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We investigate the singular Neumann problem involving the 𝑝(𝑥)-Laplace operator: (𝑃𝜆){−Δ 𝑝(𝑥)𝑢 + |𝑢|𝑝(𝑥)−2𝑢 = 1/𝑢𝛿(𝑥) + 𝑓(𝑥, 𝑢),
in Ω; 𝑢 > 0, in Ω; |∇𝑢|𝑝(𝑥)−2𝜕𝑢/𝜕] = 𝜆𝑢𝑞(𝑥), on 𝜕Ω}, where Ω ⊂ R𝑁(𝑁 ≥ 2) is a bounded domain with 𝐶2 boundary, 𝜆 is
a positive parameter, and 𝑝(𝑥), 𝑞(𝑥), 𝛿(𝑥), and 𝑓(𝑥, 𝑢) are assumed to satisfy assumptions (H0)–(H5) in the Introduction. Using
some variational techniques, we show the existence of a numberΛ ∈ (0,∞) such that problem (𝑃𝜆) has two solutions for 𝜆 ∈ (0, Λ),
one solution for 𝜆 = Λ, and no solutions for 𝜆 > Λ.

1. Introduction

The purpose of this paper is to study the existence of mul-
tiple solutions for the following inhomogeneous singular
Neumann problem involving the 𝑝(𝑥)-Laplace operator:

(𝑃𝜆)
{{{{{{{{{

−Δ𝑝(𝑥)𝑢 + |𝑢|𝑝(𝑥)−2 𝑢 = 1𝑢𝛿(𝑥) + 𝑓 (𝑥, 𝑢) , in Ω,
𝑢 > 0, in Ω,
|∇𝑢|𝑝(𝑥)−2 𝜕𝑢𝜕] = 𝜆𝑢𝑞(𝑥), on 𝜕Ω.

(1)

Here Ω ⊂ R𝑁(𝑁 ≥ 2) is a bounded domain with 𝐶2

boundary; 𝜆 is a positive parameter. For any continuous and
bounded function 𝑎 we define 𝑎+ fl sup 𝑎(𝑥) and 𝑎− fl
inf 𝑎(𝑥). Associated with problem (𝑃𝜆) we have the singular
functional 𝐸𝜆 : 𝑊1,𝑝(𝑥)(Ω) → R given by

𝐸𝜆 (𝑢) def= ∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫
Ω

|𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥
− ∫

Ω

|𝑢|1−𝛿(𝑥)1 − 𝛿 (𝑥)𝑑𝑥 − ∫Ω 𝐹 (𝑥, 𝑢) 𝑑𝑥
− 𝜆∫

𝜕Ω

|𝑢|𝑞(𝑥)+1𝑞 (𝑥) + 1𝑑𝑥,
(2)

where 𝐹(𝑥, 𝑡) = ∫𝑡
0
𝑓(𝑥, 𝑠)𝑑𝑠.

Definition 1. 𝑢 ∈ 𝑊1,𝑝(𝑥)(Ω) is called a generalized solution
of the equation

−Δ𝑝(𝑥)𝑢 + |𝑢|𝑝(𝑥)−2 𝑢 = 1𝑢𝛿(𝑥) + 𝑓 (𝑥, 𝑢) (3)

if for all 𝜑 ∈ 𝐶∞
0 (Ω)

∫
Ω
|∇𝑢|𝑝(𝑥)−2 ∇𝑢∇𝜑𝑑𝑥 + ∫

Ω
|𝑢|𝑝(𝑥)−2 𝑢𝜑𝑑𝑥

= ∫
Ω
|𝑢|−𝛿(𝑥) 𝜑𝑑𝑥 + ∫

Ω
𝑓 (𝑥, 𝑢) 𝜑 𝑑𝑥

+ 𝜆∫
𝜕Ω
|𝑢|𝑞(𝑥) 𝜑𝑑𝑥.

(4)

Obviously, every weak solution of problem (𝑃𝜆) is also a
generalized solution of (3).

The operator Δ𝑝(𝑥)𝑢 fl div(|∇𝑢|𝑝(𝑥)−2∇𝑢) is called 𝑝(𝑥)-
Laplace where 𝑝 is a continuous nonconstant function. This
differential operator is a natural generalization of the 𝑝-
Laplace operator Δ𝑝𝑢 fl div(|∇𝑢|𝑝−2∇𝑢), where 𝑝 >1 is a real constant. However, the 𝑝(𝑥)-Laplace operator
possesses more complicated nonlinearity than 𝑝-Laplace
operator, due to the fact that Δ𝑝(𝑥) is not homogeneous. This
fact implies some difficulties; for example, we cannot use
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the Lagrange Multiplier Theorem in many problems involv-
ing this operator.

