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The two variable (𝐺

/𝐺, 1/𝐺)-expansion method is employed to construct exact traveling wave solutions with parameters of two

higher order nonlinear evolution equations, namely, the nonlinear Klein-Gordon equations and the nonlinear Pochhammer-
Chree equations. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations
are rediscovered from the traveling waves. This method can be thought of as the generalization of well-known original (𝐺


/𝐺)-

expansion method proposed by Wang et al. It is shown that the two variable (𝐺

/𝐺, 1/𝐺)-expansion method provides a more

powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics.

1. Introduction

In the recent years, investigations of exact solutions to
nonlinear PDEs play an important role in the study of
nonlinear physical phenomena. Many powerful methods
have been presented, such as the inverse scattering method
[1], the Hirota bilinear transform method [2], the truncated
Painleve expansion method [3–6], the Backlund transform
method [7, 8], the exp-function method [9–13], the tanh-
function method [14–17], the Jacobi elliptic function expan-
sion method [18–20], the (𝐺


/𝐺)-expansion method [21–

30], the modified (𝐺

/𝐺)-expansion method [31], and the

(𝐺

/𝐺, 1/𝐺)-expansion method [32–34]. The key idea of the

one variable (𝐺

/𝐺)-expansion method is that the exact

solutions of nonlinear PDEs can be expressed by a polynomial
in one variable (𝐺


/𝐺) in which 𝐺 = 𝐺(𝜉) satisfies the

second order linear ODE 𝐺

(𝜉) + 𝜆𝐺


(𝜉) + 𝜇𝐺(𝜉) = 0,

where 𝜆 and 𝜇 are constants and  = 𝑑/𝑑𝜉. The key idea
of the two variable (𝐺


/𝐺, 1/𝐺)-expansion method is that

the exact traveling wave solutions of nonlinear PDEs can be
expressed by a polynomial in two variables (𝐺


/𝐺) and (1/𝐺)

in which 𝐺 = 𝐺(𝜉) satisfies the second order linear ODE
𝐺

(𝜉) + 𝜆𝐺(𝜉) = 𝜇, where 𝜆 and 𝜇 are constants. The degree

of this polynomial can be determined by considering the
homogeneous balance between the highest-order derivatives

and the nonlinear terms appearing in the given nonlinear
PDEs. The coefficients of this polynomial can be obtained
by solving a set of algebraic equations resulted from the
process of using this method. Recently, Li et al. [32] have
applied the (𝐺


/𝐺, 1/𝐺)-expansion method and determined

the exact solutions of Zakharov equations, while Zayed et al.
[33, 34] have used this method to find the exact solutions
of the combined KdV-mKdV equation and the Kadomtsev-
Petviashvili equation.

The objective of this paper is to apply the two variable
(𝐺

/𝐺, 1/𝐺)-expansion method to find the exact traveling

wave solutions of the higher order nonlinear Klein-Gordon
equations [35]

𝑢
𝑡𝑡

− 𝑘
2
𝑢
𝑥𝑥

+ 𝛼𝑢 − 𝛽𝑢
𝑛

+ 𝛾𝑢
2𝑛−1

= 0, 𝑛 > 2, (1)

and the higher order nonlinear Pochhammer-Chree equa-
tions [36]

𝑢
𝑡𝑡

− 𝑢
𝑥𝑥𝑡𝑡

− (𝛼𝑢 + 𝛽𝑢
𝑛+1

+ 𝛾𝑢
2𝑛+1

)
𝑥𝑥

= 0, 𝑛 ≥ 1, (2)

where 𝛼, 𝛽, 𝛾, and 𝑘 are constants.
Equation (1) plays an important role in many scientific

applications, such as the solid state physics, the nonlin-
ear optics, and the quantum field theory (see [37–39]).
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Wazwaz [40, 41] investigated the nonlinear Klein-Gordon
equations and foundmany types of exact traveling wave solu-
tions including compact solutions, soliton solution, solitary
patterns solutions, and periodic solutions using the tanh-
function method. Zayed and Gepreel [35] have found the
exact solutions of (1) using the (𝐺


/𝐺)-expansion method.

Equation (2) represents nonlinear models of longitudinal
wave propagation of elastic rods; see [42–47]. Zuo [36] has
discussed (2) using the extended (𝐺


/𝐺)-expansion method

and found the travelingwave solutions of these equations.The
rest of this paper is organized as follows. In Section 2, we give
the description of the two variable (𝐺


/𝐺, 1/𝐺)-expansion

method. In Section 3, we apply this method to solve (1) and
(2). In Section 4, some conclusions are given.

2. Description of the Two Variable
(𝐺

/𝐺, 1/𝐺)-Expansion Method

Before we describe the main steps of this method, we need
the following remarks (see [32–34]):

Remark 1. If we consider the second order linear ODE

𝐺


(𝜉) + 𝜆𝐺 (𝜉) = 𝜇, (3)

and set 𝜙 = 𝐺

/𝐺, 𝜓 = 1/𝐺, then we get

𝜙


= −𝜙
2

+ 𝜇𝜓 − 𝜆, 𝜓


= −𝜙𝜓, (4)

where 𝜆 and 𝜇 are constants.

Remark 2. If 𝜆 < 0, then the general solution of (3) has the
following form:

𝐺 (𝜉) = 𝐴
1
sinh (𝜉√−𝜆) + 𝐴

2
cosh (𝜉√−𝜆) +

𝜇

𝜆

, (5)

where 𝐴
1
and 𝐴

2
are arbitrary constants. Consequently, we

have

𝜓
2

=
−𝜆

𝜆
2
𝜎
1

+ 𝜇
2

(𝜙
2

− 2𝜇𝜓 + 𝜆) , (6)

where 𝜎
1

= 𝐴
2

1
− 𝐴
2

2
.

Remark 3. If 𝜆 > 0, then the general solution of (3) has the
following form:

𝐺 (𝜉) = 𝐴
1
sin (𝜉√𝜆) + 𝐴

2
cos (𝜉√𝜆) +

𝜇

𝜆

, (7)

and hence

𝜓
2

=
𝜆

𝜆
2
𝜎
2

− 𝜇
2

(𝜙
2

− 2𝜇𝜓 + 𝜆) , (8)

where 𝜎
2

= 𝐴
2

1
+ 𝐴
2

2
.

Remark 4. If 𝜆 = 0, then the general solution of (3) has the
following form:

𝐺 (𝜉) =

𝜇

2

𝜉
2

+ 𝐴
1
𝜉 + 𝐴

2
, (9)

and hence

𝜓
2

=
1

𝐴
2

1
− 2𝜇𝐴

2

(𝜙
2

− 2𝜇𝜓) . (10)

Suppose we have the following nonlinear evolution equation

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥

, . . .) = 0, (11)

where 𝐹 is a polynomial in 𝑢(𝑥, 𝑡) and its partial derivatives.
In the following, we give the main steps of the (𝐺


/𝐺, 1/𝐺)-

expansion method [32–34].

Step 1. The traveling wave transformation

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑥 − 𝐶𝑡, (12)

where 𝐶 is a constant and reduces (11) to an ODE in the
following form:

𝑃 (𝑢, 𝑢

, 𝑢

, . . .) = 0, (13)

where 𝑃 is a polynomial of 𝑢(𝜉) and its total derivatives with
respect to 𝜉.

Step 2. Assuming that the solution of (13) can be expressed
by a polynomial in the two variables 𝜙 and 𝜓 as follows:

𝑢 (𝜉) =

𝑁

∑

𝑖=0

𝑎
𝑖
𝜙
𝑖
+

𝑁

∑

𝑖=1

𝑏
𝑖
𝜙
𝑖−1

𝜓, (14)

where 𝑎
𝑖

(𝑖 = 0, 1, 2, . . . , 𝑁) and 𝑏
𝑖

(𝑖 = 1, 2, . . . , 𝑁) are
constants to be determined later.

Step 3. Determine the positive integer 𝑁 in (14) by using the
homogeneous balance between the highest-order derivatives
and the nonlinear terms in (13). In some nonlinear equations
the balance number 𝑁 is not a positive integer. In this case,
we make the following transformations [48]:

(a) when 𝑁 = 𝑞/𝑝, where 𝑞/𝑝 is a fraction in the lowest
terms, we let

𝑢 (𝜉) = V𝑞/𝑝 (𝜉) , (15)

then substitute (15) into (13) to get a new equation in
the new function V(𝜉) with a positive integer balance
number;

(b) when 𝑁 is a negative number, we let

𝑢 (𝜉) = V𝑁 (𝜉) , (16)

and substitute (16) into (13) to get a new equation in
the new function V(𝜉) with a positive integer balance
number.

Step 4. Substituting (14) into (13) along with (4) and (6), the
left-hand side of (13) can be converted into a polynomial in 𝜙

and 𝜓, in which the degree of 𝜓 is no longer than 1. Equating
each coefficients of this polynomial to zero yields a system of
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algebraic equations which can be solved by using the Maple
or Mathematica to get the values of 𝑎

𝑖
, 𝑏
𝑖
, 𝐶, 𝜇, 𝐴

1
, 𝐴
2
, and 𝜆,

where 𝜆 < 0.

Step 5. Similar to Step 4, substituting (14) into (13) along with
(4) and (8) for 𝜆 > 0 (or (4) and (10) for 𝜆 = 0), we obtain the
exact solutions of (13) expressed by trigonometric functions
(or by rational functions), respectively.

3. Applications

In this section, we will apply the method described in
Section 2 to find the exact traveling wave solutions of (1) and
(2) which are very important in themathematical physics and
have been paid attention to by many researchers.

Example 5. In this example, we start with the higher order
nonlinear Klein-Gordon equation (1). To this end, we see that
the traveling wave variable (12) permits us to convert (1) into
the following ODE:

(𝐶
2

− 𝑘
2
) 𝑢


+ 𝛼𝑢 − 𝛽𝑢
𝑛

+ 𝛾𝑢
2𝑛−1

= 0, 𝑛 > 2. (17)

Let us discuss the following two possibilities:
(I) If 𝛾 ̸= 0.
By balancing between 𝑢

 and 𝑢
2𝑛−1 in (17) we get 𝑁 =

1/(𝑛 − 1). According to Step 3, we use the transformation

𝑢 (𝜉) = V1/(𝑛−1) (𝜉) , (18)

where V(𝜉) is a new function of 𝜉. Substituting (18) into (17),
we get the new ODE

(𝐶
2

− 𝑘
2
) [

2 − 𝑛

(𝑛 − 1)
2
(V)
2

+
1

(𝑛 − 1)

VV] + 𝛼V2 − 𝛽V3 + 𝛾V4

= 0.

(19)

Determining the balance number 𝑁 of the new (19), we get
𝑁 = 1. Consequently, we get

V (𝜉) = 𝑎
0

+ 𝑎
1
𝜙 (𝜉) + 𝑏

1
𝜓 (𝜉) , (20)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined later.

There are three cases to be discussed as follows.

