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Smart grid applications experience an extremely wide range of communication delay. Data flows of those applications are normally
aggregated at industrial network routers in substations, form infinite (long) queues termed bufferbloat issue, and might damage the
operation of transmission control protocol. The default queue management scheme, DropTail, in such routers just drops packets if
queue is full while the others in literature are mostly based on one-loop feedback control where an optimal point of performance
between queue length and drop rate is limited. In this paper, we study the problem of managing a long queue of industrial router at
substation under heterogeneous smart grid networks. Specifically, we propose an enqueue-dequeue dropping cascade control using
a two-loop design method to control both window size and queue length. Moreover, our proposal can be easily implemented into
router firmware with provided discrete expressions. Finally, our simulation results are presented to validate the possible benefits

that can be gained from cascade control and compare the existing queue management methods as well.

1. Introduction

L1 Overview. Smart grid is going to be a geographically
widespread system soon, which integrated many diverse
real-time applications (e.g., sensor) together with energy
management applications. Smart grid, which is a digitally-
enhanced version of the traditional electric grid, provides
infrastructure to support diverse services such as finance,
information, and electrical delivery among consumers, assets,
and those users who have authorized access. A conceptual
model for smart grid communication is presented in [1].
At the customer house, energy consumption information
is monitored and then sent to service provider for further
analysis and better support. At the operator side, data is
collected to make decision according to demand response or
energy saving.

With an emerging smart grid, various applications can be
enabled to improve quality of service and consumer satisfac-
tion. Some popular examples are building automation, auto-
mated meter reading, outage and restoration management,
and electric vehicles. Most of the smart grid applications have

a strict latency requirement in the range of 100 milliseconds
to 5 seconds [2]. In [3], the delay ranges of different smart
grid applications were approximately reported. For example,
teleprotection applications allow traffic delay from 8 to 10 ms
while they allow traffic delay for more than one second
for interval measurement from smart meters. To respect it,
we also need a fast communication infrastructure that can
handle a huge amount of exchanging data and is able to
provide a near real-time response. Latency is defined as the
time interval between when the state occurred and when
it was acted upon by a smart grid application [2]. Various
applications own different latency requirements that depend
on the kind of system response it is dealing with. In such
scenario, network equipment including switches, Internet
wired/wireless routers, and operating systems (O/S) are the
fundamental components to provide a fast and reliable smart
grid communication. Table 1 lists latency and bandwidth
requirements for some specific applications in smart grid
networks [4].

In such a heterogeneous environment with multiple types
of applications, special equipment like industrial routers



TABLE 1: A wide range of delays for some smart grid applications.

Application Latency Bandwidth
Metering 0-15 min 10-100 kbps
Information exchange 5-30s 14-100 kbps
Electric transportation 2s-5min 100 kbps

Wired links
(Ethernet, power-line
communication)

Industrial router
at substation

Long input queue

Wireless links
(wireless local area

network, cellular)

FIGURE 1: Long input queue at industrial router at substation.

at substations are necessary to handle. Commercially, we
have seen an example product from the company, Virtual
Access, that is, GW2027, which is an industrial router with
applications like machine-to-machine (M2M), telemetry,
supervisory control and data acquisition (SCADA), roadside,
and wireless. Figure 1 illustrates such smart grid network
situation in detail, where industrial router has to process
data from both wired and wireless links. Among several
great software features like remote configuration and fault
reporting and so forth we, however, realize that a scheme
to manage the input queue of the industrial router is not
specified in the data sheet [5] and is usually Drop Tail, a
simple scheme which drops packets in case of full buffer and
allows packets otherwise.

