)‖ = 0, (28)

and this ends the proof.

3.2. Fractional Order 𝛼: 1 < 𝛼 < 2. Let the initial conditions
be 𝑥(𝑖)(0) = 𝑥

𝑖
, 𝑖 = 1, 2. Then we have the following results.

Theorem 8. Consider system (14). If we choose matrices 𝐿 and
𝐾 such that| arg ( eig (𝐴))| > 𝛼𝜋/2 and (𝛼 − 1)‖𝐴‖ > 𝑑, then
system (14) is asymptotically stable. 𝑑 is a positive constant.

Proof. Similar to the proof of Theorem 8, taking the Laplace
transform and Laplace inverse transform on (14) gives

𝑥 (𝑡) = 𝐸𝑞,1 (𝐴(𝑡)
𝛼
) 𝑥1 +∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐸𝛼,𝛼 (𝐴(𝑡 − 𝜏)
𝛼
) 𝑓 (𝑥) 𝑑𝜏

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐸
𝛼,𝛼

(𝐴(𝑡 − 𝜏)
𝛼
) 𝜑 (𝑡, 𝑥) 𝑑𝜏

+ 𝑡𝐸
𝛼,2
(𝐴𝑡
𝛼
) 𝑥
2
.

(29)

According to Lemma 2, there exist positive constants
𝑐
𝑖
, 𝑖 = 1, 2, 3, such that

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
1






1 + ‖𝐴‖ 𝑡
𝛼
+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑐2

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼





𝑓 (𝑥)





𝑑𝜏

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑐
2

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼





𝜑 (𝑡, 𝑥)





𝑑𝜏 +

𝑐
3
𝑡




𝑥
2






1 + ‖𝐴‖ 𝑡
𝛼
.

(30)

From Definition 4 and Lemma 5, we know that 𝜑(𝑡, 𝑥(𝑡))
satisfies





𝜑 (𝑡, 𝑥 (𝑡))





≤ ‖𝐾 − 𝐿𝐾‖ ‖𝑥 (𝑡)‖ . (31)

Let 𝑑 = 𝑀𝑐
2
+ 𝑐
2
‖𝐾 − 𝐿𝐾‖; we can obtain

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
1





+ 𝑐
3
𝑡




𝑥
1






1 + ‖𝐴‖ 𝑡
𝛼

+ 𝑑∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼
‖𝑥 (𝑡)‖ 𝑑𝜏.

(32)

Then we have

‖𝑥 (𝑡)‖ ≤

𝑐
1





𝑥
1





+ 𝑐
3
𝑡




𝑥
1






1 + ‖𝐴‖ 𝑡
𝛼

+ ∫

𝑡

0

𝑑(𝑡 − 𝜏)
𝛼−1

(𝑐
1





𝑥
1





+ 𝑐
3
𝑡




𝑥
2





)

(1 + ‖𝐴‖ (𝑡 − 𝜏)
𝛼
) (1 + ‖𝐴‖ 𝜏

𝛼
)

× exp(∫
𝑡

𝜏

𝑑(𝑡 − 𝑦)
𝛼−1

1 + ‖𝐴‖ (𝑡 − 𝑦)
𝛼 𝑑𝑦)𝑑𝜏

=

𝑐
1





𝑥
1





+ 𝑐
3
𝑡




𝑥
1






1 + ‖𝐴‖ 𝑡
𝛼

+ ∫

𝑡

0

𝑑(𝑡 − 𝜏)
𝛼−1

(𝑐1





𝑥
1





+ 𝑐
3





𝑥
2





)

(1 + ‖𝐴‖ 𝜏
𝛼
) (1 + ‖𝐴‖ (𝑡 − 𝜏)