The study of differential and partial differential equations
involving variable exponent is a new and an interesting
topic. The interest in studying such problems was stimulated
by their applications in elastic mechanics, fluid dynamics,
electrorheological fluids, image processing, flow in porous
media, calculus of variations, nonlinear elasticity theory, het-
erogeneous porous media models (see Acerbi and Mingione
[1], Diening [2]), and so forth. These physical problems
were facilitated by the development of Lebesgue and Sobolev
spaces with variable exponent.

At this point, we briefly recall related existence andmulti-
plicity results for elliptic equations with Neumann boundary
conditions. Neumann type problems are studied in [3–6]
and references therein. The multiplicity result for Neumann
problem with Sobolev critical nonlinearity has been studied
in [5] where authors considered the problem

−Δ𝑢 + 𝑢 = 𝑢𝑝, 𝑢 > 0 in Ω,
𝜕𝑢𝜕] = 𝜆𝜓𝑢𝑞 on 𝜕Ω. (5)

HereΩ ⊂ R𝑁,𝑁 ≥ 3, and 0 < 𝑞 < 1 < 𝑝 ≤ 2𝑁/(𝑁−2). They
proved the existence of Λ̃ such that problem (5) admits at least
two solutions for all 𝜆 ∈ (0, Λ̃), one solution when 𝜆 = Λ̃, and
no solutions for 𝜆 > Λ̃.The problem in two dimensions has
been considered in [6] where the authors extended the results
obtained by [5].

Results for𝑝(𝑥)-Laplacian problemsNeumann boundary
conditions are rare (see [7, 8]). In [7], Fan and Deng studied
the Neumann problems with 𝑝(𝑥)-Laplace operator and the
nonlinear potential 𝑓(𝑥, 𝑢) under appropriate assumptions.
By using the subsupersolutionmethod and variationmethod,
the authors get the multiplicity of positive solutions. In [8],
Sreenadh and Tiwari extend previous works on nonlinear
parametric problems with the 𝑝(𝑥)-Laplace operator to the
case where the Neumann boundary condition is nonlin-
ear. Precisely, under supplementary hypotheses on 𝑝, 𝑞, the
authors show that there exists a finite numberΛ such that the
posed problem has two solutions for 𝜆 ∈ (0, Λ), one solution
for 𝜆 = Λ, and no solutions for 𝜆 > Λ.

Before stating our main results, we make the following
assumptions throughout this paper:

(H0) 𝑝(⋅) ∈ 𝐶(Ω), 1 < 𝑝− ≤ 𝑝+ < 𝑁, and 𝑝+ ≤ 𝑝−∗ . As
usual, 𝑝∗(𝑥) = 𝑁𝑝(𝑥)/(𝑁 − 𝑝(𝑥)).

(H1) 0 < 𝑞(𝑥) ∈ 𝐶𝛽(𝜕Ω) for some 𝛽 ∈ (0, 1) satisfying0 ≤ 𝑞+ + 1 < 𝑝−(𝑝−/𝑝+).
(H2) 0 < 𝛿(𝑥) ∈ 𝐶(Ω) satisfying 0 < 𝛿− ≤ 𝛿+ < 1.

Let𝑓 : Ω×R → R be a nondecreasingCarathéodory function
satisfying the following:

(H3) 𝑓(𝑥, 0) = 0 and 𝑓(𝑥, 𝑡)𝑡 ≥ 0 for all (𝑥, 𝑡) ∈ Ω ×R.
(H4) There exist 𝐶1, 𝐶2 > 0 such that, for 𝛾 > 0, 𝑎(𝑥) ∈𝐶(Ω) with 𝑝+ − 1 < 𝛾 and 𝑝+ < 𝑎−.

𝐶1𝑢𝛾 ≤ 𝑓 (𝑥, 𝑡) ≤ 𝐶2𝑡𝑎(𝑥)−1, ∀𝑥 ∈ Ω, 𝑡 > 0. (6)

(H5) There exist a constant𝑀 > 0 and 𝜃 > 𝑝+ such that

0 < 𝜃𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡, ∀𝑥 ∈ Ω, |𝑡| > 𝑀. (7)

Next we describe in a more precise way our main
results.

Theorem 2. Assume that (H0)–(H5) hold and 𝑎(𝑥) ≤𝑝∗(𝑥) = 𝑁𝑝(𝑥)/(𝑁 − 𝑝(𝑥)) in (6). Then there exists Λ > 0
with the following properties:

(1) Problem (𝑃𝜆) has a solution 𝑢𝜆 for every 𝜆 ∈ (0, Λ).
(2) Problem (𝑃𝜆) has a solution if 𝜆 = Λ.
(3) Problem (𝑃𝜆) does not have any solution if 𝜆 > Λ.

Theorem 3. Assume that (H0)–(H5) hold and 𝑎(𝑥) < 𝑝∗(𝑥)
in (6). Then, problem (𝑃𝜆) has at least two distinct solutions𝑢𝜆(𝑥) and V𝜆(𝑥) for every 𝜆 ∈ (0, Λ).