Case 1 (hyperbolic function solutions (𝜆 < 0)). If 𝜆 < 0,
substituting (20) into (19) and using (4) and (6), the left-hand
side of (19) becomes a polynomial in 𝜙 and 𝜓. Setting the

coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and 𝐶 as follows:

𝜙
4: 𝛾𝑎
4

1
+

2 (𝐶
2

− 𝑘
2
) 𝑎
2

1

(𝑛 − 1)

+

2 (𝐶
2

− 𝑘
2
) 𝑎
2

1

(𝑛 − 1)
2

+

𝜆
2
𝛾𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

(𝐶
2

− 𝑘
2
) 𝑛𝑎
2

1

(𝑛 − 1)
2

−

6𝜆𝛾𝑎
2

1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝜆𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝜆𝑏
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

(𝐶
2

− 𝑘
2
) 𝑛𝜆𝑏
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜙
3: − 𝛽𝑎

3

1
+ 4𝛾𝑎

0
𝑎
3

1
+

2 (𝐶
2

− 𝑘
2
) 𝑎
0
𝑎
1

(𝑛 − 1)

+

3𝛽𝜆𝑎
1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

12𝜆𝛾𝑎
0
𝑎
1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

8𝜆
2
𝛾𝜇𝑎
1
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

4 (𝐶
2

− 𝑘
2
) 𝜆𝜇𝑎
1
𝑏
1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

+

4 (𝐶
2

− 𝑘
2
) 𝜆𝜇𝑎
1
𝑏
1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝜇𝑎

1
𝑏
1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜙
3
𝜓: 4𝛾𝑎

3

1
𝑏
1

+

4 (𝐶
2

− 𝑘
2
) 𝑎
1
𝑏
1

(𝑛 − 1)

+

4 (𝐶
2

− 𝑘
2
) 𝑎
1
𝑏
1

(𝑛 − 1)
2

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝑎
1
𝑏
1

(𝑛 − 1)
2

−

4𝜆𝛾𝑎
1
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜙
2: 𝛼𝑎
2

1
− 3𝛽𝑎

0
𝑎
2

1
+ 6𝛾𝑎

2

0
𝑎
2

1
+

2𝜆
3
𝛾𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

2 (𝐶
2

− 𝑘
2
) 𝜆𝑎
2

1

(𝑛 − 1)

+

4 (𝐶
2

− 𝑘
2
) 𝜆𝑎
2

1

(𝑛 − 1)
2

−

𝛼𝜆𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

2𝛽𝜆
2
𝜇𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

3 (𝐶
2

− 𝑘
2
) 𝜆
2
𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝜆
2
𝑏
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

6𝜆𝛾𝑎
2

0
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝑎
2

1

(𝑛 − 1)
2

−

4𝜆
3
𝛾𝜇
2
𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
3

−

6𝜆
2
𝛾𝑎
2

1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

3𝛽𝜆𝑎
0
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

(𝐶
2

− 𝑘
2
) 𝑛𝜆
2
𝑏
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝜆𝜇
2
𝑎
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

8𝜆
2
𝛾𝜇𝑎
0
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

2 (𝐶
2

− 𝑘
2
) 𝜆
2
𝜇
2
𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

(𝐶
2

− 𝑘
2
) 𝑛𝜆𝜇
2
𝑎
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

(𝐶
2

− 𝑘
2
) 𝜆𝜇𝑎
0
𝑏
1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,
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𝜙
2
𝜓:

2 (𝐶
2

− 𝑘
2
) 𝑎
0
𝑏
1

(𝑛 − 1)

− 3𝛽𝑎
2

1
𝑏
1

−

3 (𝐶
2

− 𝑘
2
) 𝜇𝑎
2

1

(𝑛 − 1)

−

4 (𝐶
2

− 𝑘
2
) 𝜇𝑎
2

1

(𝑛 − 1)
2

+ 12𝛾𝑎
0
𝑎
2

1
𝑏
1

+

𝛽𝜆𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

4𝜆
2
𝛾𝜇𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

2 (𝐶
2

− 𝑘
2
) 𝑛𝜇𝑎
2

1

(𝑛 − 1)
2

−

4𝜆𝛾𝑎
0
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

5 (𝐶
2

− 𝑘
2
) 𝜆𝜇𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

+

4 (𝐶
2

− 𝑘
2
) 𝜆𝜇𝑏
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

12𝜆𝛾𝜇𝑎
2

1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝜇𝑏

2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜙: − 3𝛽𝑎
2

0
𝑎
1

+ 4𝛾𝑎
3

0
𝑎
1

+ 2𝛼𝑎
0
𝑎
1

+

2 (𝐶
2

− 𝑘
2
) 𝜆𝑎
0
𝑎
1

(𝑛 − 1)

+

3𝛽𝜆
2
𝑎
1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

8𝜆
3
𝛾𝜇𝑎
1
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

12𝜆
2
𝛾𝑎
0
𝑎
1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

4 (𝐶
2

− 𝑘
2
) 𝜆
2
𝜇𝑎
1
𝑏
1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

+

4 (𝐶
2

− 𝑘
2
) 𝜆
2
𝜇𝑎
1
𝑏
1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆
2
𝜇𝑎
1
𝑏
1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜙𝜓: 2𝛼𝑎
1
𝑏
1

− 6𝛽𝑎
0
𝑎
1
𝑏
1

+ 12𝛾𝑎
2

0
𝑎
1
𝑏
1

−

3 (𝐶
2

− 𝑘
2
) 𝜇𝑎
0
𝑎
1

(𝑛 − 1)

+

3 (𝐶
2

− 𝑘
2
) 𝜆𝑎
1
𝑏
1

(𝑛 − 1)

+

4 (𝐶
2

− 𝑘
2
) 𝜆𝑎
1
𝑏
1

(𝑛 − 1)
2

−

4𝜆
2
𝛾𝑎
1
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

16𝜆
2
𝛾𝜇
2
𝑎
1
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

6𝛽𝜆𝜇𝑎
1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝑎
1
𝑏
1

(𝑛 − 1)
2

−

8 (𝐶
2

− 𝑘
2
) 𝜆𝜇
2
𝑎
1
𝑏
1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

−

8 (𝐶
2

− 𝑘
2
) 𝜆𝜇
2
𝑎
1
𝑏
1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

24𝜆𝛾𝜇𝑎
0
𝑎
1
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

4 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝜇
2
𝑎
1
𝑏
1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜓: 4𝛾𝑎
3

0
𝑏
1

− 3𝛽𝑎
2

0
𝑏
1

+ 2𝛼𝑎
0
𝑏
1

+

𝛽𝜆
2
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

(𝐶
2

− 𝑘
2
) 𝜆𝑎
0
𝑏
1

(𝑛 − 1)

−

4𝜆
3
𝛾𝜇𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

4𝜆
2
𝛾𝑎
0
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

4 (𝐶
2

− 𝑘
2
) 𝜆𝜇𝑎
2

1

(𝑛 − 1)
2

−

4𝛽𝜆
2
𝜇
2
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

8𝜆
3
𝛾𝜇
3
𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
3

+

2𝛼𝜆𝜇𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

16𝜆
2
𝛾𝜇
2
𝑎
0
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

6𝛽𝜆𝜇𝑎
0
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

3 (𝐶
2

− 𝑘
2
) 𝜆
2
𝜇𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

+

4 (𝐶
2

− 𝑘
2
) 𝜆𝜇
3
𝑎
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

12𝜆𝛾𝜇𝑎
2

0
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝜇𝑎

2

1

(𝑛 − 1)
2

−

4 (𝐶
2

− 𝑘
2
) 𝜆
2
𝜇
3
𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

2 (𝐶
2

− 𝑘
2
) 𝜆𝜇
2
𝑎
0
𝑏
1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

−

2 (𝐶
2

− 𝑘
2
) 𝑛𝜆𝜇
3
𝑎
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0,

𝜙
0: 𝛼𝑎
2

0
− 𝛽𝑎
3

0
+ 𝛾𝑎
4

0
−

𝛼𝜆
2
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

𝜆
4
𝛾𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

2 (𝐶
2

− 𝑘
2
) 𝜆
2
𝑎
2

1

(𝑛 − 1)
2

+

2𝛽𝜆
3
𝜇𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

(𝐶
2

− 𝑘
2
) 𝜆
3
𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

+

3𝛽𝜆
2
𝑎
0
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

4𝜆
4
𝛾𝜇
2
𝑏
4

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
3

−

6𝜆
2
𝛾𝑎
2

0
𝑏
2

1

(𝜆
2
𝜎
1

+ 𝜇
2
)

−

(𝐶
2

− 𝑘
2
) 𝑛𝜆
2
𝑎
2

1

(𝑛 − 1)
2

−

8𝜆
3
𝛾𝜇𝑎
0
𝑏
3

1

(𝜆
2
𝜎
1

+ 𝜇
2
)
2

−

2 (𝐶
2

− 𝑘
2
) 𝜆
2
𝜇
2
𝑎
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

+

2 (𝐶
2

− 𝑘
2
) 𝜆
3
𝜇
2
𝑏
2

1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)
2

+

(𝐶
2

− 𝑘
2
) 𝜆
2
𝜇𝑎
0
𝑏
1

(𝑛 − 1) (𝜆
2
𝜎
1

+ 𝜇
2
)

+

(𝐶
2

− 𝑘
2
) 𝑛𝜆
2
𝜇
2
𝑎
2

1

(𝑛 − 1)
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

= 0.

(21)

On solving the above algebraic equations using the Maple or
Mathematica, we get the following results.

Result 1. Consider the following:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

=

𝑛𝛽 (𝜆
2
𝜎
1

+ 𝜇
2
)

𝜇𝜆𝛾 (𝑛 + 1)

,

𝐶 = ± √
(𝑛 − 1)

2
𝛼

𝜆

+ 𝑘
2
,

𝛼 =

𝑛𝛽
2

(𝜆
2
𝜎
1

+ 𝜇
2
)

𝜇
2
𝛾(𝑛 + 1)

2
,

(22)

where 𝜇 ̸= 0, 𝛾 ̸= 0, and 𝛽 ̸= 0.
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From (5), (20), and (22), we deduce the traveling wave
solution of (17) as follows:

𝑢 (𝜉)

= [

𝑛𝛽 (𝜆
2
𝜎
1

+ 𝜇
2
)

𝜇𝜆𝛾 (𝑛 + 1)

× (
1

𝐴
1
sinh (𝜉√−𝜆) + 𝐴

2
cosh (𝜉√−𝜆) + 𝜇/𝜆

)]

1/(𝑛−1)

,

(23)

where 𝜉 = 𝑥 ± 𝑡√(𝑛 − 1)
2
𝛼/𝜆 + 𝑘

2.

