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One of the challenging problems for indoor wireless multifloor positioning systems is the presence of reference node (RN)
failures, which cause the values of received signal strength (RSS) to be missed during the online positioning phase of the location
fingerprinting technique.This leads to performance degradation in terms of floor accuracy, which in turn affects other localization
procedures. This paper presents a robust floor determination algorithm called Robust Mean of Sum-RSS (RMoS), which can
accurately determine the floor on which mobile objects are located and can work under either the fault-free scenario or the RN-
failure scenarios.The proposed fault tolerance floor algorithm is based on themean of the summation of the strongest RSSs obtained
from the IEEE 802.15.4 Wireless Sensor Networks (WSNs) during the online phase. The performance of the proposed algorithm
is compared with those of different floor determination algorithms in literature. The experimental results show that the proposed
robust floor determination algorithm outperformed the other floor algorithms and can achieve the highest percentage of floor
determination accuracy in all scenarios tested. Specifically, the proposed algorithm can achieve greater than 95% correct floor
determination under the scenario in which 40% of RNs failed.

1. Introduction

Nowadays, there are several indoor location services available
for a wide range of applications such as those in commer-
cial, agriculture, medical, and military uses [1–3]. Wireless
communications are the major driving force of the devel-
opment of such indoor location services. Various wireless
technologies can be employed for indoor positioning systems.
Some systems make use of an existing wireless network
infrastructure such as Wi-Fi [4–6], Bluetooth [7], and the
visible light communication (VLC) [8]. More flexible and
efficient systems employ IEEE 802.15.4 Wireless Sensor Net-
works (WSNs), providing advantages in terms of low power
consumption, light weight, and low cost [9].

Existing indoor localization systems can be classified into
three types based on the structure of the service areas. These
include the indoor localization systems for two-dimensional
service areas, three-dimensional service areas, andmultistory

buildings [10]. Most of the existing systems are designed
for usage in two-dimensional areas where the position of a
target object is specified by coordinates (x, y) [10–12]. The
second type of indoor positioning system considers a three-
dimensional space wherein the location of each target is
derived from multiple coordinates (x, y, and z). The systems
in the second type are usually applied in particular fields
such as those in the industrial applications [13]. Recently,
the indoor positioning systems for multistory buildings have
gained more attention. Such systems need to specify not only
coordinates (x, y) but also the floor on which the object is
located [14–18].

Most researches related to indoor positioning systems
focus on either the development of the positioning techniques
for improving the performance or the study and charac-
terization of the unique properties of parameters such as
the received signal strength (RSS) [10, 19]. There are only a
few works considering failure scenarios of RNs, which are
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the main equipment of the systems. In [20], the authors
studied the robustness of the location determination when
the system encountered a random failure of RNs. Under the
RN-failure scenarios, their experiment results showed that
the positioning accuracy could drop from 10% to 50% when
approximately 50% of RNs failed in the system. Other related
works consider the robustness of the positioning systems
against variation of RSSs [21] and changes to the service
environments such as furniture [22] and service times [23].

Although some existing works have studied the degra-
dation of the positioning performances due to RN failure
and have considered the robustness of the systems against
the changes of some parameters, the literature still lacks a
floor determination algorithm that is robust in a situation
when some RNs in the system fail. Such an algorithm is
an important part of the localization technique for the
complex indoor environment of the multistory building.
Therefore, this paper aims to present a floor determination
algorithm that can reliably identify the floor on which the
object is located under various RN-failure scenarios. Our
contributions are summarized as follows:

(i) We propose a floor determination algorithm which
will serve as an important function of the indoor
localization techniques for multistory buildings. The
proposed algorithm is called the Robust Mean of
Sum-RSS (RMoS) floor algorithm. It does not require
the fingerprint database and can achieve the highest
percentage of correct floor determination when com-
pared to other existing techniques.

(ii) The proposed RMoS floor algorithm is robust against
all of our tested RN-failure scenarios. It can work
under either the fault-free scenario or the partial RN-
failure scenarios. It can achieve greater than 95%
correct floor determination under the scenario in
which 40% of RNs failed.

The remainder of this paper is organized into six sections
as follows. In Section 2, we briefly summarize existing
works on floor determination techniques. Section 3 provides
an introduction to the RN-failure scenario and explains
our proposed robust floor determination algorithm. Sec-
tion 4 describes the experimental environment, the wireless
transceivers, and the setup parameters in this work. Section 5
presents the experimental results and discussion. Finally,
Section 6 concludes the paper.

2. Existing Floor Determination Techniques

In wireless indoor positioning systems for multifloor build-
ings, the positioning error of a target within the two-dimen-
sional plane might mean a false room or error distance of a
few meters. On the other hand, the false floor determination
could mean the incorrect detection of the target on a car
parking floor instead of an office floor.Therefore, the problem
of floor determination is another important issue for the
positioning applications besides the target’s coordinates.