This paper is organized as follows. In Section 2, we will
recall some basic facts about the variable exponent Lebesgue
and Sobolev spaces which we will use later. Proofs of our
results will be presented in Sections 3 and 5.

2. Generalized Lebesgue-Sobolev
Spaces Setting

To deal with the 𝑝(𝑥)-Laplacian problem, we need to intro-
duce some functional spaces 𝐿𝑝(⋅)(Ω), 𝑊1,𝑝(⋅)(Ω), 𝑊1,𝑝(⋅)

0 (Ω)
and properties of the 𝑝(𝑥)-Laplacian which we will use
later. Denote by 𝑆(Ω) the set of all measurable real-valued
functions defined in Ω. Note that two measurable functions
are considered as the same element of 𝑆(Ω) when they are
equal almost everywhere. Let

𝐿𝑝(⋅) (Ω) = {𝑢 ∈ 𝑆 (Ω) : ∫
Ω
|𝑢 (𝑥)|𝑝(𝑥) 𝑑𝑥 < ∞} , (8)

with the norm

|𝑢|𝑝(⋅) = |𝑢|𝐿𝑝(⋅)(Ω)
= inf {𝜆 > 0 : ∫

Ω


𝑢 (𝑥)𝜆


𝑝(𝑥) 𝑑𝑥 ≤ 1} . (9)

The space (𝐿𝑝(⋅)(Ω), | ⋅ |𝑝(⋅)) becomes a Banach space. We call
it variable exponent Lebesgue space. Moreover, this space is
a separable, reflexive, and uniform convex Banach space; see
[9, Theorems 1.6, 1.10, and 1.14].

The variable exponent Sobolev space

𝑊1,𝑝(⋅) (Ω) = {𝑢 ∈ 𝐿𝑝(⋅) (Ω) : |∇𝑢| ∈ 𝐿𝑝(⋅) (Ω)} (10)

can be equipped with the norm

‖𝑢‖ = |𝑢|𝑝(⋅) + |∇𝑢|𝑝(⋅) , ∀𝑢 ∈ 𝑊1,𝑝(⋅) (Ω) . (11)

Note that 𝑊1,𝑝(⋅)
0 (Ω) is the closure of 𝐶∞

0 (Ω) in 𝑊1,𝑝(⋅)(Ω)
under the norm ‖𝑢‖ = |∇𝑢|𝑝(⋅). The spaces 𝑊1,𝑝(⋅)(Ω) and



International Journal of Differential Equations 3

𝑊1,𝑝(⋅)
0 (Ω) are separable, reflexive, and uniform convex

Banach spaces (see [9, Theorem 2.1]). The inclusion between
Lebesgue spaces also generalizes naturally: if 0 < |Ω| < ∞
and 𝑝1, 𝑝2 are variable exponents so that 𝑝1(𝑥) ≤ 𝑝2(𝑥)
almost everywhere in Ω then there exists the continuous
embedding 𝐿𝑝2(𝑥)(Ω) → 𝐿𝑝1(𝑥)(Ω).

We denote by 𝐿𝑞(𝑥)(Ω) the conjugate space of 𝐿𝑝(𝑥)(Ω),
where 1/𝑞(𝑥)+1/𝑝(𝑥) = 1. For 𝑢 ∈ 𝐿𝑝(𝑥)(Ω) and V ∈ 𝐿𝑞(𝑥)(Ω),
the Hölder type inequality∫Ω 𝑢 (𝑥) V (𝑥) 𝑑𝑥

 ≤ ( 1𝑝− + 1𝑞−) |𝑢|𝑝(𝑥) |V|𝑞(𝑥) (12)

holds true.
An important role in manipulating the generalized

Lebesgue spaces is played by the modular of the 𝐿𝑝(𝑥)(Ω)
space, which is the mapping 𝜌𝑝(𝑥) : 𝐿𝑝(𝑥)(Ω) → R defined
by

𝜌𝑝(𝑥) (𝑢) = ∫
Ω
|𝑢|𝑝(𝑥) 𝑑𝑥. (13)

If (𝑢𝑛), 𝑢 ∈ 𝐿𝑝(𝑥)(Ω) and𝑝+ < ∞, then the following relations
hold true.

Lemma 4. Consider the following:
‖𝑢‖𝐿𝑝(𝑥) > 1 ⇒
‖𝑢‖𝑝−

𝐿𝑝(𝑥)
≤ 𝜌𝑝(𝑥) (𝑢) ≤ ‖𝑢‖𝑝+

𝐿𝑝(𝑥)
,

‖𝑢‖𝐿𝑝(𝑥) < 1 ⇒
‖𝑢‖𝑝+

𝐿𝑝(𝑥)
≤ 𝜌𝑝(𝑥) (𝑢) ≤ ‖𝑢‖𝑝−

𝐿𝑝(𝑥)
,

𝑢𝑛 − 𝑢𝐿𝑝(𝑥) → 0 iff 𝜌𝑝(𝑥) (𝑢𝑛 − 𝑢) → 0.