1.2. Motivation. In general, each part of every network equip-
ment or substation industrial router is usually preinstalled
or configured with some amount of buffering, whether it
is enough or not, to handle bursts of arriving packets and
departing packets to the next link. It is important to ensure
good utilization of the network link, especially in cases
where arriving rate is greater than departing rate causing
bottleneck point to be built up. The buffer then absorbs
high-rate traffic packets which wait and are later served
on the slower outgoing links [7]. Not enough buffering
results in high dropping rate of most of the packets and
low egress link utilization. For example, if a user transfers
files using transmission control protocol (TCP), the user
satisfaction is measured by how quickly the file transfer can
complete, which is directly related to how effectively the
protocol can utilize network links, that is, more buffering
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is better. Moreover, as the cost of buffers/memory keeps
reducing, it is foreseen that large buffering would be put into
every piece of network equipment and even preconfigured
in operating systems. However, large buffering results in
long latency experience for users as well. Besides, most of
TCP schemes (Reno, New Reno, CUBIC, etc.) use loss-
based congestion control. It means that a loss-based TCP
sender continues increasing its congestion window size (i.e.,
sending rate) until a loss signal is detected by time-out or
incorrect acknowledgment packets. In [8], it is suggested that
“the widely used rule of thumb leads to buffers which are
much larger than they need to be” and could be reduced by
scarifying a small amount of bandwidth utilization. Using
too much buffering, it obviously takes longer time for loss
detection and therefore TCP may function incorrectly. The
excessive long latency and the damage of TCP due to too
much buffering are two major consequences of a problem
recently termed as bufferbloat.

The up-to-date solutions to the bufferbloat issue, or
debloat, consist of traffic shaping, TCP window size modifi-
cation, and active queue management (AQM). In the scope
of this paper, we concentrate on AQM algorithms because
they can manage queuing delay efficiently, by either a direct
or an indirect way. Most of Linux kernels and some open
source routers (CeroWRT) have been integrated with some
modern AQM algorithms [9, 10]. For example, depending
on where the bottlenecks are, a Linux user can change the
computer to use a different AQM qdisc (queuing discipline)
via a sysctl or the tc (traffic control) command. Literature
has witnessed several coexisting AQM candidate algorithms
including Controlled Delay (CoDel) [11], Stochastic Flow
Queuing CoDel (sfqCoDel) [12], and Proportional Integral
Enhanced (PIE) [13] that have been proposed using varied
theory tools (e.g., optimization, queuing, and control theory).
Among them, the control theory approach owns some advan-
tages to be implemented in smart grid network equipments,
for example, parameterization controllers and well refer-
ence tracking. Theoretically, control-based AQM algorithms
exploit the additive increase multiplicative decrease (AIMD)
model of TCP and the continuous fluid-flow queue approxi-
mation [14, 15]. Then the specific controller’s parameters are
designed according to a closed-loop transfer function of the
whole system. We, however, realize that these models almost
design one-loop control for queue length only which has
some problems of large overshoots and unacceptable lags
(delay) in mixed-traffic scenarios. More loops operating in
different network layers should improve the whole system
performance, especially the input delay transient (overshoot)
behaviour of the aforementioned debloat schemes.

1.3. Our Contributions. In this paper, we develop a novel
active queue management using cascade control framework
in control theory that is able to reduce large overshoot and
therefore improve delay transient behaviour. To the best of
our knowledge, our work is the first attempt to adapt cascade
control method to bufferbloat research field. Using the well-
known AIMD and fluid queue model [14], we decompose
transfer functions into an inner and an outer loop. The inner
one adjusts window size based on changing of traffic and
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feedback window size and the outer one mission adjusts
queue length based on feedback queue length value at time
instant. Each loop’s parameters are tuned using optimal gain
and phase margin method [16]. This scheme operates at
both the network transport layer (adjusting TCP congestion
window size) and the network link layer (adjusting queue
length). A difficulty when considering this cascade design is
the interaction in time scale between two loops. The other
side effect is complexity due to two additional controllers.
Nevertheless, we show that better delay performance results
can be achieved with EDDC via both numerical and sim-
ulation results (Section 5.2). Our primary contributions are
summarized as follows:

(i) We develop a cascade control active queue manage-
ment (EDDC) scheme by decomposing the TCP/
AQM fluid-flow model into two cascaded loops for
two independent controllers.

(ii) By applying the reliable optimal gain and phase
margin tuning method, we derive a set of parameters
for these controllers based on a given example from
single-loop AQM design.

(iii) Our simulations are conducted in network simulator
ns-2 using different smart grid application models,
including file data transmission (FTP), voice over IP
(VoIP), and video conference, which are close to the
realistic smart grid applications. In most of cases, the
related-delay results using EDDC are well controlled
around the target delay (10 ms) while the large over-
shoot phenomenon disappears.

2. Related Works

In this section, we discuss the features of the famous existing
AQM schemes: one mature (RED) and two modern AQM
algorithms (CoDel, sfqCoDel) which are designed specifi-
cally for bufferbloat mitigation.