RN failures during the online positioning phase causeRSS
values to be missed. This can greatly affect the operations

of the positioning systems such as the computational proce-
dures and the signal sharing process in cooperative localiza-
tion [24]. These failures can lead to accuracy performance
degradation and a lack of system reliability [25]. Thus, a
robust floor determination technique is required in order to
achieve reliable indoor multifloor positioning systems that
can provide high positioning accuracy under unexpected
situations such as RN failures. In current literature, there are
only a few papers considering the robustness of multifloor
positioning systems, while the fault tolerance for the floor
determination technique in terms of the presence of node
failures has not been studied.

In [16, 17], the authors proposed floor determination
algorithms that considered the movement of objects across
the floors. In [16], the authors studied robotsmoving between
floors by using incorporative information from the pressure
sensor and the Wi-Fi access points (APs). Their floor deter-
mination algorithm is based on the RSS received from the
APs that utilize a Maximum Likelihood (ML) to estimate the
floor location of the robots. The authors in [17] presented the
technique to estimate the robot position in each floor by using
gyroscopes for recognizing the robot motion status on the
stairs. However, these works only focused on the tracking of
the floor changing when the robots moved in the staircase.
Particularly, they did not consider the robustness in terms of
faulty RNs during the online positioning phase. This reason
has motivated our work to develop a floor determination
algorithm to extend the capability of the indoor positioning
systems to be able to handle situations where some RNs
fail.

Existing floor determination approaches can be classified
into two major types based on the use of the location
fingerprint database: floor determination using the location
fingerprint database and floor determination without the use
of the location fingerprint database. For the approach that
uses the fingerprint database, the system performance will
depend on the number of the fingerprint locations which will
require more steps and time for collecting the RSS data at the
fingerprint locations in the offline phase [19]. In contrast, the
approach that does not require the fingerprint locations has
the advantage that it does not require the collection of the
RSS data to create a database of floors in the offline phase.The
system performance of the latter approach will depend on the
calculation mechanism of the floor determination technique
in the online phase only.

To evaluate the performance of the proposed floor deter-
mination algorithm, we compare our proposed algorithm
with the other techniques in the literature, both those that use
and those that do not use the location fingerprint database.
The algorithms that use the fingerprint database in the floor
determination process include the nearest floor algorithm
[14] and Lui’s floor algorithm [15]. Another algorithm that
does not use the fingerprint database in the floor determi-
nation process is the group variance algorithm [14]. Brief
descriptions of these three floor determination algorithms are
presented as follows.

2.1. Nearest Floor Algorithm [14]. This algorithm is based
on the K-Nearest Neighbor (KNN) algorithm. It requires
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Figure 1: Block diagram of the main components in the indoor positioning systems.

collection of the RSSs in an offline phase in order to create the
fingerprint database. This database records the information
including the reference identification, theMACaddress of the
APs, the floor number, and the maximum RSS. To determine
the floor number, the algorithm will compare the strongest
online scannedRSSwith the value in the fingerprint database.
Then, the algorithm selects 𝑘 APs (𝑘 = 3) with the closest
RSS values and applies the KNN algorithm to select the best
matched floor number from the fingerprint database.

2.2. Lui’s Floor Algorithm [15]. Lui’s floor algorithm also
requires the fingerprint database.This algorithm computes an
average signal distance between the RSS value recorded in the
fingerprint database and the online scanned RSSs. Then, the
algorithm selects the floor onwhich the object is located from
the minimum average signal distance.

2.3. Group Variance Algorithm [14]. This algorithm does not
use the fingerprint database. It considers the distribution of
the RSS values in each floor. It takes into account three online
statistical parameters obtained from each AP, which consist
of the range, the variance, and the availability. The algorithm
adds weighted values based on the specified criteria to deter-
mine the floor scores, called floor points. After comparing the
floor points, the algorithm selects the estimated floor number
with the highest floor points.

3. The RMoS Floor Algorithm

This section describes our proposed floor determination
algorithm for multistory buildings. First, in Section 3.1, the
structure of the main components in the indoor positioning
systems is described. Then, in Section 3.2, we describe our
fault tolerance floor determination algorithm, which is called
the Robust Mean of Sum-RSS (RMoS) floor algorithm and is
enhanced from our previous floor determination technique
presented in [18].The RMoS floor algorithm does not require
the fingerprint database, which consumes a lot of time for
RSS data collection. Our proposed algorithm utilizes only the
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Figure 2: Floor determination schematic diagram.

online scanned RSS values received from the RNs in order to
determine the floor location of the target node.