Result 2 (Figure 1). Consider the following:

𝑎
0

=

𝑛𝛽

2𝛾 (𝑛 + 1)

,

𝑎
1

= ±

𝑛𝛽√−1/𝜆

2𝛾 (𝑛 + 1)

,

𝑏
1

= ±

𝑛𝛽√𝜆
2
𝜎
1

+ 𝜇
2

2𝛾𝜆 (𝑛 + 1)

,

𝛼 =

𝑛𝛽
2

𝛾(𝑛 + 1)
2
,

𝐶 = ± √
(𝑛 − 1)

2
𝛼

𝜆

+ 𝑘
2
,

(24)

where 𝛾 ̸= 0 and 𝛽 ̸= 0.
In this result, we deduce the traveling wave solution of

(17) as follows:

𝑢 (𝜉)

=
[
[

[

𝑛𝛽

2𝛾 (𝑛 + 1)

±

𝑛𝛽

2𝛾 (𝑛 + 1)

× (

𝐴
1
cosh (𝜉√−𝜆) + 𝐴

2
sinh (𝜉√−𝜆)

𝐴
1
sinh (𝜉√−𝜆) + 𝐴

2
cosh (𝜉√−𝜆) + 𝜇/𝜆

)

±

𝑛𝛽

2𝜆𝛾 (𝑛 + 1)

× (

√𝜆
2
𝜎
1

+ 𝜇
2

𝐴
1
sinh (𝜉√−𝜆) + 𝐴

2
cosh (𝜉√−𝜆) + 𝜇/𝜆

)
]
]

]

1/(𝑛−1)

,

(25)

where 𝜉 = 𝑥 ± 𝑡√(𝑛 − 1)
2
𝛼/𝜆 + 𝑘

2.
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Figure 1:The plot of solution (27) when 𝜆 = −1, 𝛾 = 1, 𝛽 = 4, 𝑛 = 3,
and 𝑘 = 4.

In particular, by setting 𝐴
1

= 0, 𝐴
2

̸= 0, and 𝜇 = 0 in (25),
we have the solitary solution

𝑢 (𝜉) = [

𝑛𝛽

2𝛾 (𝑛 + 1)

±

𝑛𝛽

2𝛾 (𝑛 + 1)

× (tanh (𝜉√−𝜆) + 𝑖 sech (𝜉√−𝜆)) ]

1/(𝑛−1)

,

𝑖 = √−1,

(26)

while if 𝐴
1

̸= 0, 𝐴
2

= 0, and 𝜇 = 0, then we have the solitary
solution

𝑢 (𝜉) = [

𝑛𝛽

2𝛾 (𝑛 + 1)

±

𝑛𝛽

2𝛾 (𝑛 + 1)

× (coth(𝜉√−𝜆) + csch(𝜉√−𝜆)) ]

1/(𝑛−1)

.

(27)

Case 2 (trigonometric function solution (𝜆 > 0)). If 𝜆 > 0,
substituting (20) into (19) and using (4) and (8), the left-hand
side of (19) becomes a polynomial in 𝜙 and 𝜓. Setting the
coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and𝐶which are omitted
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here for simplicity. On using the Maple or Mathematica we
have found the following results:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

=

𝑛𝛽 (𝜇
2

− 𝜆
2
𝜎
2
)

𝜇𝜆𝛾 (𝑛 + 1)

,

𝐶 = ± √
(𝑛 − 1)

2
𝛼

𝜆

+ 𝑘
2
,

𝛼 =

𝑛𝛽
2

(𝜇
2

− 𝜆
2
𝜎
2
)

𝜇
2
𝛾(𝑛 + 1)

2
,

(28)

where 𝜇 ̸= 0, 𝛾 ̸= 0, and 𝛽 ̸= 0.
From (7), (20), and (28), we deduce the traveling wave

solution of (17) as follows:

𝑢 (𝜉) = [

𝑛𝛽 (𝜇
2

− 𝜆
2
𝜎
2
)

𝜇𝜆𝛾 (𝑛 + 1)

× (
1

𝐴
1
sin(𝜉√𝜆) + 𝐴

2
cos(𝜉√𝜆) + 𝜇/𝜆

) ]

1/(𝑛−1)

,

(29)

where 𝜉 = 𝑥 ± 𝑡√(𝑛 − 1)
2
𝛼/𝜆 + 𝑘

2.

Case 3 (rational function solutions (𝜆 = 0)). If 𝜆 = 0,
substituting (20) into (19) and using (4) and (10), the left-hand
side of (19) becomes a polynomial in 𝜙 and 𝜓. Setting the
coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, and 𝐶 which are omitted

here for simplicity. On using the Maple or Mathematica we
have found the following results:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

=

𝑛𝛽 (2𝜇𝐴
2

− 𝐴
2

1
)

𝜇𝛾 (𝑛 + 1)

,

𝐶 = ± √
𝛽
2
𝑛(𝑛 − 1)

2
(2𝜇𝐴

2
− 𝐴
2

1
)

𝜇
2
𝛾(𝑛 + 1)

2
+ 𝑘
2
,

𝛼 = 0.

(30)

From (9), (20), and (30), we deduce the traveling wave
solution of (17) as follows:

𝑢 (𝜉) = [

𝑛𝛽(2𝜇𝐴
2

− 𝐴
2

1
)

𝜇𝛾(𝑛 + 1)

(
1

(𝜇/2)𝜉
2

+ 𝐴
1
𝜉 + 𝐴

2

)]

1/(𝑛−1)

,

(31)

where 𝜉 = 𝑥 ± 𝑡√𝛽
2
𝑛(𝑛 − 1)

2
(2𝜇𝐴
2

− 𝐴
2

1
)/𝜇
2
𝛾(𝑛 + 1)

2
+ 𝑘
2.

(II) If 𝛾 = 0.
In this case, (17) converts to

(𝐶
2

− 𝑘
2
) 𝑢


+ 𝛼𝑢 − 𝛽𝑢
𝑛

= 0, 𝑛 > 2. (32)

By balancing between 𝑢
 and 𝑢

𝑛 in (32) we get 𝑁 = 2/(𝑛 − 1).
According to Step 3, we use the transformation

𝑢 (𝜉) = V2/(𝑛−1) (𝜉) , (33)

where V(𝜉) is a new function of 𝜉. Substituting (33) into (32),
we get the new ODE

(𝐶
2

− 𝑘
2
) [

2 (3 − 𝑛)

(𝑛 − 1)
2

(V)
2

+
2

(𝑛 − 1)

VV] + 𝛼V2 − 𝛽V4 = 0.

(34)

Determining the balance number 𝑁 of the new (34), we get
𝑁 = 1. Consequently, we get

V (𝜉) = 𝑎
0

+ 𝑎
1
𝜙 (𝜉) + 𝑏

1
𝜓 (𝜉) , (35)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined later.

There are three cases to be discussed as follows.

Case 1 (hyperbolic function solutions (𝜆 < 0)) (Figure 2).
If 𝜆 < 0, substituting (35) into (34) and using (4) and (6),
the left-hand side of (34) becomes a polynomial in 𝜙 and 𝜓.
Setting the coefficients of this polynomial to be zero yields
a system of algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and 𝐶

which are omitted here for simplicity. On using the Maple or
Mathematica we have found the following results:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

= ± √−
𝛼𝜎
1

(𝑛 + 1)

2𝛽

,

𝐶 = 𝐶,

𝜇 = 0,

𝜆 =
𝛼(𝑛 − 1)

2

4 (𝐶
2

− 𝑘
2
)

,

(36)

where 𝛼 ̸= 0 and 𝛽 ̸= 0.
From (5), (35), and (36), we deduce the traveling wave

solutions of (32) as follows:

𝑢 (𝜉) = [

[

±√−
𝛼𝜎
1

(𝑛 + 1)

2𝛽

× (𝐴
1
sinh(

(𝑛 − 1)

2
√−

𝛼

(𝐶
2

− 𝑘
2
)

𝜉)

+𝐴
2
cosh(

(𝑛 − 1)

2
√−

𝛼

(𝐶
2

− 𝑘
2
)

𝜉))

−1

]

]

2/(𝑛−1)

,

(37)

where 𝜉 = 𝑥 − 𝐶𝑡.
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Figure 2: The plot of solution (38) when 𝛼 = 1, 𝐶 = 1, 𝛽 = 1, 𝑛 = 3,
and 𝑘 = 2.

In particular, by setting 𝐴
1

= 0 and 𝐴
2

̸= 0 in (37), we
have the solitary wave solutions

𝑢 (𝜉) = [±√
𝛼(𝑛 + 1)

2𝛽

sech(
(𝑛 − 1)

2
√−

𝛼

(𝐶
2

− 𝑘
2
)

𝜉)]

2/(𝑛−1)

,

(38)

while if 𝐴
1

̸= 0 and 𝐴
2

= 0, then we have the solitary wave
solutions

𝑢 (𝜉)

= [±√−
𝛼(𝑛 + 1)

2𝛽

csch(
(𝑛 − 1)

2
√−

𝛼

(𝐶
2

− 𝑘
2
)

𝜉)]

2/(𝑛−1)

.

(39)

Case 2 (trigonometric function solution (𝜆 > 0)). If 𝜆 > 0,
substituting (35) into (34) and using (4) and (8), the left-hand
side of (34) becomes a polynomial in 𝜙 and 𝜓. Setting the
coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and𝐶which are omitted

here for simplicity. On using the Maple or Mathematica we
have found the following results:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

= ± √
𝛼𝜎
2

(𝑛 + 1)

2𝛽

,

𝐶 = 𝐶,

𝜇 = 0,

𝜆 =
𝛼(𝑛 − 1)

2

4 (𝐶
2

− 𝑘
2
)

,

(40)
where 𝛼 ̸= 0 and 𝛽 ̸= 0.

From (7), (35), and (40), we deduce the traveling wave
solutions of (32) as follows:

𝑢 (𝜉) = [

[

± √
𝛼𝜎
2

(𝑛 + 1)

2𝛽

× (𝐴
1
sin(

(𝑛 − 1)

2
√

𝛼

(𝐶
2

− 𝑘
2
)

𝜉)

+ 𝐴
2
cos(

(𝑛 − 1)

2
√

𝛼

(𝐶
2

− 𝑘
2
)

𝜉))

−1

]

]

2/(𝑛−1)

,

(41)

where 𝜉 = 𝑥 − 𝐶𝑡.
In particular, by setting𝐴

1
= 0 and𝐴

2
̸= 0 in (41), we have

the periodic solutions

𝑢 (𝜉) = [±√
𝛼(𝑛 + 1)

2𝛽

sec(
(𝑛 − 1)

2
√

𝛼

(𝐶
2

− 𝑘
2
)

𝜉)]

2/(𝑛−1)

,

(42)
while if 𝐴

1
̸= 0 and 𝐴

2
= 0, then we have the periodic

solutions

𝑢 (𝜉) = [±√
𝛼(𝑛 + 1)

2𝛽

csc(
(𝑛 − 1)

2
√

𝛼

(𝐶
2

− 𝑘
2
)

𝜉)]

2/(𝑛−1)

.

(43)

Case 3 (rational function solutions (𝜆 = 0)). If 𝜆 = 0,
substituting (35) into (34) and using (4) and (10), the left-
hand side of (34) becomes a polynomial in 𝜙 and 𝜓. Setting
the coefficients of this polynomial to be zero yields a systemof
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, and 𝐶 which are omitted

here for simplicity. On using the Maple or Mathematica we
have found the following results:

𝑎
0

= 0,

𝑎
1

= ±
1

𝑛 − 1

√
(𝐶
2

− 𝑘
2
) (𝑛 + 1)

2𝛽

,

𝑏
1

= 𝑏
1
,

𝐶 = 𝐶,

𝜇 =

𝐴
2

1
(𝐶
2

− 𝑘
2
) (𝑛 + 1) − 2𝛽𝑏

2

1
(𝑛 − 1)

2

2𝐴
1

(𝑛 + 1) (𝐶
2

− 𝑘
2
)

,

(44)

where 𝛽 ̸= 0.
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From (9), (35), and (44), we deduce the traveling wave
solution of (32) as follows:

𝑢 (𝜉) =
[
[

[

±
1

𝑛 − 1

√
(𝐶
2

− 𝑘
2
) (𝑛 + 1)

2𝛽

× (

𝜇𝜉 + 𝐴
1

(𝜇/2) 𝜉
2

+ 𝐴
1
𝜉 + 𝐴

2

)

+ (
𝑏
1

(𝜇/2)𝜉
2

+ 𝐴
1
𝜉 + 𝐴

2

)
]
]

]

2/(𝑛−1)

,

(45)

where 𝜉 = 𝑥 − 𝐶𝑡.