Random Early Detection (RED) is one of the first viable
AQM algorithms [17]. However, it is proved to be so difficult
to configure properly that hardly anybody uses it, even
though many carrier grade routers implement it. With an
appropriate set of parameters, RED is an effective algorithm.
However, dynamically predicting this set of parameters was
found to be difficult. As a result, RED has not been enabled
by default, and its present use in the Internet is limited
[18]. Other AQM algorithms have been developed since
RFC2309 was published, some of which are self-tuning within
a range of applicability. Hence, while this memo continues
to recommend to deploy AQM, it no longer recommends
that RED or any other specific algorithm is used as a default;
instead it provides recommendation on how to select appro-
priate algorithms and that a recommended algorithm is able
to automate any required tuning for common deployment
scenarios.

“Controlled Delay” (CoDel) AQM algorithm [11] tries to
address the problems that RED could not. First, the input
signal into the algorithm (sojourn time versus average queue
length) is of a different quality; second, CoDel (in its plain

form) does drop/mark on dequeue (departure queue), while
RED drops/marks on enqueue (arrival queue). Therefore
TCP congestion control loop using CoDel responds much
quicker than using RED; thus the reaction by the sender
will probably be timely and relevant for that congestion
epoch. With RED, the congestion signal (lost packet) has to
traverse the filled-up buffer first; thus, the control loop time is
much larger (includes the instantaneous queue length of the
buffer) and is further delayed by the averaging going on. By
design, CoDel does not need to be tuned specifically for one
particular drain rate (bandwidth) of the queue unlike RED;
so it adjusts much better to variable bandwidth MACs (e.g.,
Wi-Fi and DOCSIS link).

CoDel itself, however, drops packet of a group during
each interval without considering the packet’s priority level or
user side. Recently, Stochastic Flow Queue CoDel (sftqCoDel)
[12] is a promising AQM algorithm which demonstrates a
satisfied performance to mitigate bufferbloat for users, for
example, increase 10x speed of a network under load [9],
and it has been implemented in open source routers (i.e.,
OpenWRT [10]). The stqCoDel is a hybrid of deficit round-
robin scheduling (DRR) and CoDel. It is renamed from “Fair
Queuing” to “Flow Queuing” because flows that build a queue
are treated differently than flows that do not. It stochastically
classifies incoming packets into different queues; each queue
is managed by the CoDel AQM algorithm. Packet ordering
within a queue is preserved since queues have FIFO ordering
[19].

3. System Model

3.1. TCP State-Space Model. We exploit the TCP fluid-flow
model described by nonlinear differential equations that
has been extensively studied in network routers interacting
with TCP sources (e.g., [14, 20, 21]). This model captures
the additive increase multiplicative decrease (AIMD) feature
from TCP [22], without slow start and time-out mechanisms.
However, this lack only affects initial start-up of the TCP sys-
tem. Once the system reaches the stable point, the differential
equations solver is able to track changes in the network well
[23].

w(t) = f (v, wg. g, p)
1 w()w(t-R() @

RO 2 RG_R@)PE- RO
t
Q(t)=g(w,q)=N1£T(t;—Cz, 2)

where w is average TCP window size (packets); q is queue
length at cable modems (packets); p(-) is packet dropping
probability function (0 < p < 1); C; is transmission capacity
of link I (packets/sec); R is round-trip time (sec); R(t) = TP +
q(t)/C; with T,, being propagation delay; and N is number of
TCP sessions.

The first equation (1) describes the TCP-Reno-sender
behaviour based on AIMD while the second one (2) models
a fluid queue, which allows traffic arrivals to be continuous
rather than discrete, as in a classic queuing model like M/M/1



queue. The operating point (w, gy, py) of model (1) can be
derived at with w = 0 and g = 0 as follows

w(2)P0 =12,
_ R,
W= 3)
9o
Ry=T,+ —=.
o =1t

!
By doing linearization around operating points (w, g,
Do) [14], with dw = w — wy; 6q = g —qy;and §p = p — py, a
linearized small signal model is obtained as:

. of of of of
Sw(t) = —fw+ —3§ —d0q + =—6p,
w(t) 0 w+awR wR+aq q+ap p
5 5 (4)
s = 99 9
oq(t) = aw&u + aq&q.