3.1. Structure of Indoor Positioning Systems. The main com-
ponents of the indoor positioning systems used in this work
are shown in Figure 1. They include the reference nodes
(RNs), the target node, and the processing unit.The reference
nodes are wireless transceivers that will send out signals upon
request from the target node. The position of each reference
node is known to the processing unit. The target node has
a mobile wireless transceiver that helps determine on which
floor number the target node is situated. The target node
will query signals from the reference nodes. Then, it passes
the signal information to the processing unit where the floor
determination algorithm is executed.

Figure 2 illustrates an example of the structure of the
indoor positioning system in a three-story building under the
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Input: Specify Γ, 𝐹,𝑁𝑓, 𝑥%, the initial value of 𝑐
Output: Floor number on which the target node is situated at the confidence level 𝑐
(1) The target node scans for RSS sent from the reference nodes.

(Begin the floor determination step)
(2) Repeat
(3) Repeat
(4) Compute the RSS summation 𝛾𝜏𝑓 = ∑𝑛∈R𝑓 𝜌𝜏𝑓𝑛
(5) Until 𝜏 = Γ
(6) Set Λ 𝑓 = {𝛾1𝑓, 𝛾2𝑓, . . . , 𝛾𝜏𝑓, . . . , 𝛾Γ𝑓}
(7) Until 𝑓 = 𝐹
(8) Set the confidence level 𝑐 = the specified initial value
(9) Calculate Φ(Λ 𝑓) with %CI = 𝑐 for all 𝑓 ∈ Ψ
(10) If Φ(Λ 𝑓) of any floor is overlapped
(11) Repeat
(12) Reduce the confidence level 𝑐
(13) CalculateΦ(Λ 𝑓) with %CI = 𝑐 for all 𝑓 ∈ Ψ
(14) Until no overlap of Φ(Λ 𝑓)
(15) 𝑐 is the %CI of sum of the strongest RSS fromR𝑓 for all 𝑓 ∈ Ψ
(16) The floor where the target node is located is associated with

the floor that has the highest Φ(Λ 𝑓) at the confidence level 𝑐.
floor = argmax𝑓(Φ(Λ 𝑓)) at the confidence level c

Algorithm 1: Pseudo code for RMoS floor algorithm.

RN-failure scenario in which two RNs fail. In this diagram,
four RNs are installed on each floor. Dashed lines represent
RSSs that the target node receives from all RNs.

In Figure 2, one RN on the 1st floor and another RN on
the 2nd floor become unavailable. This may be caused by
hardware failures, software errors, or other faults. Hence, the
online scannedRSSs of the target nodewould not have signals
from these RNs.

3.2. Framework of RMoS Floor Algorithm. Our proposed
algorithm determines the floor number of the target node
based on the summations of the online scanned RSSs that the
target node received from theworking RNs in the building. In
order to handle the fluctuation nature of the indoor wireless
signal, the concept of the confidence interval comparison [26]
is adopted in the RMoS floor algorithm. Specifically, RMoS
compares the confidence intervals for the mean of the RSS
summations. The following describes how the RMoS floor
algorithm works.

The following list defines the parameters used in our
proposed algorithm. Algorithm 1 describes the pseudo code
of the RMoS floor algorithm. The procedures are as follows.
First, the target node scans for the RSSs sent from RNs
installed in the multifloor building. A set of sampled RSS
values and the reference node IDs of each RSS value are
recorded as the input data vector for the floor determination
step. During the RSS scanning procedure, the signal from
each RN is scanned and recorded for Γ samples. The number
of samples (Γ) is selected such that it is not too small that
it becomes insignificant in the statistics and it is not too
large that it would require too much time to collect the data.
The sampling rate depends on the capability of the wireless
transceiver to respond to the signal query. In the case that the

number of samples is less than 30, the t-distribution is applied
in the confidence interval calculation [26]. Otherwise, the
normal distribution should be utilized [26].

List of the Parameter Definitions

Λ 𝑓: a set of the summations of the strongest RSSs on
the 𝑓th floor {𝛾1𝑓, 𝛾2𝑓, . . . , 𝛾Γ𝑓}
Ψ: a set of floors in the service areas {1, 2, . . . , 𝐹}
R𝑓: a set of 𝑥% of RNs on the 𝑓th floor that gives the
strongest RSS values
𝑥%: the percentage of RNs that would be considered
on each floor in the floor determination step
Φ(⋅): the confidence interval for the mean of the RSS
summations
𝛾𝜏𝑓: the summation of the RSSs that the target node
receives fromR𝑓