Example 6. In this example, we study the higher order
nonlinear Pochhammer-Chree equation (2). To this end, we
see that the traveling wave variable (12) permits us to convert
(2) into the following ODE:

𝐶
2
𝑢


− 𝐶
2
𝑢


− (𝛼𝑢 + 𝛽𝑢
𝑛+1

+ 𝛾𝑢
2𝑛+1

)



= 0. (46)

Integrating (46) twice with respect to 𝜉 and vanishing the
constants of integration, we get

(𝐶
2

− 𝛼) 𝑢 − 𝐶
2
𝑢


− 𝛽𝑢
𝑛+1

− 𝛾𝑢
2𝑛+1

= 0. (47)

Let us discuss the following two possibilities:
(I) If 𝛾 ̸= 0.
By balancing between 𝑢

 and 𝑢
2𝑛+1 in (47) we get 𝑁 =

1/𝑛. According to Step 3, we use the transformation

𝑢 (𝜉) = V1/𝑛 (𝜉) , (48)

where V(𝜉) is a new function of 𝜉. Substituting (48) into (47),
we get the new ODE

(𝐶
2

− 𝛼) 𝑛
2V2 − 𝐶

2
𝑛VV − 𝐶

2

(1 − 𝑛) (V)
2

− 𝛽𝑛
2V3 − 𝛾𝑛

2V4

= 0.

(49)

Balancing VV with V4 in (49), we get 𝑁 = 1. Consequently,
we get

V (𝜉) = 𝑎
0

+ 𝑎
1
𝜙 (𝜉) + 𝑏

1
𝜓 (𝜉) , (50)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined later.

There are three cases to be discussed as follows.

Case 1 (hyperbolic function solutions (𝜆 < 0)). If 𝜆 < 0,
substituting (50) into (49) and using (4) and (6), the left-hand
side of (49) becomes a polynomial in 𝜙 and 𝜓. Setting the

coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and 𝐶 as follows:

𝜙
4:

𝐶
2
𝜆𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

− 𝐶
2
𝑛𝑎
2

1
− 𝑛
2
𝛾𝑎
4

1
− 𝐶
2
𝑎
2

1
+

𝐶
2
𝑛𝜆𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

𝑛
2
𝜆
2
𝛾𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

6𝑛
2
𝜆𝛾𝑎
2

1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

= 0,

𝜙
3:

3𝑛
2
𝛽𝜆𝑎
1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

− 𝑛
2
𝛽𝑎
3

1
− 2𝐶
2
𝑛𝑎
0
𝑎
1

− 4𝑛
2
𝛾𝑎
0
𝑎
3

1

−

2𝐶
2
𝜆𝜇𝑎
1
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

+

12𝑛
2
𝜆𝛾𝑎
0
𝑎
1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

2𝐶
2
𝑛𝜆𝜇𝑎
1
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

+

8𝑛
2
𝜆
2
𝛾𝜇𝑎
1
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

= 0,

𝜙
3
𝜓:

4𝑛
2
𝜆𝛾𝑎
1
𝑏
3

1

𝜎
1
𝜆
2

+ 𝜇
2

− 2𝐶
2
𝑛𝑎
1
𝑏
1

− 4𝑛
2
𝛾𝑎
3

1
𝑏
1

− 2𝐶
2
𝑎
1
𝑏
1

= 0,

𝜙
2: 𝐶
2
𝑛
2
𝑎
2

1
− 2𝐶
2
𝜆𝑎
2

1
− 𝑛
2
𝛼𝑎
2

1
− 6𝑛
2
𝛾𝑎
2

0
𝑎
2

1
− 3𝑛
2
𝛽𝑎
0
𝑎
2

1

+

𝐶
2
𝜆
2
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

2𝑛
2
𝜆
3
𝛾𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

𝑛
2
𝛼𝜆𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

2𝐶
2
𝑛𝜆
2
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

𝐶
2
𝑛
2
𝜆𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

𝐶
2
𝜆𝜇
2
𝑎
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

6𝑛
2
𝜆𝛾𝑎
2

0
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

4𝑛
2
𝜆
3
𝛾𝜇
2
𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
3

+

2𝑛
2
𝛽𝜆
2
𝜇𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

6𝑛
2
𝜆
2
𝛾𝑎
2

1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

3𝑛
2
𝛽𝜆𝑎
0
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

2𝐶
2
𝑛𝜆
2
𝜇
2
𝑏
2

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

−

𝐶
2
𝑛𝜆𝜇
2
𝑎
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

𝐶
2
𝑛𝜆𝜇𝑎
0
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

+

8𝑛
2
𝜆
2
𝛾𝜇𝑎
0
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

= 0,

𝜙
2
𝜓: 2𝐶

2
𝜇𝑎
2

1
− 2𝐶
2
𝑛𝑎
0
𝑏
1

+ 𝐶
2
𝑛𝜇𝑎
2

1
− 3𝑛
2
𝛽𝑎
2

1
𝑏
1

− 12𝑛
2
𝛾𝑎
0
𝑎
2

1
𝑏
1

−

2𝐶
2
𝜆𝜇𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

𝑛
2
𝛽𝜆𝑏
3

1

𝜎
1
𝜆
2

+ 𝜇
2

−

3𝐶
2
𝑛𝜆𝜇𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

4𝑛
2
𝜆
2
𝛾𝜇𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

4𝑛
2
𝜆𝛾𝑎
0
𝑏
3

1

𝜎
1
𝜆
2

+ 𝜇
2

−

12𝑛
2
𝜆𝛾𝜇𝑎
2

1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

= 0,

𝜙: 2𝐶
2
𝑛
2
𝑎
0
𝑎
1

− 2𝑛
2
𝛼𝑎
0
𝑎
1

− 3𝑛
2
𝛽𝑎
2

0
𝑎
1

− 4𝑛
2
𝛾𝑎
3

0
𝑎
1

− 2𝐶
2
𝑛𝜆𝑎
0
𝑎
1

+

3𝑛
2
𝛽𝜆
2
𝑎
1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

2𝐶
2
𝜆
2
𝜇𝑎
1
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

+

12𝑛
2
𝜆
2
𝛾𝑎
0
𝑎
1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

2𝐶
2
𝑛𝜆
2
𝜇𝑎
1
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

+

8𝑛
2
𝜆
3
𝛾𝜇𝑎
1
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

= 0,
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𝜙𝜓: 2𝐶
2
𝑛
2
𝑎
1
𝑏
1

− 2𝑛
2
𝛼𝑎
1
𝑏
1

− 2𝐶
2
𝜆𝑎
1
𝑏
1

− 12𝑛
2
𝛾𝑎
2

0
𝑎
1
𝑏
1

+ 3𝐶
2
𝑛𝜇𝑎
0
𝑎
1

− 𝐶
2
𝑛𝜆𝑎
1
𝑏
1

− 6𝑛
2
𝛽𝑎
0
𝑎
1
𝑏
1

+

4𝑛
2
𝜆
2
𝛾𝑎
1
𝑏
3

1

𝜎
1
𝜆
2

+ 𝜇
2

+

4𝐶
2
𝜆𝜇
2
𝑎
1
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

−

6𝑛
2
𝛽𝜆𝜇𝑎
1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

16𝑛
2
𝜆
2
𝛾𝜇
2
𝑎
1
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

4𝐶
2
𝑛𝜆𝜇
2
𝑎
1
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

−

24𝑛
2
𝜆𝛾𝜇𝑎
0
𝑎
1
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

= 0,

𝜓: 2𝐶
2
𝑛
2
𝑎
0
𝑏
1

− 2𝑛
2
𝛼𝑎
0
𝑏
1

+ 2𝐶
2
𝜆𝜇𝑎
2

1
− 3𝑛
2
𝛽𝑎
2

0
𝑏
1

− 4𝑛
2
𝛾𝑎
3

0
𝑏
1

− 𝐶
2
𝑛𝜆𝑎
0
𝑏
1

− 2𝐶
2
𝑛𝜆𝜇𝑎
2

1

−

2𝐶
2
𝜆𝜇
3
𝑎
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

𝑛
2
𝛽𝜆
2
𝑏
3

1

𝜎
1
𝜆
2

+ 𝜇
2

−

4𝑛
2
𝛽𝜆
2
𝜇
2
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

4𝑛
2
𝜆
2
𝛾𝑎
0
𝑏
3

1

𝜎
1
𝜆
2

+ 𝜇
2

−

8𝑛
2
𝜆
3
𝛾𝜇
3
𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
3

+

4𝑛
2
𝜆
3
𝛾𝜇𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

−

2𝑛
2
𝛼𝜆𝜇𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

4𝐶
2
𝑛𝜆
2
𝜇
3
𝑏
2

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

2𝐶
2
𝑛𝜆𝜇
3
𝑎
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

3𝐶
2
𝑛𝜆
2
𝜇𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

2𝐶
2
𝑛
2
𝜆𝜇𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

6𝑛
2
𝛽𝜆𝜇𝑎
0
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

16𝑛
2
𝜆
2
𝛾𝜇
2
𝑎
0
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

−

12𝑛
2
𝜆𝛾𝜇𝑎
2

0
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

2𝐶
2
𝑛𝜆𝜇
2
𝑎
0
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

= 0,

𝜙
0: 𝐶
2
𝑛
2
𝑎
2

0
− 𝑛
2
𝛼𝑎
2

0
− 𝑛
2
𝛽𝑎
3

0
− 𝑛
2
𝛾𝑎
4

0
− 𝐶
2
𝜆
2
𝑎
2

1

+ 𝐶
2
𝑛𝜆
2
𝑎
2

1
−

𝐶
2
𝑛
2
𝜆
2
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

𝑛
2
𝜆
4
𝛾𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

𝐶
2
𝜆
2
𝜇
2
𝑎
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

𝐶
2
𝑛𝜆
3
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

𝑛
2
𝛼𝜆
2
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

3𝑛
2
𝛽𝜆
2
𝑎
0
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

𝐶
2
𝑛𝜆
2
𝜇
2
𝑎
2

1

𝜎
1
𝜆
2

+ 𝜇
2

+

4𝑛
2
𝜆
4
𝛾𝜇
2
𝑏
4

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
3

+

2𝑛
2
𝛽𝜆
3
𝜇𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

+

6𝑛
2
𝜆
2
𝛾𝑎
2

0
𝑏
2

1

𝜎
1
𝜆
2

+ 𝜇
2

−

2𝐶
2
𝑛𝜆
3
𝜇
2
𝑏
2

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

−

𝐶
2
𝑛𝜆
2
𝜇𝑎
0
𝑏
1

𝜎
1
𝜆
2

+ 𝜇
2

+

8𝑛
2
𝜆
3
𝛾𝜇𝑎
0
𝑏
3

1

(𝜎
1
𝜆
2

+ 𝜇
2
)
2

= 0.