By defining system state vectors as x(t) = [Sw(t) (Sq(t)]T;
control input vector as u(t) = &p(t); external disturbance
as w(t); and system output vector as y(t) = dq(t), we then
rewrite the TCP system as a continuous time-invariant type
using state-space modeling approach.

x(t)=Ax(t)+ Ayx(t - Ry) + Bu(t - Ry) + Gw (1),
y (1) =Cx (1),

where matrices A, A, B, C, and G represent state (system),
input, output, and disturbance matrix, respectively, as follows:

)

r —-N
L RZC, |
N -1
L Ry, Ry
r —N
—= 0
Ad = ROCl ;
L 0 0 (6)
[ -R,C;
B= 2N?2 ,
L O
C=[0 1]
G=1[0 0].

The final system model equations which map the input
(traffic flow) to the output (queue length) are

p (S) = PTCPWin (S) : Pqueue (5) . e_SRD

_[w(s)]‘[q(s)]_[ A ][ C ]675R0 (7)
“lpGs) w(s)] Lls+Bl Ls+D ’
Using the above state-space TCP/IP system model, there

are several approaches to design an efficient controller with
the following requirements:
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(i) Queue length is as short as possible.
(ii) Sensitivity to network parameters is low.

(iii) Link utilization is high, which means we do not waste
the cost of link.

(iv) Packet drop rate is low.

We, however, admit a trade-off to satisfy all of those
aforementioned requirements. For example, a shorter queue
length comes along with a higher packet drop rate. Our
algorithm in the next section seeks for an optimal point.

3.2. Optimization Formulation of Infinite Buffer (Bufferbloat).
The classic M/M/1 queuing model well represents the infinite
buffer or bufferbloat phenomenon of smart grid substation
routers. Optimizing the performance of even simple queue
like M/M/1 is a difficult problem because of nonlinearity
of objective functions and constraints and running time
scales exponentially with the problem size. In [24], a convex
optimization problem was proposed for M/M/1 queues and
with purpose of minimizing the state probability p, only.
However, minimizing queue length is the main purpose
when dealing with the bufferbloat issue. Therefore, we formu-
late our optimization problem to directly optimizing queue
length of infinite buffer, with constraints following the afore-
mentioned TCP state-space model.

minimize ¢ () =g(w,q) = NwT(t) -G

subject to w (t) = f (w,q, p) (8)

0<p()<l.

The optimization variables are w and ¢, and the constant
parameters are N, C;, and R.

4. Proposed Algorithm

In this section, we propose an algorithm, named an Enqueue-
Dequeue Dropping Cascade control scheme (EDDC). We
present two main design steps of our proposed algorithm
from the above TCP state-space system model. The first step
is to design in the continuous time domain. The second
step is transform dropping probability formula into discrete
domain so that we are able to implement it into the smart grid
industrial router firmware (Figure 2).

4.1. EDDC in Continuous Time Domain. We design two
controllers for each loop. The inner controls drop probability
p, based on traffic information and the outer controls drop
probability p, based on difference between measured average
queue length and reference queue length.

(i) Inner Loop. An important design requirement is that
the inner loop controller should behave quickly. From
(7), the inner control objective is a linear first-order type:
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Decomposed TCP model: industrial router %

len (bytes) P
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I(s) p(drop) w(t) w(t)
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Target delay
(seconds)

Capacity of bottleneck
link (bps)

‘win

Inner loop

Prcpwin(s) Monitor queue

output

#TCP-flow
P queue (s)

Arrival traffic

FIGURE 2: Proposed control framework for queue management in industrial router.

Prepywin(s) = k;/(1 + Ts), where k; = A/Band T = 1/B.
Hence, we design an integral I controller for inner loop:

C . =
win (s) Tcwm (9)
The close-loop transfer function of the inner loop is
I(s)= Y (s) _ _ Prcpwin () Cuin (8)
2! (S) I+ PTCPwin (S) Cwin (S)
(10)
ky

- Te, s(1+Ts)+k;’

The I(s) transfer function is converted into frequency
domain, with w as frequency:

1) = s —

\/(kl T, T ) + (0 Te, )

I (je)’ W

_ i
k2 + (T2 -2k T, T)w?+ T2 - T?wh

‘win

One of quality requirements of closed-loop control sys-
tem, which is represented by I(s), is that the output is same to
the input signal or the controller C;, should bring |I(jw)| =
1, Vo, which can be called optimal gain and phase margin
tuning method [16]. However, due to several reasons of real
system, that requirement is rarely satisfied for all frequencies
w. An acceptable design is that |I(jw)| = 1, in a wide band
of low frequencies w. Hence, we propose to choose T such
that Téwin —2k;-Tg, T =0o0rTg = 2kT. This close-form
expression of T¢, is used to make decision for controller
C

win*
(ii) Outer Loop. The close-loop transfer function of the outer

loop is

— q (S) — I (S) Pqueue (‘S) Cqueue (S)
Aref 1+1 (S) Pqueue (S) Cqueue (5) .