𝜌𝜏𝑓𝑛: the RSS valuewhich is 𝜏thmeasurement from nth
RN on the 𝑓th floor
𝑁𝑓: maximum number of RNs on the 𝑓th floor
Γ: the number of RSS samples
𝐹: the total number of floors in the multistory build-
ings
𝐿𝑓: the lower limit of the confidence of the population
mean on the 𝑓th floor
𝑈𝑓: the upper limit of the confidence of the popula-
tion mean on the 𝑓th floor
𝜇: the population mean
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𝜎2: the sample standard deviation
𝜂: the sample mean
𝑐: the confidence level (i.e., 95% or 90%)
𝛽: a significance level (i.e., 0.05 or 0.1)
1 − 𝛽: the confidence coefficient
𝑡[1−(𝛽/2);Γ−1]: the (1 − (𝛽/2))-quantile of 𝑡-distribution
and Γ samples

In the floor determination step, first the RSS summation𝛾𝜏𝑓 is computed by using (1). For the 𝜏th sampling, 𝛾𝜏𝑓 is the
summation of RSSs received from RNs in R𝑓, where R𝑓 is
the set of 𝑥% of RNs on the 𝑓th floor that gives the strongest
RSS values. The variable 𝜌𝜏𝑓𝑛 denotes the online scanned RSS
which is scanned in the 𝜏th sampling and it is the signal
received from 𝑛th RN which is on the 𝑓th floor. Note that𝑛 = 1, 2, . . . , 𝑁𝑓, where 𝑁𝑓 is the maximum number of RNs
on the 𝑓th floor. Ψ is the set of floors in the service areas.

𝛾𝜏𝑓 = ∑
𝑛∈R𝑓

𝜌𝜏𝑓𝑛. (1)

Next, a set Λ 𝑓 = {𝛾1𝑓, 𝛾2𝑓, . . . , 𝛾𝜏𝑓, . . . , 𝛾Γ𝑓} is obtained. (Λ 𝑓
is a set of the RSS summations on 𝑓th floor for Γ number
of RSS samples.) After that Φ(Λ 𝑓), which is the confidence
interval (𝐿𝑓,𝑈𝑓) for themean of theRSS summations on each
floor, is calculated by using

𝑝 (𝐿𝑓 ≤ 𝜇 ≤ 𝑈𝑓) ≈ 1 − 𝛽, (2)

where 𝐿𝑓 is the lower limit,𝑈𝑓 is the upper limit, and 1−𝛽 is
the probability that the population mean of RSSs (𝜇) will lie
between 𝐿𝑓 and 𝑈𝑓. They are calculated by using (3) to (5),
respectively.

𝐿𝑓 = 𝜂 (Γ) − 𝑡[1−(𝛽/2);Γ−1]√𝜎2 (Γ)Γ , (3)

𝑈𝑓 = 𝜂 (Γ) + 𝑡[1−(𝛽/2);Γ−1]√𝜎2 (Γ)Γ , (4)

𝛽 = 12 (1 − 𝑐100) . (5)

Note that (3) and (4) are used to determine the lower
limit 𝐿𝑓 and upper limit 𝑈𝑓 of the sample values of the RSS
summations at 𝑐% confidence level. 𝜂 refers to the sample
mean of RSS summations.𝜎2 is the sample standard deviation
and 𝑡[1−(𝛽/2);Γ−1] is the (1 − (𝛽/2))-quantile of t-distribution
and Γ samples [26].

Finally, to determine the floor number where the target
node is situated, the proposed RMoS floor algorithm com-
pares the confidence intervals Φ(Λ 𝑓) over all floors in Ψ.
Then, RMoS selects the floor number that has the highest
value ofΦ(Λ 𝑓) as the floor where the target node is situated.
This can be written in

floor = argmax
𝑓
(Φ (Λ 𝑓)) . (6)

Table 1: Setup parameters.

Parameter Detail

Floor dimensions 35m.× 35m (Building A), 75m × 75m
(Building B)

RN placement Uniform placement
Test points Total of 75 test points (15 test points/floor)
Number of RNs Total of 20 nodes (4 nodes/floor)
Test scenario Fault-free and RN failures

RN failures pattern 20 failure patterns are random for each RN
failure scenario

4. Experimental Setups

The performance of the proposed RMoS floor algorithm
is evaluated through extensive experiments and the results
are compared with other existing floor algorithms. In par-
ticular, the results are compared with two approaches of
floor determination algorithms. The first approach uses the
fingerprint database in the floor determination process. The
existing floor determination algorithms in this approach
that are compared with our proposed algorithm include
the nearest floor algorithm [14] and Lui’s floor algorithm
[15]. The other approach compared here does not use the
fingerprint database in the floor determination process. The
existing algorithm in this approach that is compared with
our proposed algorithm is the group variance algorithm [14].
The reason that we compare our proposed algorithm with
the two approaches (with/without fingerprint database) is to
evaluate and analyze how each approach performs in different
network scenarios.