(51)

On solving the above algebraic equations using the Maple or
Mathematica, we get the following results.

Result 1. Consider the following:

𝑎
0

= −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

,

𝑎
1

= ±

√(𝑛 + 1) [𝛽
2

(𝑛 + 1) − 𝛼𝛾(𝑛 + 2)
2
]

𝑛 (𝑛 + 2) 𝛾

,

𝑏
1

= 0,

𝜇 = 0,

𝜆 =

𝑛
2

(𝑛 + 1) 𝛽
2

4 [𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)]

,

𝐶 = ±

√𝛾 [𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)]

(𝑛 + 2) 𝛾

.

(52)

From (5), (50), and (52), we deduce the traveling wave
solution of (47) as follows:

𝑢 (𝜉)

= [

[

−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± (𝐴
1
cosh(

𝑛𝛽

2

√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+𝐴
2
sinh(

𝑛𝛽

2

√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))

× (𝐴
1
sinh(

𝑛𝛽

2

√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉) + 𝐴
2

× cosh(

𝑛𝛽

2

×√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))

−1

)]

]

1/𝑛

,

(53)

where 𝜉 = 𝑥 ± (√𝛾[𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)]/(𝑛 + 2)𝛾)𝑡, 𝛽 ̸= 0.

In particular, by setting 𝐴
1

= 0 and 𝐴
2

̸= 0 in (53), we
have the solitary wave solutions

𝑢 (𝜉)

= [ −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± tanh(

𝑛𝛽

2

√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))]

1/𝑛

,

(54)



10 Mathematical Problems in Engineering

while if 𝐴
1

̸= 0 and 𝐴
2

= 0, then we have the solitary wave
solutions

𝑢 (𝜉)

= [ −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± coth(

𝑛𝛽

2

√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

.

(55)

Note that the solutions (53), (54), and (55) are in agreement
with the solutions (16), (17), and (18) of [36], respectively.

Result 2. Consider the following:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

= ± 𝜆𝛼 (𝑛 + 2)

× √

𝜎
1

(𝑛 + 1)

(𝜆 + 𝑛
2
) [𝜆𝛼𝛾(𝑛 + 2)

2
− 𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
)]

,

𝜇 = ± 𝜆𝛽√
𝜎
1

(𝑛 + 1) (𝜆 + 𝑛
2
)

𝜆𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
)

,

𝜆 = 𝜆,

𝐶 = ± 𝑛√
𝛼

𝜆 + 𝑛
2
.

(56)

In this result, we deduce the traveling wave solution of (47)
as follows:
𝑢 (𝜉)

=
[
[

[

± √

𝜎
1

(𝑛 + 1)

(𝜆 + 𝑛
2
) [𝜆𝛼𝛾(𝑛 + 2)

2
− 𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
)]

× (𝜆𝛼 (𝑛 + 2)

× (𝐴
1
sinh (√−𝜆𝜉) + 𝐴

2
cosh (√−𝜆𝜉) ± 𝛽

×√
𝜎
1

(𝑛 + 1) (𝜆 + 𝑛
2
)

𝜆𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
)

)

−1

)
]
]

]

1/𝑛

,

(57)

where 𝜉 = 𝑥 ± 𝑛√(𝛼/𝜆 + 𝑛
2
)𝑡.

In particular, by setting 𝐴
1

= 0, 𝐴
2

̸= 0, and 𝛽 = 0 in (57),
we have the solitary wave solutions

𝑢 (𝜉) = [±√−
(𝑛 + 1)𝜆𝛼

(𝜆 + 𝑛
2
)𝛾

sech(√−𝜆𝜉)]

1/𝑛

; (58)

while if 𝐴
1

̸= 0, 𝐴
2

= 0, and 𝛽 = 0, then we have the solitary
wave solutions

𝑢 (𝜉) = [±√
(𝑛 + 1)𝜆𝛼

(𝜆 + 𝑛
2
)𝛾

csch(√−𝜆𝜉)]

1/𝑛

. (59)

Result 3. Consider the following:

𝑎
0

= −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

,

𝑎
1

= ±

√(𝑛 + 1) [𝛽
2

(𝑛 + 1) − 𝛼𝛾(𝑛 + 2)
2
]

2𝑛 (𝑛 + 2) 𝛾

,

𝑏
1

= ±

(𝑛 + 1) 𝛽√𝜎
1

2 (𝑛 + 2) 𝛾

,

𝜇 = 0,

𝜆 =

𝑛
2
𝛽
2

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

,

𝐶 = ± √𝛼 −

𝛽
2

(𝑛 + 1)

𝛾(𝑛 + 2)
2

.

(60)

In this result, we deduce the traveling wave solution of (47)
as follows:

𝑢 (𝜉)

= [

[

−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± (𝐴
1
cosh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+ 𝐴
2
sinh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))

× (𝐴
1
sinh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+𝐴
2
cosh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))

−1
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± √𝜎
1

× (𝐴
1
sinh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉) + 𝐴
2

× cosh(𝑛𝛽√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))

−1

)]

]

1/𝑛

,

(61)

where 𝜉 = 𝑥 ± √𝛼 − (𝛽
2
(𝑛 + 1)/𝛾(𝑛 + 2)

2
)𝑡, 𝛽 ̸= 0.

In particular, by setting𝐴
1

= 0 and𝐴
2

̸= 0 in (61), we have
the solitary wave solutions

𝑢 (𝜉)

= [ −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± tanh(𝑛𝛽√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

± 𝑖 sech(𝑛𝛽√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

(62)

while if 𝐴
1

̸= 0, 𝐴
2

= 0, then we have the solitary wave
solutions

𝑢 (𝜉)

= [ −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± coth(𝑛𝛽√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

± csch(𝑛𝛽√−
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

.

(63)

Result 4. Consider the following:

𝑎
0

= −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

,

𝑎
1

= ±

√(𝑛 + 1) [𝛽
2

(𝑛 + 1) − 𝛼𝛾(𝑛 + 2)
2
]

2𝑛 (𝑛 + 2) 𝛾

,

𝑏
1

= ± ((𝑛 + 1)
2
𝛽
4

[𝑛
4
𝜎
1

+ 𝜇
2
] + 𝛼𝛾𝜇

2

(𝑛 + 2)
2

× [𝛼𝛾(𝑛 + 2)
2

− 2𝛽
2

(𝑛 + 1)])

1/2

× (2𝑛
2

(𝑛 + 2) 𝛾𝛽)

−1

,

𝜇 = 𝜇,

𝜆 =

𝑛
2
𝛽
2

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

,

𝐶 = ±√𝛼 −

𝛽
2

(𝑛 + 1)

𝛾(𝑛 + 2)
2

.

(64)

In this result, we deduce the traveling wave solution of (47)
as follows:
𝑢 (𝜉)

= [

[

−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± (𝐴
1
cosh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+𝐴
2
sinh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))

× (𝐴
1
sinh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+ 𝐴
2
cosh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+

𝜇

𝜆

)

−1

) ±
1

2𝑛
2

(𝑛 + 2) 𝛾𝛽

× (((𝑛 + 1)
2
𝛽
4

[𝑛
4
𝜎
1

+ 𝜇
2
] + 𝛼𝛾𝜇

2

(𝑛 + 2)
2

× [𝛼𝛾(𝑛 + 2)
2

− 2𝛽
2
(𝑛 + 1)])

1/2

× (𝐴
1
sinh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+ 𝐴
2
cosh(𝑛𝛽√−

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+

𝜇

𝜆

)

−1

)]

]

1/𝑛

,

(65)

where 𝜉 = 𝑥 ± √𝛼 − (𝛽
2
(𝑛 + 1)/𝛾(𝑛 + 2)

2
)𝑡, 𝛽 ̸= 0.

In particular, by setting 𝐴
1

= 0, 𝐴
2

̸= 0, and 𝜇 = 0 in
(65), we have the same solitary wave solutions (62), while if
𝐴
1

̸= 0, 𝐴
2

= 0, and 𝜇 = 0, then we have the same solitary
wave solutions (63).

Case 2 (trigonometric function solution (𝜆 > 0)). If 𝜆 > 0,
substituting (50) into (49) and using (4) and (8), the left-hand
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side of (49) becomes a polynomial in 𝜙 and 𝜓. Setting the
coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and 𝐶 as follows:

𝜙
4:

𝐶
2
𝜆𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

− 𝐶
2
𝑛𝑎
2

1
− 𝑛
2
𝛾𝑎
4

1
− 𝐶
2
𝑎
2

1

+

𝐶
2
𝑛𝜆𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

𝑛
2
𝜆
2
𝛾𝑏
4

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

6𝑛
2
𝜆𝛾𝑎
2

1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

= 0,

𝜙
3:

3𝑛
2
𝛽𝜆𝑎
1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

− 𝑛
2
𝛽𝑎
3

1
− 2𝐶
2
𝑛𝑎
0
𝑎
1

− 4𝑛
2
𝛾𝑎
0
𝑎
3

1

−

2𝐶
2
𝜆𝜇𝑎
1
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

+

12𝑛
2
𝜆𝛾𝑎
0
𝑎
1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

2𝐶
2
𝑛𝜆𝜇𝑎
1
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

+

8𝑛
2
𝜆
2
𝛾𝜇𝑎
1
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

= 0,

𝜙
3
𝜓:

4𝑛
2
𝜆𝛾𝑎
1
𝑏
3

1

𝜇
2

− 𝜆
2
𝜎
2

− 2𝐶
2
𝑛𝑎
1
𝑏
1

− 4𝑛
2
𝛾𝑎
3

1
𝑏
1

− 2𝐶
2
𝑎
1
𝑏
1

= 0,

𝜙
2: 𝐶
2
𝑛
2
𝑎
2

1
− 2𝐶
2
𝜆𝑎
2

1
− 𝑛
2
𝛼𝑎
2

1
− 6𝑛
2
𝛾𝑎
2

0
𝑎
2

1
− 3𝑛
2
𝛽𝑎
0
𝑎
2

1

+

𝐶
2
𝜆
2
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

2𝑛
2
𝜆
3
𝛾𝑏
4

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

𝑛
2
𝛼𝜆𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

2𝐶
2
𝑛𝜆
2
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

𝐶
2
𝑛
2
𝜆𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

𝐶
2
𝜆𝜇
2
𝑎
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

6𝑛
2
𝜆𝛾𝑎
2

0
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

4𝑛
2
𝜆
3
𝛾𝜇
2
𝑏
4

1

(𝜇
2

− 𝜆
2
𝜎
2
)
3

+

2𝑛
2
𝛽𝜆
2
𝜇𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

6𝑛
2
𝜆
2
𝛾𝑎
2

1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

3𝑛
2
𝛽𝜆𝑎
0
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

2𝐶
2
𝑛𝜆
2
𝜇
2
𝑏
2

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

−

𝐶
2
𝑛𝜆𝜇
2
𝑎
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

𝐶
2
𝑛𝜆𝜇𝑎
0
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

+

8𝑛
2
𝜆
2
𝛾𝜇𝑎
0
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

= 0,

𝜙
2
𝜓: 2𝐶

2
𝜇𝑎
2

1
− 2𝐶
2
𝑛𝑎
0
𝑏
1

+ 𝐶
2
𝑛𝜇𝑎
2

1
− 3𝑛
2
𝛽𝑎
2

1
𝑏
1

− 12𝑛
2
𝛾𝑎
0
𝑎
2

1
𝑏
1

−

2𝐶
2
𝜆𝜇𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

𝑛
2
𝛽𝜆𝑏
3

1

𝜇
2

− 𝜆
2
𝜎
2

−

3𝐶
2
𝑛𝜆𝜇𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

4𝑛
2
𝜆
2
𝛾𝜇𝑏
4

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

4𝑛
2
𝜆𝛾𝑎
0
𝑏
3

1

𝜇
2

− 𝜆
2
𝜎
2

−

12𝑛
2
𝜆𝛾𝜇𝑎
2

1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

= 0,

𝜙: 2𝐶
2
𝑛
2
𝑎
0
𝑎
1

− 2𝑛
2
𝛼𝑎
0
𝑎
1

− 3𝑛
2
𝛽𝑎
2

0
𝑎
1

− 4𝑛
2
𝛾𝑎
3

0
𝑎
1

− 2𝐶
2
𝑛𝜆𝑎
0
𝑎
1

+

3𝑛
2
𝛽𝜆
2
𝑎
1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

2𝐶
2
𝜆
2
𝜇𝑎
1
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

+

12𝑛
2
𝜆
2
𝛾𝑎
0
𝑎
1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

2𝐶
2
𝑛𝜆
2
𝜇𝑎
1
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

+

8𝑛
2
𝜆
3
𝛾𝜇𝑎
1
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

= 0,

𝜙𝜓: 2𝐶
2
𝑛
2
𝑎
1
𝑏
1

− 2𝑛
2
𝛼𝑎
1
𝑏
1

− 2𝐶
2
𝜆𝑎
1
𝑏
1

− 12𝑛
2
𝛾𝑎
2

0
𝑎
1
𝑏
1

+ 3𝐶
2
𝑛𝜇𝑎
0
𝑎
1

− 𝐶
2
𝑛𝜆𝑎
1
𝑏
1

− 6𝑛
2
𝛽𝑎
0
𝑎
1
𝑏
1

+

4𝑛
2
𝜆
2
𝛾𝑎
1
𝑏
3

1

𝜇
2

− 𝜆
2
𝜎
2

+

4𝐶
2
𝜆𝜇
2
𝑎
1
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

−

6𝑛
2
𝛽𝜆𝜇𝑎
1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

16𝑛
2
𝜆
2
𝛾𝜇
2
𝑎
1
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

4𝐶
2
𝑛𝜆𝜇
2
𝑎
1
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

−

24𝑛
2
𝜆𝛾𝜇𝑎
0
𝑎
1
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

= 0,

𝜓: 2𝐶
2
𝑛
2
𝑎
0
𝑏
1

− 2𝑛
2
𝛼𝑎
0
𝑏
1

+ 2𝐶
2
𝜆𝜇𝑎
2

1
− 3𝑛
2
𝛽𝑎
2

0
𝑏
1

− 4𝑛
2
𝛾𝑎
3

0
𝑏
1

− 𝐶
2
𝑛𝜆𝑎
0
𝑏
1

− 2𝐶
2
𝑛𝜆𝜇𝑎
2

1

−

2𝐶
2
𝜆𝜇
3
𝑎
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

𝑛
2
𝛽𝜆
2
𝑏
3

1

𝜇
2

− 𝜆
2
𝜎
2

−

4𝑛
2
𝛽𝜆
2
𝜇
2
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

4𝑛
2
𝜆
2
𝛾𝑎
0
𝑏
3

1

𝜇
2

− 𝜆
2
𝜎
2

−

8𝑛
2
𝜆
3
𝛾𝜇
3
𝑏
4

1

(𝜇
2

− 𝜆
2
𝜎
2
)
3

+

4𝑛
2
𝜆
3
𝛾𝜇𝑏
4

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

−

2𝑛
2
𝛼𝜆𝜇𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

4𝐶
2
𝑛𝜆
2
𝜇
3
𝑏
2

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

2𝐶
2
𝑛𝜆𝜇
3
𝑎
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

3𝐶
2
𝑛𝜆
2
𝜇𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

2𝐶
2
𝑛
2
𝜆𝜇𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

6𝑛
2
𝛽𝜆𝜇𝑎
0
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

16𝑛
2
𝜆
2
𝛾𝜇
2
𝑎
0
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

−

12𝑛
2
𝜆𝛾𝜇𝑎
2

0
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

2𝐶
2
𝑛𝜆𝜇
2
𝑎
0
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

= 0,

𝜙
0: 𝐶
2
𝑛
2
𝑎
2

0
− 𝑛
2
𝛼𝑎
2

0
− 𝑛
2
𝛽𝑎
3

0
− 𝑛
2
𝛾𝑎
4

0
− 𝐶
2
𝜆
2
𝑎
2

1

+ 𝐶
2
𝑛𝜆
2
𝑎
2

1
−

𝐶
2
𝑛
2
𝜆
2
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

𝑛
2
𝜆
4
𝛾𝑏
4

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

𝐶
2
𝜆
2
𝜇
2
𝑎
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

𝐶
2
𝑛𝜆
3
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

𝑛
2
𝛼𝜆
2
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

3𝑛
2
𝛽𝜆
2
𝑎
0
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

𝐶
2
𝑛𝜆
2
𝜇
2
𝑎
2

1

𝜇
2

− 𝜆
2
𝜎
2

+

4𝑛
2
𝜆
4
𝛾𝜇
2
𝑏
4

1

(𝜇
2

− 𝜆
2
𝜎
2
)
3

+

2𝑛
2
𝛽𝜆
3
𝜇𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

+

6𝑛
2
𝜆
2
𝛾𝑎
2

0
𝑏
2

1

𝜇
2

− 𝜆
2
𝜎
2

−

2𝐶
2
𝑛𝜆
3
𝜇
2
𝑏
2

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

−

𝐶
2
𝑛𝜆
2
𝜇𝑎
0
𝑏
1

𝜇
2

− 𝜆
2
𝜎
2

+

8𝑛
2
𝜆
3
𝛾𝜇𝑎
0
𝑏
3

1

(𝜆
2
𝜎
2

− 𝜇
2
)
2

= 0.

(66)
On solving the above algebraic equations using the Maple or
Mathematica, we get the following results.
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Result 1. Consider the following:

𝑎
0

= −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

,

𝑎
1

= ±

√(𝑛 + 1) [𝛽
2

(𝑛 + 1) − 𝛼𝛾(𝑛 + 2)
2
]

𝑛 (𝑛 + 2) 𝛾

,

𝑏
1

= 0,

𝜇 = 0,

𝜆 =

𝑛
2

(𝑛 + 1) 𝛽
2

4 [𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)]

,

𝐶 = ±

√𝛾 [𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)]

(𝑛 + 2) 𝛾

.

(67)

From (7), (50), and (67), we deduce the traveling wave
solution of (47) as follows:

𝑢 (𝜉)

= [

[

−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖

× ( (𝐴
1
cos(

𝑛𝛽

2

√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

− 𝐴
2
sin(

𝑛𝛽

2

√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))

× (𝐴
1
sin(

𝑛𝛽

2

√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉) + 𝐴
2

× cos(

𝑛𝛽

2

√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))

−1

))]

]

1/𝑛

,

(68)

where 𝜉 = 𝑥 ± (√𝛾[𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)]/(𝑛 + 2)𝛾)𝑡, 𝛽 ̸= 0.

In particular, by setting 𝐴
1

= 0 and 𝐴
2

̸= 0 in (68), we
have the periodic solutions

𝑢 (𝜉)

= [ −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖 tan(

𝑛𝛽

2

√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

,

(69)

while if 𝐴
1

̸= 0 and 𝐴
2

= 0, then we have the periodic
solutions

𝑢 (𝜉)

= [−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖 cot(

𝑛𝛽

2

√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

.

(70)

Result 2 (Figure 3). Consider the following:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

= ± 𝜆𝛼 (𝑛 + 2)

× √

𝜎
2

(𝑛 + 1)

(𝜆 + 𝑛
2
) [𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
) − 𝜆𝛼𝛾(𝑛 + 2)

2
]

,

𝜇 = ± 𝜆𝛽√
𝜎
2

(𝑛 + 1) (𝜆 + 𝑛
2
)

𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
) − 𝜆𝛼𝛾(𝑛 + 2)

2
,

𝜆 = 𝜆,

𝐶 = ± 𝑛√
𝛼

𝜆 + 𝑛
2
.

(71)

In this result, we deduce the traveling wave solution of (47)
as follows:
𝑢 (𝜉)

= [

[

± √

𝜎
2

(𝑛 + 1)

(𝜆 + 𝑛
2
) [𝛽
2

(𝑛 + 1) (𝜆 + 𝑛
2
) − 𝜆𝛼𝛾(𝑛 + 2)

2
]

× (𝜆𝛼 (𝑛 + 2)

× (𝐴
1
sin (√𝜆𝜉) + 𝐴

2
cos (√𝜆𝜉)

±𝛽√
𝜎
2
(𝑛 + 1)(𝜆 + 𝑛

2
)

𝛽
2
(𝑛 + 1)(𝜆 + 𝑛

2
) − 𝜆𝛼𝛾(𝑛 + 2)

2
)

−1

)]

]

1/𝑛

,

(72)

where 𝜉 = 𝑥 ± 𝑛√(𝛼/𝜆 + 𝑛
2
)𝑡.

In particular, by setting 𝐴
1

= 0, 𝐴
2

̸= 0, and 𝛽 = 0 in (72),
we have the periodic solutions

𝑢 (𝜉) = [±√−
(𝑛 + 1)𝜆𝛼

(𝜆 + 𝑛
2
)𝛾

sec(√𝜆𝜉)]

1/𝑛

(73)
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Figure 3: The plot of solution (74) when 𝛼 = 10, 𝛾 = −1, 𝜆 = 1, and
𝑛 = 3.

while if 𝐴
1

̸= 0, 𝐴
2

= 0, and 𝛽 = 0, then we have the periodic
solutions

𝑢 (𝜉) = [±√−
(𝑛 + 1)𝜆𝛼

(𝜆 + 𝑛
2
)𝛾

csc(√𝜆𝜉)]

1/𝑛

. (74)

Result 3. Consider the following:

𝑎
0

= −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

,

𝑎
1

= ±

√(𝑛 + 1) [𝛽
2

(𝑛 + 1) − 𝛼𝛾(𝑛 + 2)
2
]

2𝑛 (𝑛 + 2) 𝛾

,

𝑏
1

= ±

(𝑛 + 1) 𝛽√−𝜎
2

2 (𝑛 + 2) 𝛾

,

𝜇 = 0,

𝜆 =

𝑛
2
𝛽
2

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

,

𝐶 = ± √𝛼 −

𝛽
2

(𝑛 + 1)

𝛾(𝑛 + 2)
2

.