𝛼
)
1−𝑐/𝛼‖𝐴‖

𝑑𝜏

≤

𝑐
1





𝑥
1





+ 𝑐
3
𝑡




𝑥
1






1 + ‖𝐴‖ 𝑡
𝛼

+ 𝑑𝑐
1





𝑥
1





‖𝐴‖
𝑑/𝛼‖𝐴‖−2

∫

𝑡

0

(𝑡 − 𝜏)
1/‖𝐴‖−1

𝜏
−𝛼
𝑑𝜏

+ 𝑑𝑐
3





𝑥
2





‖𝐴‖
𝑑/𝛼‖𝐴‖−2

∫

𝑡

0

(𝑡 − 𝜏)
1/‖𝐴‖−1

𝜏
1−𝛼

𝑑𝜏

=

𝑐
1





𝑥
1





+ 𝑐
3
𝑡




𝑥
1






1 + ‖𝐴‖ 𝑡
𝛼

+ 𝑑𝑐1





𝑥
1





‖𝐴‖
𝑑/𝛼‖𝐴‖−2

×

Γ (𝑑/ ‖𝐴‖) Γ (1 − 𝛼)

Γ (1 + 𝑑/ ‖𝐴‖ − 𝛼)

𝑡
𝑑/‖𝐴‖−𝛼

+ 𝑑𝑐
3





𝑥
2





‖𝐴‖
𝑑/𝛼‖𝐴‖−2

×

Γ (𝑑/ ‖𝐴‖) Γ (2 − 𝛼)

Γ (2 + 𝑑/ ‖𝐴‖ − 𝛼)

𝑡
𝑑/‖𝐴‖+1−𝛼

.

(33)
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Since (𝛼 − 1)‖𝐴‖ > 𝑑, from (33) we know that

lim
𝑡→∞

‖𝑥 (𝑡)‖ = 0, (34)

and this ends the proof.

4. Simulation Studies

The system (14) has 3 equilibriums:

𝐸
1
= (0;

1

𝑏

; 0) ,

𝐸
2
= (√

𝑐 − 𝑏 − 𝑎𝑏𝑐

𝑐

;

1 + 𝑎𝑐

𝑐

; −

1

𝑐

√
𝑐 − 𝑏 − 𝑎𝑏𝑐

𝑐

) ,

𝐸
3
= (−√

𝑐 − 𝑏 − 𝑎𝑏𝑐

𝑐

;

1 + 𝑎𝑐

𝑐

;

1

𝑐

√
𝑐 − 𝑏 − 𝑎𝑏𝑐

𝑐

) .

(35)

The Jacobian matrix of the fractional-order chaotic sys-
tem (14), at the equilibrium 𝐸

∗
= [𝑥
∗
, 𝑦
∗
, 𝑧
∗
]
𝑇, can be given

as

𝐽
𝐸 =

[

[

−𝑎 + 𝑦
∗
𝑥
∗

1

−2𝑥
∗

−𝑏 0

−1 0 −𝑐

]

]

. (36)

Let 𝑎 = 1, 𝑏 = 0.1, and 𝑐 = 1. The eigenvalues for the
system equilibrium 𝐸

1
= (0; 10; 0) are 𝜆

1
= 8.8990, 𝜆

2
=

−0.8990, and 𝜆
3

= −0.1. And it is a saddle point. For
equilibrium points 𝐸

2
= (0.8944; 2; −0.8944) and 𝐸

3
=

(−0.8944; 2; 0.8944) they are 𝜆
1
= −0.7609 and 𝜆

2,3
=

0.3304 ± 1.4112𝑖. It is a saddle-focus point. Since it is an
unstable equilibrium, the condition for chaos is satisfied and
the system (14) can show chaotic behavior. We can easily
get the minimal commensurate order of the system which is
𝛼 > 0.8537.

Case 1 (0 < 𝛼 ≤ 1). Assume the fractional order is 𝛼 = 0.9.
The characteristic equation of the linearized system for the
equilibrium 𝐸

1
is

𝜆
27
− 7.9𝜆

18
− 8.8𝜆

9
− 0.8 = 0. (37)

The characteristic equation of the linearized system for
the equilibriums 𝐸

2
and 𝐸

3
is

𝜆
27
+ 0.1𝜆

18
+ 1.6𝜆

9
+ 1.6 = 0 (38)

and the unstable eigenvalues are 𝜆
1,2
= 1.0306 ± 0.1547𝑖.