(14)

The following result generalizes the well-known Sobolev
embedding theorem.

Theorem 5 (see [10, 11]). Let Ω ⊂ R𝑁 be an open bounded
domain with Lipschitz boundary and assume that 𝑝 ∈ 𝐶(Ω)
with 𝑝(𝑥) > 1 for each 𝑥 ∈ Ω. If 𝑟 ∈ 𝐶(Ω) and 𝑝(𝑥) ≤𝑟(𝑥) ≤ 𝑝∗(𝑥) for all 𝑥 ∈ Ω, then there exists a continuous
embedding 𝑊1,𝑝(𝑥)(Ω) → 𝐿𝑟(𝑥)(Ω). Also, the embedding is
compact 𝑟(𝑥) < 𝑝∗(𝑥) almost everywhere in Ω, where

𝑝∗ (𝑥) = {{{
𝑁𝑝 (𝑥)𝑁 − 𝑝 (𝑥) , if 𝑝 (𝑥) < 𝑁,

+∞, if 𝑝 (𝑥) ≥ 𝑁. (15)

Now, we recall the following boundary trace embedding
theorem from [12].

Theorem 6. Let Ω ⊂ R𝑁 be an open bounded domain with
Lipschitz boundary. If 𝑞 ∈ 𝐶(𝜕Ω) such that

1 ≤ 𝑞 (𝑥) ≤ (𝑁 − 1) 𝑝 (𝑥)𝑁 − 𝑝 (𝑥) , ∀𝑥 ∈ 𝜕Ω, (16)

then𝑊1,𝑝(𝑥) → 𝐿𝑞(𝑥)(𝜕Ω).
Next we give a comparison principle as follows.

Lemma 7 (see [8, Lemma 3.2]). Let 𝑢, V ∈ 𝑊1,𝑝(⋅)(Ω) be non-
negative functions satisfying

−Δ𝑝(𝑥)𝑢 + 𝑢𝑝(𝑥)−1 ≥ −Δ𝑝(𝑥)V + V𝑝(𝑥)−1, (𝑥 ∈ Ω) ,
|∇𝑢|𝑝(𝑥)−2 𝜕𝑢𝜕] ≥ |∇V|𝑝(𝑥)−2 𝜕V𝜕] .

(17)

Then 𝑢 ≥ V almost everywhere in Ω.
We recall the following strong maximum principle from

[13].

Theorem 8. Let 𝑢, V ∈ 𝐶1,𝛽(Ω), for some 0 < 𝛽 < 1, satisfy0 ≨ 𝑢, 0 ≨ V and

−Δ𝑝(𝑥)𝑢 − 𝜆𝑢𝛿𝑥 = 𝑔 (𝑥) ≥ ℎ (𝑥) = −Δ𝑝(𝑥)V − 𝜆
V𝛿(𝑥)

, (18)

with 𝑢 = V = 0 on 𝜕Ω, where 𝑔, ℎ ∈ 𝐿∞(Ω) are such that0 ≤ 𝑔 < ℎ pointwise everywhere inΩ. If
𝜕𝑢𝜕n > 0,
𝜕V𝜕n > 0,

on 𝜕Ω,
(19)

where n is the inward unit normal on 𝜕Ω, then, the following
strong comparison principle holds:

𝑢 > V,
in Ω;

there is a positive 𝜖 such that 𝜕 (𝑢 − V)𝜕n ≥ 𝜖,
on 𝜕Ω.

(20)

3. Existence of a Solution

In this section, we show the existence of a local minimum
for 𝐸𝜆 in a small neighborhood of the origin in 𝑊1,𝑝(𝑥)(Ω).
Firstly, let us define

Λ def= sup {𝜆 > 0 : (𝑃𝜆) has a weak solution} . (21)

Lemma9. There exists 𝜆0 > 0 such that (𝑃𝜆) admits a solution
for 𝜆 < 𝜆0.
Proof. Using (14) and the embeddings in Theorem 5, we
estimate 𝐸𝜆(𝑢) for ‖𝑢‖𝑊1,𝑝(𝑥)(Ω) = 𝑟 as follows:

𝐸𝜆 (𝑢) = ∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫
Ω

|𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥
− ∫

Ω

|𝑢|1−𝛿(𝑥)1 − 𝛿 (𝑥)𝑑𝑥 − ∫Ω 𝐹 (𝑥, 𝑢) 𝑑𝑥
− 𝜆∫

𝜕Ω

|𝑢|𝑞(𝑥)+1𝑞 (𝑥 + 1)𝑑𝑥
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≥ ‖∇𝑢‖𝑝+
𝐿𝑝(𝑥)(Ω)