(75)

In this result, we deduce the traveling wave solution of (47)
as follows:

𝑢 (𝜉)

= [

[

−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖

× ( (𝐴
1
cos(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

− 𝐴
2
sin(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))

× (𝐴
1
sin(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉) + 𝐴
2

× cos(𝑛𝛽√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))

−1

)

± (√−𝜎
2
)

× (𝐴
1
sin(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉) + 𝐴
2

× cos(𝑛𝛽√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))

−1

)]

]

1/𝑛

,

(76)

where 𝜉 = 𝑥 ± √𝛼 − (𝛽
2
(𝑛 + 1)/𝛾(𝑛 + 2)

2
)𝑡, 𝛽 ̸= 0.

In particular, by setting 𝐴
1

= 0 and 𝐴
2

̸= 0 in (76), we
have the periodic solutions

𝑢 (𝜉)

= [−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖 tan(𝑛𝛽√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

± 𝑖 sec(𝑛𝛽√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

(77)
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while if 𝐴
1

̸= 0 and 𝐴
2

= 0, then we have the periodic
solutions

𝑢 (𝜉)

= [−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖 cot(𝑛𝛽√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

±𝑖 csc(𝑛𝛽√
(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2
(𝑛 + 1)

𝜉))]

1/𝑛

.

(78)

Result 4. Consider the following:

𝑎
0

= −
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

,

𝑎
1

= ±

√(𝑛 + 1) [𝛽
2

(𝑛 + 1) − 𝛼𝛾(𝑛 + 2)
2
]

2𝑛 (𝑛 + 2) 𝛾

,

𝑏
1

= ± ((𝑛 + 1)
2
𝛽
4

[𝜇
2

− 𝑛
4
𝜎
2
] + 𝛼𝛾𝜇

2

(𝑛 + 2)
2

× [𝛼𝛾(𝑛 + 2)
2

− 2𝛽
2
(𝑛 + 1)])

1/2

× (2𝑛
2
(𝑛 + 2)𝛾𝛽)

−1

,

𝜇 = 𝜇,

𝜆 =

𝑛
2
𝛽
2

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

,

𝐶 = ±√𝛼 −

𝛽
2

(𝑛 + 1)

𝛾(𝑛 + 2)
2

.

(79)

In this result, we deduce the traveling wave solution of (47)
as follows:

𝑢 (𝜉)

= [

[

−
(𝑛 + 1) 𝛽

2 (𝑛 + 2) 𝛾

× (1 ± 𝑖

× ( (𝐴
1
cos(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

−𝐴
2
sin(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉))

× (𝐴
1
sin(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+ 𝐴
2
cos(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+

𝜇

𝜆

)

−1

))

±
1

2𝑛
2

(𝑛 + 2) 𝛾𝛽

× (((𝑛 + 1)
2
𝛽
4

[𝜇
2

− 𝑛
4
𝜎
2
] + 𝛼𝛾𝜇

2

(𝑛 + 2)
2

× [𝛼𝛾(𝑛 + 2)
2

− 2𝛽
2
(𝑛 + 1)])

1/2

× (𝐴
1
sin(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+ 𝐴
2
cos(𝑛𝛽√

(𝑛 + 1)

𝛼𝛾(𝑛 + 2)
2

− 𝛽
2

(𝑛 + 1)

𝜉)

+

𝜇

𝜆

)

−1

)]

]

1/𝑛

,

(80)

where 𝜉 = 𝑥 ± √𝛼 − (𝛽
2
(𝑛 + 1)/𝛾(𝑛 + 2)

2
)𝑡, 𝛽 ̸= 0.

In particular, by setting 𝐴
1

= 0, 𝐴
2

̸= 0, and 𝜇 = 0 in
(80), we have the same periodic solutions (77), while if𝐴

1
̸= 0,

𝐴
2

= 0, and 𝜇 = 0, then we have the same periodic solutions
(78).

Case 3 (rational function solutions (𝜆 = 0)). If 𝜆 = 0,
substituting (50) into (49) and using (4) and (10), the left-
hand side of (49) becomes a polynomial in 𝜙 and 𝜓. Setting
the coefficients of this polynomial to be zero yields a system
of algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, and 𝜇 as follows:

𝜙
4: − 𝐶

2
𝑎
2

1
− 𝐶
2
𝑛𝑎
2

1
− 𝑛
2
𝛾𝑎
4

1
−

𝐶
2
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

𝑛
2
𝛾𝑏
4

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

−

𝐶
2
𝑛𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

6𝑛
2
𝛾𝑎
2

1
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

= 0,

𝜙
3:

2𝐶
2
𝜇𝑎
1
𝑏
1

𝐴
2

1
− 2𝜇𝐴

2

− 𝑛
2
𝛽𝑎
3

1
− 2𝐶
2
𝑛𝑎
0
𝑎
1

− 4𝑛
2
𝛾𝑎
0
𝑎
3

1

−

3𝑛
2
𝛽𝑎
1
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

+

8𝑛
2
𝛾𝜇𝑎
1
𝑏
3

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

−

12𝑛
2
𝛾𝑎
0
𝑎
1
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

+

2𝐶
2
𝑛𝜇𝑎
1
𝑏
1

𝐴
2

1
− 2𝜇𝐴

2

= 0,

𝜙
3
𝜓: − 2𝐶

2
𝑎
1
𝑏
1

− 2𝐶
2
𝑛𝑎
1
𝑏
1

− 4𝑛
2
𝛾𝑎
3

1
𝑏
1

−

4𝑛
2
𝛾𝑎
1
𝑏
3

1

𝐴
2

1
− 2𝜇𝐴

2

= 0,
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𝜙
2: − 𝑛

2
𝛼𝑎
2

1
+ 𝐶
2
𝑛
2
𝑎
2

1
−

𝑛
2
𝛼𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

− 6𝑛
2
𝛾𝑎
2

0
𝑎
2

1

+

𝐶
2
𝑛
2
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

𝐶
2
𝜇
2
𝑎
2

1

𝐴
2

1
− 2𝜇𝐴

2

− 3𝑛
2
𝛽𝑎
0
𝑎
2

1

−

4𝑛
2
𝛾𝜇
2
𝑏
4

1

(𝐴
2

1
− 2𝜇𝐴

2
)
3

−

2𝐶
2
𝑛𝜇
2
𝑏
2

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

−

3𝑛
2
𝛽𝑎
0
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

+

𝐶
2
𝑛𝜇
2
𝑎
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

6𝑛
2
𝛾𝑎
2

0
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

+

2𝑛
2
𝛽𝜇𝑏
3

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

+

8𝑛
2
𝛾𝜇𝑎
0
𝑏
3

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

+

𝐶
2
𝑛𝜇𝑎
0
𝑏
1

𝐴
2

1
− 2𝜇𝐴

2

= 0,

𝜙
2
𝜓: 2𝐶

2
𝜇𝑎
2

1
− 2𝐶
2
𝑛𝑎
0
𝑏
1

+

2𝐶
2
𝜇𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

𝑛
2
𝛽𝑏
3

1

𝐴
2

1
− 2𝜇𝐴

2

+ 𝐶
2
𝑛𝜇𝑎
2

1
− 3𝑛
2
𝛽𝑎
2

1
𝑏
1

− 12𝑛
2
𝛾𝑎
0
𝑎
2

1
𝑏
1

+

3𝐶
2
𝑛𝜇𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

4𝑛
2
𝛾𝑎
0
𝑏
3

1

𝐴
2

1
− 2𝜇𝐴

2

+

4𝑛
2
𝛾𝜇𝑏
4

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

+

12𝑛
2
𝛾𝜇𝑎
2

1
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

= 0,

𝜙: 2𝐶
2
𝑛
2
𝑎
0
𝑎
1

− 2𝑛
2
𝛼𝑎
0
𝑎
1

− 3𝑛
2
𝛽𝑎
2

0
𝑎
1

− 4𝑛
2
𝛾𝑎
3

0
𝑎
1

= 0,

𝜙𝜓: 2𝐶
2
𝑛
2
𝑎
1
𝑏
1

− 2𝑛
2
𝛼𝑎
1
𝑏
1

− 12𝑛
2
𝛾𝑎
2

0
𝑎
1
𝑏
1

+ 3𝐶
2
𝑛𝜇𝑎
0
𝑎
1

−

4𝐶
2
𝜇
2
𝑎
1
𝑏
1

𝐴
2

1
− 2𝜇𝐴

2

− 6𝑛
2
𝛽𝑎
0
𝑎
1
𝑏
1

−

4𝐶
2
𝑛𝜇
2
𝑎
1
𝑏
1

𝐴
2

1
− 2𝜇𝐴

2

+

6𝑛
2
𝛽𝜇𝑎
1
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

16𝑛
2
𝛾𝜇
2
𝑎
1
𝑏
3

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

+

24𝑛
2
𝛾𝜇𝑎
0
𝑎
1
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

= 0,

𝜓: 2𝐶
2
𝑛
2
𝑎
0
𝑏
1

− 2𝑛
2
𝛼𝑎
0
𝑏
1

+

2𝐶
2
𝜇
3
𝑎
2

1

𝐴
2

1
− 2𝜇𝐴

2

− 3𝑛
2
𝛽𝑎
2

0
𝑏
1

− 4𝑛
2
𝛾𝑎
3

0
𝑏
1

+

8𝑛
2
𝛾𝜇
3
𝑏
4

1

(𝐴
2

1
− 2𝜇𝐴

2
)
3

+

4𝐶
2
𝑛𝜇
3
𝑏
2

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

+

2𝑛
2
𝛼𝜇𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

4𝑛
2
𝛽𝜇
2
𝑏
3

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

−

2𝐶
2
𝑛𝜇
3
𝑎
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

2𝐶
2
𝑛
2
𝜇𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

+

12𝑛
2
𝛾𝜇𝑎
2

0
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

2𝐶
2
𝑛𝜇
2
𝑎
0
𝑏
1

𝐴
2

1
− 2𝜇𝐴

2

+

6𝑛
2
𝛽𝜇𝑎
0
𝑏
2

1

𝐴
2

1
− 2𝜇𝐴

2

−

16𝑛
2
𝛾𝜇
2
𝑎
0
𝑏
3

1

(𝐴
2

1
− 2𝜇𝐴

2
)
2

= 0,

𝜙
0: 𝐶
2
𝑛
2
𝑎
2

0
− 𝑛
2
𝛼𝑎
2

0
− 𝑛
2
𝛽𝑎
3

0
− 𝑛
2
𝛾𝑎
4

0
= 0.