In our experimental study, two five-story buildings with
different floor structures and with different dimension areas
are tested. The first building, labelled Building A, is a library
with dimensions of approximately 35m (width) × 35m
(length). The second building, labelled Building B, is an
office building with dimensions of about 75m (width) × 75m
(length). The floor layouts of both buildings are illustrated
in Figures 3 and 4, respectively. Twenty RNs were deployed
in both service areas. Four RNs were installed uniformly on
each floor as shown in Figures 3(b) and 4(b). Fifteen test
points were randomly selected on each floor by using the
uniform random function of MATLAB (i.e., a total of 75 test
points) to analyze the performance of the floor determination
algorithms. The setup parameters for the experiment are
summarized in Table 1.

In order to handle the situations of signal unavailability
due to RN failure, we did not use RSS values received from
all RNs in the system for the summation of RSSs, but instead
only the strongest RSS values received from all RNs located
on each floor are considered. From preliminary testing, we
found that considering which 50% of RNs on each floor give
the strongest RSS values (i.e., 𝑥 = 50%) is suitable for the RSS
summations under RN failure.

Figure 5 illustrates the experimental equipment installed
on each floor. This includes four RN nodes which are placed
at a height of 2m.The target node is connected to a computer
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Figure 3: Building A. (a) The five-story structure. (b) Floor plan and example of 15 test points labelled with stars on the 3rd floor.
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Figure 4: Building B. (a) The five-story structure. (b) Floor plan and example of 15 test points labelled with stars on the 4th floor.
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(a) (b)

Figure 5: Experimental equipment in this work. (a) Reference node. (b) Target node.

Table 2: Specifications of the wireless transceivers.

Specification Detail
Manufacturer Freescale
Chipset MC13224V
Frequency range 2.405GHz–2.480GHz
Operating channel CH 26 (2.480GHz)
Rx sensitivity −95 dBm
Transmit power +3 dBm
Antenna Inverted F-antenna

notebook on which the floor determination algorithm is
executed.The height of the target node is 0.8m. IEEE 802.15.4
wireless transceivers were deployed in this work. They have
Freescale MC13224V third-generation chipsets with built-
in ARM7TDMI processors. The antennas of the wireless
transceivers are the inverted F-shape antennas and different
sets operate at 2.480GHz (i.e., channel 26 of IEEE 802.15.4
standard). This is to avoid or minimize the interference
from Wi-Fi networks in the areas. The target node will
gather the RSS values that are transmitted from the RNs.
Those measured RSS values are used to calculate the floor
number of the target node. The sampling rate of wireless
transceivers in this work is 1 sample in 3 seconds. Note that
we consider the stationary node in our experimental study.
Table 2 shows specifications of the wireless transceivers used
in our experiments.

Two different scenarios were considered in our exper-
iments. The first scenario is a fault-free scenario in which
all RNs worked properly. The second scenario is RN-failure
scenario in which some RNs in the system fail. In particular,
we randomly turned off two and eight RNs in the system
under the condition that the number of failed RNs on each
floor did not exceed 50% of the total number of RNs on that
floor (i.e., in this study, the maximum number of failed RNs
on each floor is two nodes).

5. Results and Discussion

5.1. Fault-Free Scenario. The experiments in this scenario
consider that all RNs in the service area work properly.
The study is organized into two sets of experiments. First,
Section 5.1.1 aims to analyze the characteristics of the sum-
mation of RSSs that the target node receives from RNs
installed on each floor. Then, Section 5.1.2 aims to compare
the performance of the proposed algorithmwith that of other
existing floor determination techniques in the case of no RN
failure.

5.1.1. Analysis of RSS Summation Characteristics. First, we
analyze the characteristics of the RSS summations at a
particular point. Consider the 44th test point located on the
third floor of Building A and consider the 49th test point
located on the fourth floor of Building B as indicated by the
yellow symbol in Figures 3(b) and 4(b), respectively. In both
cases, 𝐹 = 5,𝑁𝑓 = 4, 𝑥 = 50%, and Γ = 20. (Note that it would
take approximately one minute to collect 20 samples.)

From all RNs in the online RSS system, we recorded 20
samplings that were received at the 44th and 49th test points.
For each sampling 𝜏th, 20 RSS values received from all RNs
in the systemwere recorded and denoted by 𝜌𝜏𝑓𝑛 (𝑓 represents
the floor number of the 𝑛th RN that transmitted a particular
RSS value.) Then, 𝛾𝜏𝑓 (the summation of the strongest RSSs
received from 50% of RNs located on the𝑓th floor for the 𝜏th
sampling)was calculated by using (1). Finally, we obtained 100
values of the RSS summations for 20 signal samplings (i.e., for
each 𝜏th sampling, 𝛾𝜏1 , 𝛾𝜏2 , . . . , 𝛾𝜏5 were computed).