+ ‖𝑢‖𝑝+
𝐿𝑝(𝑥)(Ω)

− ‖𝑢‖1−𝛿+𝐿𝑝(𝑥)(Ω)

− ‖𝑢‖𝑎−𝐿𝑝(𝑥)(Ω) − 𝜆 ‖𝑢‖𝑞−+1𝐿𝑝(𝑥)(𝜕Ω)

≥ 1
2𝑝+−1 (‖∇𝑢‖𝐿𝑝(𝑥)(Ω) + ‖𝑢‖𝐿𝑝(𝑥)(Ω))

𝑝+

− ‖𝑢‖1−𝛿+𝑊1,𝑝(𝑥)(Ω) − ‖𝑢‖𝑎−𝑊1,𝑝(𝑥)(Ω) − 𝜆 ‖𝑢‖𝑞−+1𝑊1,𝑝(𝑥)(Ω)

= 1
2𝑝+−1 ‖𝑢‖𝑝

+

𝑊1,𝑝(𝑥)(Ω)
− ‖𝑢‖1−𝛿+𝑊1,𝑝(𝑥)(Ω)

− ‖𝑢‖𝑎−𝐿𝑝(𝑥)(Ω) − 𝜆 ‖𝑢‖𝑞−+1𝑊1,𝑝(𝑥)(Ω)
.

(22)

Hence, noting that 0 < 𝛿+ < 1 and 1 − 𝛿+ < 𝑝+ < 𝑎−, we
can choose 𝑟0 > 0 small enough, and there exists 𝛿0 > 0 such
that

∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫
Ω

|𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 − ∫Ω 𝐹 (𝑥, 𝑢) 𝑑𝑥
− 𝜆∫

𝜕Ω

|𝑢|𝑞(𝑥)+1𝑞 (𝑥 + 1)𝑑𝑥 ≥ 0, ∀𝑢 ∈ 𝐵𝑟0 ,
∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫ |𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 − ∫Ω 𝐹 (𝑥, 𝑢) 𝑑𝑥
− 𝜆∫

𝜕Ω

|𝑢|𝑞(𝑥)+1𝑞 (𝑥 + 1)𝑑𝑥 ≥ 𝛿0, ∀𝑢 ∈ 𝜕𝐵𝑟0 .

(23)

Moreover, since𝑊1,𝑝(𝑥)(Ω) → 𝐿1−𝛿(𝑥)(Ω), we have, for 𝜆 > 0,
small enough,

𝐸𝜆\𝜕𝐵𝑟0 ≥ 𝛿02 > 0. (24)

Set

𝑐0 = inf
𝑢∈𝐵𝑟0

𝐸𝜆 (𝑢) . (25)

Now, note that, for 𝑡 → 0+ and 𝑢 ∈ 𝑊1,𝑝(𝑥)(Ω), we have
𝐸𝜆 (𝑡𝑢) = ∫

Ω

𝑡𝑝(𝑥) |∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫
Ω

|𝑡𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥
− ∫

Ω

|𝑡𝑢|1−𝛿(𝑥)1 − 𝛿 (𝑥)𝑑𝑥 − ∫Ω 𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥
− 𝜆∫

𝜕Ω

|𝑡𝑢|𝑞(𝑥)+1𝑞 (𝑥) + 1𝑑𝑥

≤ 𝑡𝑝−𝑝+ ∫
Ω
|∇𝑢|𝑝(𝑥) 𝑑𝑥 + 𝑡𝑝−𝑝+ ∫

Ω
|𝑢|𝑝(𝑥) 𝑑𝑥

− 𝑡1−𝛿+1 − 𝛿+ ∫Ω |𝑢|1−𝛿(𝑥) 𝑑𝑥

− ∫
𝑡𝑢≥𝑡∗

𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥

− 𝜆 |𝑡|𝑞−+1𝑞− + 1 ∫
𝜕Ω
|𝑢|𝑞(𝑥)+1 𝑑𝑥

≤ 𝑡𝑝−𝑝+ ∫
Ω
|∇𝑢|𝑝(𝑥) 𝑑𝑥 + 𝑡𝑝−𝑝+ ∫

Ω
|𝑢|𝑝(𝑥) 𝑑𝑥

− 𝑡1−𝛿+1 − 𝛿+ ∫Ω |𝑢|1−𝛿(𝑥) 𝑑𝑥
− 𝑡𝜃𝑡𝜃∗ ∫𝑡𝑢≥𝑡∗ 𝐹 (𝑥, 𝑡𝑢) 𝑑𝑥

− 𝜆 |𝑡|𝑞−+1𝑞− + 1 ∫
𝜕Ω
|𝑢|𝑞(𝑥)+1 𝑑𝑥

≤ 𝑡𝑝−𝑝+ ∫
Ω
|∇𝑢|𝑝(𝑥) 𝑑𝑥 + 𝑡𝑝−𝑝+ ∫

Ω
|𝑢|𝑝(𝑥) 𝑑𝑥

− 𝑡1−𝛿+1 − 𝛿+ ∫Ω |𝑢|1−𝛿(𝑥) 𝑑𝑥
− 𝑡𝜃 ∫

𝑢≥𝑡∗

𝐹 (𝑥, 𝑡∗) 𝑑𝑥

− 𝜆 |𝑡|𝑞−+1𝑞− + 1 ∫
𝜕Ω
|𝑢|𝑞(𝑥)+1 𝑑𝑥.