(81)

On solving the above algebraic equations using the Maple or
Mathematica, we get the following results:

𝑎
0

= 0, 𝑎
1

= 0,

𝑏
1

= (−2𝑛𝛽𝐴
2

(𝑛 + 1)

±2√𝑛
2
𝛽
2
𝐴
2

2
(𝑛 + 1)

2
− 𝛼𝛾𝐴

2

1
(𝑛 + 2)

2
(𝑛 + 1))

× (2𝑛𝛾(𝑛 + 2))
−1

,

𝐶 = ±√𝛼,

𝜇 = (𝑛𝛽 [2𝑛𝛽𝐴
2

(𝑛 + 1) ± 2

× √𝑛
2
𝛽
2
𝐴
2

2
(𝑛 + 1)

2
− 𝛼𝛾𝐴

2

1
(𝑛 + 2)

2
(𝑛 + 1)])

× (2𝛼𝛾 (𝑛 + 2))
−1

.

(82)

From (9), (50), and (82), we deduce the traveling wave
solution of (47) as follows:

𝑢 (𝜉) = [ (( − 2𝑛𝛽𝐴
2

(𝑛 + 1) ± 2

×√𝑛
2
𝛽
2
𝐴
2

2
(𝑛 + 1)

2
− 𝛼𝛾𝐴

2

1
(𝑛 + 2)

2
(𝑛 + 1))

× (2𝑛𝛾(𝑛 + 2))
−1

)

× (
1

(𝜇/2)𝜉
2

+ 𝜉𝐴
1

+ 𝐴
2

) ]

1/𝑛

,

(83)

where 𝜉 = 𝑥 ± √𝛼𝑡 and 𝜇 = (𝑛𝛽[2𝑛𝛽𝐴
2
(𝑛 + 1) ±

2√𝑛
2
𝛽
2
𝐴
2

2
(𝑛 + 1)

2
− 𝛼𝛾𝐴

2

1
(𝑛 + 2)

2
(𝑛 + 1)])/2𝛼𝛾(𝑛 + 2).

In particular, by setting 𝛽 = 0 in (83), we have the
solutions

𝑢 (𝜉) = [±√
−𝛼(𝑛 + 1)

𝑛
2
𝛾

(
𝐴
1

𝜉𝐴
1

+ 𝐴
2

)]

1/𝑛

, (84)

which are equivalent to the solutions (50) obtained in [36].
(II) If 𝛾 = 0, 𝛽 ̸= 0.
In this case, (47) converts to

(𝐶
2

− 𝛼) 𝑢 − 𝐶
2
𝑢


− 𝛽𝑢
𝑛+1

= 0. (85)

By balancing between 𝑢
 and 𝑢

𝑛+1 in (85) we get 𝑁 = 2/𝑛.
According to Step 3, we use the transformation

𝑢 (𝜉) = V2/𝑛 (𝜉) , (86)

where V(𝜉) is a new function of 𝜉. Substituting (86) into (85),
we get the new ODE

(𝐶
2

− 𝛼) 𝑛
2V2 − 2𝐶

2
𝑛VV − 2𝐶

2

(2 − 𝑛) (V)
2

− 𝛽𝑛
2V4 = 0.

(87)
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Figure 4: The plot of solution (92) when 𝛼 = 1, 𝛽 = −3, 𝑛 = 1, and
𝐶 = 2.

Determining the balance number 𝑁 of the new (87), we get
𝑁 = 1. Consequently, we get

V (𝜉) = 𝑎
0

+ 𝑎
1
𝜙 (𝜉) + 𝑏

1
𝜓 (𝜉) , (88)

where 𝑎
0
, 𝑎
1
, and 𝑏

1
are constants to be determined later.

There are three cases to be discussed as follows.

Case 1 (hyperbolic function solutions (𝜆 < 0)) (Figure 4).
If 𝜆 < 0, substituting (88) into (87) and using (4) and (6),
the left-hand side of (87) becomes a polynomial in 𝜙 and 𝜓.
Setting the coefficients of this polynomial to be zero yields
a system of algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and 𝐶

which are omitted here for simplicity. On using the Maple or
Mathematica we have found the following results:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

= ±
√

𝜎
1

(𝑛 + 2) (𝛼 − 𝐶
2
)

2𝛽

,

𝜇 = 0,

𝜆 = −

𝑛
2

(𝐶
2

− 𝛼)

4𝐶
2

,

𝐶 = 𝐶.

(89)

From (5), (88), and (89), we deduce the traveling wave
solution of (85) as follows:

𝑢 (𝜉)

=
[
[

[

±
√

𝜎
1

(𝑛 + 2) (𝛼 − 𝐶
2
)

2𝛽

× ((1)

× (𝐴
1
sinh(

𝑛

2𝐶

√𝐶
2

− 𝛼𝜉)

+𝐴
2
cosh (

𝑛

2𝐶

√𝐶
2

− 𝛼𝜉))

−1

)
]
]

]

2/𝑛

,

(90)

where 𝜉 = 𝑥 − 𝐶𝑡.
In particular, by setting 𝐴

1
= 0 and 𝐴

2
̸= 0 in (90), we

have the solitary wave solutions

𝑢 (𝜉) = [

[

±√
(𝑛 + 2)(𝐶

2
− 𝛼)

2𝛽

sech(
𝑛

2𝐶

√𝐶
2

− 𝛼𝜉)]

]

2/𝑛

,

(91)

while if 𝐴
1

̸= 0 and 𝐴
2

= 0, then we have the solitary wave
solutions

𝑢 (𝜉) = [

[

±√−
(𝑛 + 2)(𝐶

2
− 𝛼)

2𝛽

csch(
𝑛

2𝐶

√𝐶
2

− 𝛼𝜉)]

]

2/𝑛

.

(92)

Note that the solutions (91) and (92) are in agreement with
the solutions (33) and (34) of [36] when 𝜉

0
= 0, respectively.

Case 2 (trigonometric function solution (𝜆 > 0)). If 𝜆 > 0,
substituting (88) into (87) and using (4) and (8), the left-hand
side of (87) becomes a polynomial in 𝜙 and 𝜓. Setting the
coefficients of this polynomial to be zero yields a system of
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, 𝜆, and𝐶which are omitted

here for simplicity. On using the Maple or Mathematica we
have found the following results:

𝑎
0

= 0,

𝑎
1

= 0,

𝑏
1

= ±
√

𝜎
2

(𝑛 + 2) (𝐶
2

− 𝛼)

2𝛽

,

𝜇 = 0,

𝜆 =

𝑛
2

(𝛼 − 𝐶
2
)

4𝐶
2

,

𝐶 = 𝐶.

(93)
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From (7), (88), and (93), we deduce the traveling wave
solution of (85) as follows:

𝑢 (𝜉)

=
[
[

[

±
√

𝜎
2

(𝑛 + 2) (𝐶
2

− 𝛼)

2𝛽

× ((1)

× (𝐴
1
sin(

𝑛

2𝐶

√𝛼 − 𝐶
2
𝜉)

+𝐴
2
cos(

𝑛

2𝐶

√𝛼 − 𝐶
2
𝜉))

−1

)
]
]

]

2/𝑛

,

(94)

where 𝜉 = 𝑥 − 𝐶𝑡.
In particular, by setting 𝐴

1
= 0 and 𝐴

2
̸= 0 in (94), we

have the periodic solutions

𝑢 (𝜉) = [

[

±√
(𝑛 + 2)(𝐶

2
− 𝛼)

2𝛽

sec(
𝑛

2𝐶

√𝛼 − 𝐶
2
𝜉)]

]

2/𝑛

,

(95)

while if 𝐴
1

̸= 0 and 𝐴
2

= 0, then we have the solitary wave
solutions

𝑢 (𝜉) = [

[

±√
(𝑛 + 2)(𝐶

2
− 𝛼)

2𝛽

csc(
𝑛

2𝐶

√𝛼 − 𝐶
2
𝜉)]

]

2/𝑛

.

(96)

Note that the solutions (95) and (96) are in agreement with
the solutions (37) and (38) of [36] when 𝜉

0
= 0, respectively.

Case 3 (rational function solutions (𝜆 = 0)). If 𝜆 = 0,
substituting (88) into (87) and using (4) and (10), the left-
hand side of (87) becomes a polynomial in 𝜙 and 𝜓. Setting
the coefficients of this polynomial to be zero yields a systemof
algebraic equations in 𝑎

0
, 𝑎
1
, 𝑏
1
, 𝜇, and 𝐶 which are omitted

here for simplicity. On using the Maple or Mathematica we
have found the following results.

Result 1. Consider the following:

𝑎
0

= 0,

𝑎
1

= ± √−
2𝛼 (𝑛 + 2)

𝑛
2
𝛽

,

𝑏
1

= 0,

𝐶 = ± √𝛼,

𝜇 = 0.

(97)

From (9), (88), and (97), we deduce the traveling wave
solution of (85) as follows:

𝑢 (𝜉) = [±√−
2𝛼(𝑛 + 2)

𝑛
2
𝛽

(
𝐴
1

𝐴
1
𝜉 + 𝐴

2

)]

2/𝑛

, (98)

where 𝜉 = 𝑥 ± √𝛼𝑡.
Note that the solutions (98) are equivalent to the solutions

(40) obtained in [36].

Result 2. Consider the following:

𝑎
0

= 0,

𝑎
1

= ± √−
𝛼 (𝑛 + 2)

2𝑛
2
𝛽

,

𝑏
1

= ±
√

−

𝛼 (𝑛 + 2) [𝐴
2

1
− 2𝜇𝐴

2
]

2𝑛
2
𝛽

,

𝐶 = ± √𝛼,

𝜇 = 𝜇.

(99)

In this result, we deduce the traveling wave solution of (85)
as follows:

𝑢 (𝜉) = [±√−
𝛼 (𝑛 + 2)

2𝑛
2
𝛽

(

𝜇𝜉 + 𝐴
1

(𝜇/2) 𝜉
2

+ 𝐴
1
𝜉 + 𝐴

2

)

±
√

−

𝛼 (𝑛 + 2) [𝐴
2

1
− 2𝜇𝐴

2
]

2𝑛
2
𝛽

× (
1

(𝜇/2) 𝜉
2

+ 𝐴
1
𝜉 + 𝐴

2

) ]

2/𝑛

,

(100)

where 𝜉 = 𝑥 ± √𝛼𝑡.
Finally, if we set 𝜇 = 0 in (100) we get back to (98).

4. Conclusions

The two variable (𝐺

/𝐺, 1/𝐺)-expansion method is used in

this paper to obtain some new solutions of two higher order
nonlinear evolution equations, namely, the nonlinear Klein-
Gordon equations and the nonlinear Pochhammer-Chree
equations. As the two parameters 𝐴

1
and 𝐴

2
take special

values, we obtain the solitary wave solutions. When 𝜇 = 0

and 𝑏
𝑖

= 0 in (3) and (14), the two variable (𝐺

/𝐺, 1/𝐺)-

expansion method reduces to the (𝐺

/𝐺)-expansion method.

So the two variable (𝐺

/𝐺, 1/𝐺)-expansion method is an

extension of the (𝐺

/𝐺)-expansion method. The proposed

method in this paper is more effective and more general than
the (𝐺


/𝐺)-expansionmethod because it gives exact solutions

in more general forms. In summary, the advantage of the
two variable (𝐺


/𝐺, 1/𝐺)-expansionmethod over the (𝐺


/𝐺)-

expansion method is that the solutions obtained by using
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the first method recover the solutions obtained by using the
second one. Finally, all solutions obtained in this paper have
been checked with the Maple by putting them back into the
original equations.
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