Figures 6(a) and 6(b) are the histogram plots of the RSS
summations at the 44th test point of Building A and the
49th test point of Building B, respectively. In the histogram,
each color represents a summation of RSSs received from
RNs located on each floor. In the case of the 44th test point
of Building A, we can observe from Figure 6(a) that the
RSS summations of the green bins (the summation of RSSs
received from RNs on the third floor) are greater than those
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Figure 6: Histogram of the RSS summation in the fault-free scenario at (a) the 44th test point located on the third floor of Building A and
(b) the 49th test point located on the fourth floor of Building B.
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Figure 7: 95% confidence interval for the mean of the RSS summations in the fault-free scenario at (a) the 44th test point located on the third
floor of Building A and (b) the 49th test point located on the fourth floor of Building B.

of the other bins. This indicates that the summations of RSSs
received from RNs located on the third floor (which is the
floor where the test point was located) are stronger than those
received from RNs located on the other floors. The same
results can be observed in the case of the 49th test point of
Building B (Figure 6(b)) in which the RSS summations of the
yellow bins are the strongest. This indicates that the 49th test
point is located on the fourth floor. Note that in Figure 6(b)
there is no bin of the summation of RSSs received from RNs
on the first floor because signals from RNs on the first floor
could not reach the 49th test point, which was located on
the fourth floor.These characteristics of the RSS summations

observed from this study are applied in our proposed RMoS
floor algorithm as described in Section 3.

Figures 7(a) and 7(b) illustrate a 95% confidence interval
for the mean of the RSS summations on each floor for
Building A and Building B, respectively. The confidence
interval is shown by a box stretching between the lower and
upper confidence limits.The pink line in the box indicates the
sample mean. From Figures 7(a) and 7(b), it is clear that the
confidence interval for the mean of the RSS summations on
the actual floor where the target node was located is higher
than that of the other floors (i.e., Φ(Λ 3) and Φ(Λ 4) are
highest for the case of Building A and Building B, resp.). In
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both cases, there is no overlap between the highest confidence
intervals and the rest of the confidence intervals. This shows
that the sample values of the RSS summations on both target
floors are significantly higher than those of the other floors at
a 95% confidence level. Therefore, the proposed RMoS floor
algorithm correctly reports that the target node is on the third
floor for Building A and the fourth floor for Building B. Note
that in Figure 7(b) there is no confidence interval of themean
of the RSS summations on the first floor because the target
node could not receive a signal from the RNs on the first floor.

5.1.2. Performance Comparisons under Fault-Free Scenario.
This section aims to compare the proposed RMoS floor
algorithm with other existing techniques under the normal
operating scenariowhere all RNswork properly. In particular,
the proposed algorithm was compared with the nearest
floor algorithm [14], the group variance algorithm [14], and
Lui’s floor algorithm [15]. The performance of the floor
determination algorithms was evaluated by the percentage
of the correct floor determination. The experiments were set
up as described in Section 4. Additionally, to compare the
RMoS floor algorithm with the other algorithms that use the
fingerprint database, we consider the effects of using different
numbers of fingerprint locations. In particular, three different
settings of fingerprint locations were considered: 10, 30, and
50 locations. They were selected uniformly across the service
area.

Figures 8(a) and 8(b) compare the percentages of the
correct floor determination among four floor determination
algorithms for Building A and Building B, respectively.
The results show that the proposed RMoS floor algorithm
outperforms the other three algorithms and yields a 100%
correct floor determination for all cases of the fingerprint
setting in both buildings. The reason is that RMoS does
not use the fingerprint database in the floor computing
procedures but it utilizes only the online RSSs that the
target node receives from RNs in the building. The RMoS
floor algorithm determines the floor number based on the
value of the confidence interval of the RSS summations as
demonstrated in Section 5.1.1.

The nearest floor algorithm and Lui’s floor algorithm,
on the other hand, use the fingerprint database in the floor
determination process. Consequently, from Figure 8, it can
be observed that the performances of the nearest floor
algorithm and Lui’s floor algorithm are dependent on the
number of fingerprint locations, whereby a higher number
of fingerprint locations yield higher percentages of correct
floor determination. The nearest floor algorithm yields the
lowest percentage of correct floor determination at 24% and
25.3% for the case of 10 fingerprint locations for Building
A and Building B, respectively. However, the nearest floor
algorithm in the case of Building B was able to obtain a 100%
correct floor determination performance at the price of using
50 fingerprint locations.