(12)

The outer control objective into zero-pole form is

k; C

I(s)P, = .
() Pgueue (5) Tc, s(1+Ts)+k; s+D

ke (13)

(1 + Tlos) (1 + Tzos) (1 + T3Os))

where ko = C/D; Ty T, =TT [k Ty, + T, = Tg,, [kp
and T; = 1/D.

For the outer loop, the objective function is linear third-
order type, due to inclusion of I(s). Hence, we choose
proportional-integral-derivative (PID) controller by using
the same method at the inner loop design, or |O(jw)| = 1.

1
Cqueue (5) = kPO (1 + ﬂ + Tdos) 5 (].4)
o
withk, = (T) + T, ))/2koTs,, T;) = Ty, + T, ,and T, =
(T, - To)/(T, + T ).

4.2. EDDC in Discrete Time Domain

(i) Discrete Outer Loop Controller

P (s) _

1
e () = Cueue (8) = kPo (1 + T s + Tdos), (15)

o

where p; (s) is the output of the outer loop controller and e, (s)
is the difference between measured queue length and desired
queue length at the outer loop. We apply backward difference
method to get the z-transform of the outer loop controller

Cqueue (S ) :

P (0)

—z1 (16)
+Tdo(1 TZ ) .

N

T,
=e; (kpy [1+ e iz_l)
o

Transforming again to time domain, we obtain

P =p (t=1)+k, [e(t)—e (t-1)]

K, T,
r, 4 a7)

o

+

+%[el(t)—zel(t—1)+e1(t—2)],

S



VoIP bearer&

~->

Otbher traffic senders

Scientific Programming

(High speed) applications

45 Mb/s / @

3

-
-
b
D P D
-
P
P2 Substation
Bt router
\
[
N

=] O

Other traffic receivers

Teleprotection
SCADA

Substation
router

.

Control center

Examples of other traffic:

(i) (High speed) protection information
(ii) Load shedding
(iii) Transformer protection
(iv) Other SCADA operation
(v) Advanced metering infrastructure (smart meter)

FIGURE 3: Cross-traffic simulation topology for smart grid applications.

or a compact form of the outer loop controller Cgye,c

p®)=pt—1+ap-e,t)—by-e (t—1)+¢o

(18)
cep (t—-2).
(ii) Discrete Inner Loop Controller
P2 (s) 1
= C .= 5
62 (S) win TC s (19)

‘win

where p,(s) is the output of the inner loop controller and e, (s)
is the difference between p; and congestion window size w(s).
Doing similarly as discrete outer loop steps above, we obtain
a compact form of the inner loop controller C,; in discrete
domain as follows, with a; = T,/T_ :

p®)=p,(t—1)+a;-e(t-1). (20)

5. Performance Evaluation

5.1. Simulation Setup. NS2 is a discrete event network simu-
lator, which simulates packet-level events and facilitates the
development of communication network scenarios consid-
ering the new protocols involved, either wired or wireless
technologies. We use and modify the NS2 TCP evaluation
tool originally developed by Wang et al. [25] for our AQM
algorithm evaluation purpose. We also develop our own
EDDC source code files based on the basic proportional
integral (PI) algorithm code from NS2 source code tree. The
simulation network topology as multiple cross bottlenecks
is our choice because of its realistic smart grid IP networks
(Figure 3). The simulation configuration is presented in
Table 2.

5.2. Simulation Results. We evaluate our proposed algorithm
performance according to three main characteristics of the

TaBLE 2: Simulation configuration.