(26)

Since 1 − 𝛿+ < 𝑝+ < 𝜃, this implies that 𝐸𝜆(𝑡𝑢) → −∞ as𝑡 → ∞.Thus, inf ‖𝑢‖
𝑊1,𝑝(𝑥)(Ω)≤𝑟

𝐸𝜆(𝑢) = 𝑐0 < 0. Now, let {𝑢𝑗} ⊂𝐵𝑟0 be a minimizing sequence for 𝑐0.Then ‖𝑢𝑗‖𝑊1,𝑝(𝑥)(Ω) < 𝑟0
for 𝑟0 ∈ (0, 𝑟).Now by the Ekeland variational principle, there
exists a sequence {V𝑗} such that ‖V𝑗‖𝑊1,𝑝(𝑥)(Ω) < 𝑟 and

𝑢𝑗 − V𝑗
𝑊1,𝑝(𝑥)(Ω) ≤ 1𝑛 ,
𝐸𝜆 (V𝑗) ≤ 𝐸𝜆 (𝑢𝑗) ,
𝐸𝜆 (V𝑗) → 0 in (𝑊1,𝑝(𝑥) (Ω))∗ ,

V𝑗 → 𝑢𝜆 weakly in 𝑊1,𝑝(𝑥) (Ω) .

(27)

Moreover, using theBrézis-Lieb lemma in [14] combinedwith
the 𝑝(𝑥) version ofTheorem 2.1 in Boccardo and Murat [15],
it follows that ∇V𝑗(𝑥) → ∇𝑢𝜆(𝑥) for almost every 𝑥 ∈ Ω,

∫
Ω

∇V𝑗𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 = ∫
Ω

∇ (V𝑗 − 𝑢𝜆)𝑝(𝑥)𝑝 (𝑥)
+ ∫

Ω

∇𝑢𝜆𝑝(𝑥)𝑝 (𝑥) + 𝑜𝑗 (1) ,
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∫
Ω
𝑓 (𝑥, V𝑗) 𝑑𝑥 = ∫

Ω
𝑓 (𝑥, 𝑢𝜆) 𝑑𝑥

+ ∫
Ω
𝑓 (𝑥, V𝑗 − 𝑢𝜆) 𝑑𝑥 + 𝑜𝑗 (1) ,

∫
Ω

V𝑗1−𝛿(𝑥)1 − 𝛿 (𝑥)𝑑𝑥 = ∫
Ω

𝑢𝜆1−𝛿(𝑥)1 − 𝛿 (𝑥) 𝑑𝑥

+ ∫
Ω

V𝑗 − 𝑢𝜆1−𝛿(𝑥)1 − 𝛿 (𝑥) 𝑑𝑥 + 𝑜𝑗 (1) .
(28)

Hence, from (28) and the compact boundary trace embed-
ding in Theorem 5, we get 𝐸𝜆(V𝑗) ≥ 𝐸𝜆(𝑢𝜆) + 𝑜𝑗(1). Thus, it
follows that 𝐸𝜆(𝑢𝜆) = 𝑐0 < 0. Hence 𝑢𝜆 ̸≡ 0 and it is a local
minimizer of 𝐸𝜆 in𝑊1,𝑝(𝑥)(Ω).

We prove now the existence of positive solution to (𝑃𝜆)
for 0 < 𝜆 < Λ. Precisely, we have the following result.
Lemma 10. Problem (𝑃𝜆) possesses a solution 𝑢𝜆 for 0 < 𝜆 <Λ.
Proof. Fix 0 < 𝜆 < 𝜆2 < Λ. 𝜆2 such that there exist solutions
to (𝑃𝜆) for 𝜆 = 𝜆2, say 𝑢𝜆2 . Note that 𝑢𝜆2 is a supersolution for(𝑃𝜆). It is clear that 0 is not a localminimizer of𝐸𝜆 on [0, 𝑢𝜆2]∩𝑊1,𝑝(𝑥)(Ω) since 𝐸𝜆(0) = 0 and 𝐸𝜆(𝑡V) < 0 for 𝑡 → 0+. Now,
we show the existence of a local minimizer of the functional
energy. For this, we use the cut-off argument. Define