Let the initial condition be 𝑥(0) = [2, −1, 1]𝑇. The chaotic
behavior of uncontrolled fractional-order financial system
(13) is shown in Figure 2.

The control gain matrices are chosen as 𝐿 =

diag[0.9, 0.9, 0.9].
Let

𝐴 = [

[

0 1 0

0 0 1

−2 −2 −3

]

]

; (39)
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3
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Figure 2: Chaotic attractor of fractional-order financial systemwith
fractional order 𝛼 = 0.90: (a) 𝑥

1
-𝑥
2
plane; (b) 𝑥

1
-𝑥
3
plane.

then we have ‖𝐴‖ = 4.2160. From simulation results (see
Figure 2), we know |𝑥

1
(𝑡)| ≤ 3. From 𝐴 = 𝑃 + 𝐿𝐾, we have

𝐾 = [

[

1.1111 1.1111 −1.1111

0 0.1111 1.1111

−1.1111 −2.2222 −2.2222

]

]

. (40)

From above discussion, we know ‖𝐴‖ = 4.2160 and
| arg(eig(𝐴))| = [3.1416, 1.8428, 1.8428]𝑇. Then we can easily
test that the conditions | arg(eig(𝐴))| > 𝛼𝜋/2 and 𝛼‖𝐴‖ > 𝑑

are satisfied.
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Figure 3: Time response of the state variables with fractional order
𝛼 = 0.90.
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Figure 4: Time response of the control inputs with fractional order
𝛼 = 0.90.

Let 𝑢01 = 𝑢02 = 𝑢03 = 2. The simulation results
can be seen in Figures 3 and 4. From the results, we can
see that the states variables converge rapidly. The involved
system is asymptotic stable. Figure 4 shows the boundedness
and smoothness of the saturated control inputs. It can be
concluded that good control performance has been achieved.

Case 2 (1 < 𝛼 < 2). Let the fractional order be 𝛼 = 1.04. The
chaotic behavior is depicted in Figure 5. In the simulation, the
control gain matrices are chosen as 𝐿 = diag[0.9, 0.9, 0.9],

𝐾 = [

[

1.1111 1.1111 −1.1111

0 0.1111 1.1111

−4.4444 −6.6667 −6.6667

]

]

; (41)
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Figure 5: Chaotic attractor of fractional-order financial systemwith
fractional order 𝛼 = 1.04: (a) 𝑥

1
-𝑥
2
plane; (b) 𝑥

1
-𝑥
3
plane.

then we have

𝐴 = 𝑃 + 𝐿𝐾 = [

[

0 1 0

0 0 1

−5 −6 −7

]

]

. (42)

From above discussion, we know ‖𝐴‖ = 10.5249 and
| arg(eig(𝐴))| = [3.1416, 2.0573, 2.0573]

𝑇. Then we have
| arg(eig(𝐴))| > 𝛼𝜋/2 and 𝛼‖𝐴‖ > 𝑑.

Let 𝑢
01
= 𝑢
02
= 𝑢
03
= 2. The simulation results can be

seen in Figures 6 and 7. From the simulation results we can
conclude that good control performance has been achieved.



Discrete Dynamics in Nature and Society 7

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

St
at

es

x1 (t)

x2 (t)

x3 (t)

0 5 10 15 20 25 30

Figure 6: Time response of the state variables with fractional order
𝛼 = 1.04.
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Figure 7: Time response of the control inputs with fractional order
𝛼 = 1.04.

5. Conclusions

We investigate the control problem for fractional-order finan-
cial chaotic systems subject to input saturation by means of
linear control. Two sufficient conditions are given for the
stabilization of such systems with fractional orders 0 < 𝛼 ≤ 1
and 1 < 𝛼 < 2, respectively. A state-feedback controller is
designed and the asymptotical stability of the involved system
is guaranteed. It is shown that state-feedback controller can
be designed to control the fractional-order financial chaotic
systems. Simulation studies confirm the results of this paper.
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