The reason that the nearest floor algorithm and Lui’s
floor algorithm perform worse when using lower numbers
of fingerprint locations is that there is a limitation in
these floor determination techniques that use the location
fingerprint database. That is, the location fingerprinting

approach requires a site survey and collection of RSS pat-
terns from all RNs installed in the service area during the
offline phase. If the system designer collected insufficient
fingerprint locations (i.e., lowfingerprinting granularity), this
will result in a low resolution location fingerprint database
that cannot represent the RSS characteristics of the service
area. Therefore, the performance of the floor determination
algorithms that use a poor resolution fingerprint databasewill
be degraded during the online phase.This will result in lower
accuracy in determining the correct floor.

On the other hand, even though these floor determi-
nation algorithms can increase the number of fingerprint
locations in their database and thus can improve the floor
determination accuracy, this will be achieved at the cost of
longer fingerprint collection time during the offline phase.
This can result in weeks spent on site survey and data
collection for a large service area. Moreover, if there are
any changes in the building structure or layout such as the
relocation of furniture or an increase or decrease in the
number of RNs in the system in the fingerprint database, the
location fingerprint data will have to be collected again.

Considering the group variance algorithm which does
not use the fingerprint locations, it has a constant percentage
of correct floor determination in all cases of the fingerprint
locations. From Figures 8(a) and 8(b), we can observe that
the performance of the group variance algorithm depends on
the floor size of the building; a bigger floor size yields a better
performance. The percentage of correct floor determination
of the group variance algorithm of Building B (with a floor
size of 75m × 75m) is higher than that of Building A (with
a floor size of 35m × 35m), that is, 93.3% for Building B and
61.3% for Building A.

The reason that the results of the group variance algo-
rithm in a small building are worse than those in a large
building which has the same number of RNs is the error in
calculation of floor points. This is the result of the similarity
of RSSs inside the building. For example, when considering
the floor points which were calculated from the variance of
signals in a small building, we can observe that the RSSs
received from RNs at the object location at the actual target
floor and the adjacent floor are very similar. Therefore, the
variance of the adjacent floor may be selected as the highest
variance instead of the variance of the actual target floor.This
is the reason that the floor points are incorrect and cause the
group variance algorithm to determine the wrong floor.

On the other hand, in the case of a large building, the
RSS received from RNs on different floors at the target
node location may be small or may not be present because
of the large distance and higher attenuation of the signals.
Therefore, the floor that has the highest variance will be the
one that receives the most signals from the RNs and will be
the floor on which the target node is located. The algorithm
can determine the floor correctly. In other words, the RSSs
within the large building can be distinguished easily and
have a positive effect on the accuracy of the group variance
algorithm.

5.2. RN-Failure Scenarios. In this section, the experimental
setup is the same as that for those described in Section 4.
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Figure 8: Percentage of correct floor determination of the fault-free scenario at (a) Building A and (b) Building B.

Additionally, however, this section considers that there are
some faulty RNs in the system. In particular, two cases of
RN failure were considered, including 2-RN failure and 8-RN
failure. The experimental results of each case of RN failures
were averaged from twenty faulty patterns. For example, in
the case of 2-RN failure, we randomly selected and turned
off two RNs from all RNs to create twenty patterns of two
failed RNs. For each pattern, we obtained the percentage
of correct floor determination from 75 test points selected
uniformly throughout thewhole building.Then, an average of
the percentages of correct floor determination of those twenty
patterns of 2-RN failure was computed. For the case of 8-RN
failure, the same procedures were conducted.

To evaluate the performance of the existing floor determi-
nation algorithms that use and that do not use the fingerprint
database under the RN-failure scenarios and to observe the
effects of the fingerprint locations, five different settings of
fingerprint locations were considered: 50, 40, 30, 20, and 10
locations. They were selected uniformly across the service
area.

Figures 9(a) and 9(b) compare the average percentages
of correct floor determination under three scenarios: fault-
free, 2-RN-failure, and 8-RN-failure scenarios.The results are
represented by a dotted line with triangle markers, a dashed
line with cross markers, and a solid line with dot markers,
respectively.

Considering the results of the nearest floor and Lui’s floor
algorithms which use the fingerprint database in the floor
determination process, the performances of both algorithms
are affected by the faulty RNs. For both the 2-RN-failure and
8-RN-failure scenarios, the trend of the performance is the
same as that of the results in the case of the fault-free scenario
presented in Section 5.1.2 in which the performances of
both algorithms are dependent on the number of fingerprint