�̃� (𝑥, 𝑠) =
{{{{{{{{{

𝑓 (𝑥, 0) , if 𝑠 < 0,
𝑓 (𝑥, 𝑠) , if 0 ≤ 𝑠 ≤ 𝑢𝜆2 ,
𝑓 (𝑥, 𝑢𝜆2) , if 𝑠 > 𝑢𝜆2 (𝑥) ,

�̃� (𝑥, 𝑠) =
{{{{{{{{{

0, if 𝑠 < 0,
𝑠−𝛿(𝑥), if 0 ≤ 𝑠 ≤ 𝑢𝜆2 ,
𝑢−𝛿(𝑥)
𝜆2

, if 𝑠 > 𝑢𝜆2 (𝑥) ,

ℎ̃ (𝑥, 𝑠) =
{{{{{{{{{

0, if 𝑠 < 0,
𝑠𝑞(𝑥), if 0 ≤ 𝑠 ≤ 𝑢𝜆2 ,
𝑢𝑞(𝑥)
𝜆2

, if 𝑠 > 𝑢𝜆2 (𝑥) .

(29)

Also define the functional �̃�𝜆 : 𝑊1,𝑝(𝑥)(Ω) → R by

�̃�𝜆 (𝑢) = ∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫
Ω

|𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥
− ∫

Ω
�̃� (𝑥, 𝑢) 𝑑𝑥 − ∫

Ω
�̃� (𝑥, 𝑢) 𝑑𝑥

− 𝜆∫
𝜕Ω
�̃� (𝑥, 𝑢) 𝑑𝑥,

(30)

where �̃�(𝑥, 𝑡) = ∫𝑡
0
�̃�(𝑥, 𝑠)𝑑𝑠, �̃�(𝑥, 𝑡) = ∫𝑡

0
�̃�(𝑥, 𝑠)𝑑𝑠, and

�̃�(𝑥, 𝑡) = ∫𝑡
0
ℎ̃(𝑥, 𝑠)𝑑𝑠. From the dominated convergence

and the compact boundary trace embedding in Theorem 5,
it is easy to see that �̃�𝜆 is bounded below and is weakly
lower semicontinuous in𝑊1,𝑝(𝑥)(Ω).Then, there exists �̃�𝜆 ∈𝑊1,𝑝(𝑥)(Ω) such that �̃�𝜆 achieves its global minimum in𝑊1,𝑝(𝑥)(Ω). Moreover, since �̃�𝜆 is 𝐶1(𝑊1,𝑝(𝑥)(Ω),R) from
Lemma A.4, �̃�𝜆 solves the equation
−Δ𝑝(𝑥)�̃�𝜆 + �̃�𝜆𝑝(𝑥)−2 �̃�𝜆 = �̃� (𝑥, �̃�𝜆) + �̃� (𝑥, �̃�𝜆) ,

in Ω,
∇�̃�𝜆𝑝(𝑥)−2 𝜕�̃�𝜆𝜕] = 𝜆ℎ̃ (𝑥, �̃�𝜆) , on 𝜕Ω.

(31)

Now, using the strong maximum principle (see Theo-
rem 8) �̃�𝜆 ̸≡ 0 and �̃�𝜆 > 0 since 0 is not a local minimizer of𝐸𝜆 on [0, 𝑢𝜆2] ∩ 𝑊1,𝑝(𝑥)(Ω). By the definition of �̃�, �̃�, and ℎ̃
we have

�̃� (𝑥, 0) ≤ �̃� (𝑥, �̃�𝜆) ≤ �̃� (𝑥, 𝑢𝜆2) , ∀𝑥 ∈ Ω,
�̃� (𝑥, 0) ≤ �̃� (𝑥, �̃�𝜆) ≤ �̃� (𝑥, 𝑢𝜆2) , ∀𝑥 ∈ Ω,
ℎ̃ (𝑥, 0) ≤ ℎ̃ (𝑥, �̃�𝜆) ≤ ℎ̃ (𝑥, 𝑢𝜆2) , ∀𝑥 ∈ Ω.

(32)

Again, by the strong comparison principle (see Lemma 7), we
conclude that �̃�𝜆 ≤ 𝑢𝜆2 inΩ and (𝜕/𝜕])(𝑢𝜆2 − �̃�𝜆) ≤ 0 on 𝜕Ω.
Hence �̃�𝜆 is a solution to (𝑃𝜆). This completes the proof of
Lemma 10.

Now, we show the following result.