(a)

Value
600 sec
(Bulk transmission) 500 bytes
On: 1sec; idle: 1.35 sec

Sample foreman; packet size: 1024 bytes
(b)

Parameter

Simulation time
FTP packet size
VoIP (G.711)

Video (MyEvalVid)

AQM:s Configuration

RED Max average queue size threshold: 20 kbytes
FB-OCQ [6] Target queue length: 25 kbytes

PI Target queue length: 25 kbytes
CoDel Target delay: 10 msec

sfqCoDel Target delay: 10 msec; 32 subflows
EDDC Target delay: 10 msec; ag, by, ¢o, and a;

bottleneck link: bandwidth (Mbps), propagation round-trip
time (ms), and packet error rate ratio. Each experiment is
compared between AQM algorithms (in Table 2) with respect
to mean queue length, link utilization, and packet drop rate.
We expect that mean queue length is as low as possible, link
utilization is about 80 — 95%, and packet error rate should
be low. These requirements of three criteria, however, cannot
be achieved at the same time due to trade-off. Therefore, our
algorithm searches for a balance point among three of them.

5.2.1. Experiment I: Varied Link Bandwidth. In the first
experiment, we vary the bottleneck link bandwidth from
1 Mbps to 1000 Mbps. This variation represents different
types of links in heterogeneous smart grid networks. For
example, a wired link such as Ethernet has a bandwidth of
100 Mbps while a wireless link from wireless adapter has
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FIGURE 4: Experiment 1: varied link bandwidth.

varied bandwidth because of wireless signal attenuation and
fading.

Firstly, Figure 4 presents our comparison results when
we change the value of link bandwidth from 1 Mbps to
1000 Mbps. Our algorithm achieves very low and stable mean
queue length (=10%); even bandwidth is varied in a wide
range. Meanwhile, the link utilization of EDDC is about
95%, which is higher than the default DropTail or RED and
nearly approaches the modern sfqCoDel algorithm (96%).
The packet drop rate performance of EDDC, however, is
almost the same as the others. It makes sense that when we use
a low-bandwidth link, the packet drop rate is high due to full
buffer phenomenon. We conclude that our EDDC algorithm
promisingly maintain the queue length of substation router,
while link utilization or the busy level of link is acceptable
under different kinds of links.

5.2.2. Experiment 2: Varied Link Round-Trip Time. Figure 5
shows our comparison of AQM algorithms performance in

case of varied link propagation round-trip time (RTT). This
criterion represents the latency of packets when using a loss-
based TCP congestion control scheme, for example, TCP
Reno. As mentioned before, one consequence of a large
buffer (bufferbloat) is that TCP operation might be damaged
because of untimely congestion information feedback of
acknowledgment (ACK) packets. The higher the propagation
RTT is, the higher chance of incorrect ACK feedback to
the sources is. We observe the same results of EDDC
performance for the mean queue length and link utilization.
In Figure 5(c), the packet drop rate results of EDDC, however,
are higher than the other AQM algorithms in the RTT range
from 1 ms to 100 ms.

5.2.3. Experiment 3: Varied Link Packet Error Rate. Lastly, we
change the packet error rate (PER) of the congested link. A
wired link, for example, Ethernet cable, usually has a PER
value of zero. A wireless link, however, has the wide range of
PER values because of wireless signal characteristics such as
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FIGURE 5: Experiment 2: varied link propagation round-trip time.

attenuation or fast fading. In order to simulate them, we vary
PER from 0 to 0.9; for instance, a link with PER = 0.9 means
that if we transmit 10 packets, only 1 packet is successfully
delivered to destination.

In Figure 6(a), we see that EDDC keeps the router queue
length at 2% which is lower and better than DropTail, RED,
FB-OCQ, and CoDel algorithms. The modern sfqCoDel
using the stochastic fair method seems to manage queue
length to be too short (nearly 0%) which might increase
the number of packet drop. It is, in fact, confirmed from
Figure 6(c) that sfqCoDel has the highest packet drop
rate (>2%), while our algorithm EDDC only drops packets
smartly at 1% ratio.

The above experiments support us to conclude some
important advantages of our queue management algorithm
EDDC. By smartly dropping packets with EDDC scheme,
the mean queue length is kept at a stable and low level (2-
5%) comapred with the other popular algorithms. Moreover,
link utilization value is reasonable (80-95%) while the packet

drop rate of EDDC is lower than the newest and modern
algorithm (sfqCoDel).

6. Conclusions

An algorithm for better queue management of heterogeneous
smart grid traffic was proposed. The algorithm, based on
cascade control theory, smartly dropped packets waiting in
the queue based on information of inflow smart grid traffic
and current state of input queue. The algorithm was shown to
effectively manage the queue length or the number of packets
that are waiting in queue at a stable and low level (2-5%) while
the link utilization does not reduce too much.
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