locations; using a larger number of fingerprint locations
results in higher percentages of correct floor determination.
For example, considering the case of Building A under
the 2-RN-failure scenario (Figure 9(a)), the percentages of
correct floor determination of the nearest floor algorithm
decrease from 94.8% to 91.1% to 68.5% to 20.6% to 19.8%
when using the number of 50, 40, 30, 20, and 10 fingerprint
locations, respectively. As the number of failed RNs increases
to eight (i.e., 8-RN-failure scenario), the performance of the
nearest floor algorithm is worse than that in the 2-RN-failure
scenarios. It can be observed that when using a large number
of fingerprint locations, RN failure affects the performance
of the nearest floor algorithm more than when using a small
number of fingerprint locations. The reason for this is that
the nearest floor algorithm and Lui’s floor algorithm have an
error in their RSSmatching processes in which the number of
discovered RNs at the target node location during the online
phase must be equal to the number of RNs in the database
(radio map). Therefore, the missing RSS component(s) due
to RN failure during the online phase/location determination
will cause errors in the matching processes. A larger number
of RN failures, such as 8 nodes out of 20 nodes, will have a
larger impact than when only 2 nodes out of 20 nodes have
experienced a failure. Similar results were obtained for the
case of Building B (Figure 9(b)).

Considering the group variance algorithm which does
not use the fingerprint database, its performance is also
affected by the RN failure. In the case of Building A under
the 2-RN-failure and 8-RN-failure scenarios (the yellow lines
in Figure 9(a)), the percentage of correct floor determination
drops from 61.3% to 55.8% and 47.7%, respectively. Similar
effects can be observed in the case of Building B (the yellow
lines in Figure 9(b)).The reason that increasing the number of
RN failures degrades the performance of the group variance
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Figure 9: Percentage of correct floor determination in fault-free, 2-RN-failure and 8-RN-failure scenarios at (a) Building A and (b) Building
B.

is the change in the calculation of three online statistical
parameters obtained from each RN. The missing RSSs on
some floors will affect the calculation of floor points and
cause errors. For instance, the calculation of floor points is
obtained from the ranges that consider the maximum and
minimum value of RSSs at the target node from RNs on each
floor. If the failure occurs to RN which had the largest RSSs
on that floor, the range which was calculated on that floor
will be incorrect. For this reason, the increasing number of
failed RNs will result in the poorer performance of the group
variance algorithm.

Considering the RMoS floor algorithm which does not
use the fingerprint database, the performance of RMoS is
superior to that of the other three floor algorithms under all
tested scenarios in both buildings.The RMoS floor algorithm
can achieve 100% correct floor determination for all three
scenarios tested in Building A (the green lines in Figure 9(a)).
However, for the 8-RN-failure scenario in Building B, the
performance of the RMoS floor algorithm is slightly lower
(the solid green line in Figure 9(b)), although its percentage
of correct floor determination at 95.1% is still higher than
that for those of the other floor algorithms. The reason that
the RMoS floor algorithm is robust to the RN failure is
that its floor determination process utilizes the online RSSs
that the target node receives from the working RNs in the
building. Consequently, the faulty RNs have very little to no
effect on the RMoS floor computing procedures. However,
the performance of the RMoS algorithm is slightly lower
under the 8-RN-failure scenario in the bigger building.This is
because the coverage of the wireless signal is not sufficient to
cover a building which is large (i.e., only 4 RNs per 5,625m2).
This causes the RSSs at the target node from the RN to
be very weak or to be unable to receive at all. Moreover,

if the localization system is under the failure state (e.g., 8-
RN failure), these RSSs will cause a shift of the confidence
interval for the RSS summations on each floor.This will cause
the RMoS algorithm to identify the wrong floor. In other
words, we can conclude that, under the state where there
are nonoperating RNs, the quality and coverage of RSSs will
have impacts on the performance of the RMoS technique.
One of the solutions for avoiding this situation is to design a
localization system such that the number and the location of
the RNs should be optimized and provisioned to support the
robust operation both during a normal situation and when
there is a failure of some RNs. This is the next step in our
future research work.

6. Conclusion

In this paper, we present the robust floor determination
algorithm for the indoor multistory positioning systems.
The proposed algorithm is called the RMoS floor algorithm.
Extensive experiments were conducted to compare the pro-
posed algorithm with the other floor algorithms previously
presented in the literature. Experimental results showed that
the RMoS floor algorithmoutperformed the other algorithms
and was able to achieve the highest percentage of correct
floor determination at up to 100% in both fault-free and RN-
failure scenarios. Specifically, the RMoS floor algorithm was
able to achieve greater than 95% correct floor determination
under the RN-failure scenario in which 40% of RNs in the
building failed. Thus, we can say that our proposed RMoS
floor algorithm is fault tolerant and robust to the RN-failure
scenarios considered in our studies.

Our future research work will investigate how to optimize
the indoor multifloor positioning system such that the floor
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algorithm can provide robust operation, both during the
normal situation and when there is a failure of some RNs in
either small or big buildings.
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