Lemma 11. There exists at least one positive weak solution for𝜆 = Λ to problem (𝑃𝜆).
Proof. Let {𝜆𝑘}𝑘∈N ∈ (0, Λ), 𝜆𝑘 ↑ Λ as 𝑘 → ∞, and 𝑢𝜆𝑘 be
a solution of (𝑃𝜆𝑘) such that 𝑢𝜆𝑘−1 ≤ 𝑢𝜆𝑘 for all 𝑥 ∈ Ω. Now,
taking 𝑢𝜆𝑘 as test function in (𝑃𝜆𝑘), we get

∫
Ω

∇𝑢𝜆𝑘 𝑝(𝑥) 𝑑𝑥 + ∫
Ω

𝑢𝜆𝑘 𝑝(𝑥) 𝑑𝑥
= ∫

Ω
𝑢1−𝛿(𝑥)𝜆𝑘

𝑑𝑥 + ∫
Ω
𝑓 (𝑥, 𝑢𝜆𝑘) 𝑢𝜆𝑘𝑑𝑥

+ 𝜆𝑘 ∫
𝜕Ω
𝑢𝑞(𝑥)+1
𝜆𝑘

𝑑𝑥.
(33)

Moreover, as 𝐸𝜆𝑘(𝑢𝜆𝑘) ≤ 𝐸𝜆𝑘(0) = 0, we have

∫
Ω

∇𝑢𝜆𝑘 𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 + ∫
Ω

𝑢𝜆𝑘 𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 − ∫
Ω

𝑢1−𝛿(𝑥)
𝜆𝑘1 − 𝛿 (𝑥)𝑑𝑥

− ∫
Ω
𝐹 (𝑥, 𝑢𝜆𝑘) 𝑑𝑥 − 𝜆𝑘 ∫

𝜕Ω

𝑢𝑞(𝑥)+1
𝜆𝑘𝑞 (𝑥) + 1𝑑𝑥 ≤ 0.

(34)
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It follows that1𝑝+ (∫Ω
∇𝑢𝜆𝑘 𝑝(𝑥) 𝑑𝑥 + ∫

Ω

𝑢𝜆𝑘 𝑝(𝑥) 𝑑𝑥)
≤ ∫

Ω
𝑢1−𝛿(𝑥)𝜆𝑘

𝑑𝑥 + ∫
Ω
𝐹 (𝑥, 𝑢𝜆𝑘) 𝑑𝑥

+ 𝜆𝑘 ∫
𝜕Ω
𝑢𝑞(𝑥)+1
𝜆𝑘

𝑑𝑥.
(35)

Now, from (7) there exists 𝐶 > 0 such that, for 𝜃 > 𝑝+ and for
all 𝑡 > 0,

𝜃𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡) + 𝐶. (36)
Moreover, using Theorem 4.2 in [16], we get the existence of
the constants 𝐶1 > 0, 𝐶2 > 0 such that

𝐶1 [𝑑 (𝑥)]𝜃1 ≤ 𝑢𝜆 (𝑥) ≤ 𝐶2 [𝑑 (𝑥)]𝜃2 , (37)
where 𝜃1 = max𝑑(𝑥)≤𝜎(𝑝(𝑥)/(𝑝(𝑥) − 1 + 𝛿(𝑥))), 𝜃2 =
min𝑑(𝑥)≤𝜎(𝑝(𝑥)/(𝑝(𝑥) − 1 + 𝛿(𝑥))), and 𝑑(𝑥) = dist(𝑥, 𝜕Ω).
On the other hand, we recall the following inequality due to
Lieberman [17]. There exists a constant𝐾(Ω) > 0 such that

∫
𝜕Ω
|𝑢| ≤ ∫

Ω
|∇𝑢| + 𝐾 (Ω)∫

Ω
|𝑢| , ∀𝑢 ∈ 𝑊1,1 (Ω) . (38)

Inserting (36), (37), and (38) in (33), we get sup𝑘∈N‖𝑢𝜆𝑘‖𝑊1,𝑝(𝑥)(Ω) < ∞. It follows that {𝑢𝜆𝑘} is bounded in
𝑊1,𝑝(𝑥)(Ω) since 𝑢𝜆𝑘(𝑥) ≥ 𝑢𝜆1(𝑥) for all 𝑥 ∈ Ω. Without
loss of generality, 𝑢𝜆𝑘 ⇀ 𝑢Λ in 𝑊1,𝑝(𝑥)(Ω) and then by the
Sobolev imbedding 𝑢𝜆𝑘 ⇀ 𝑢Λ in 𝐿𝑞(𝑥)(Ω) and 𝑢𝜆𝑘(𝑥) → 𝑢Λ(𝑥)
for a.e. 𝑥 ∈ Ω. By the 𝐿∞(Ω)-regularity results of
[13], the boundedness of {‖𝑢𝜆𝑘‖} implies the boundedness
of {|𝑢𝜆𝑘 |𝐿∞(Ω)}. By the 𝐶1,𝛼(Ω)-regularity Theorem 16, the
boundedness of {|𝑢𝜆𝑘 |𝐿∞(Ω)} implies the boundedness of{‖𝑢𝜆𝑘‖𝐶1,𝛼(Ω)}, where 𝛼 ∈ (0, 1) is a constant. Thus, we have
𝑢𝜆𝑘 → 𝑢Λ in 𝐶1(Ω). For every V ∈ 𝑊1,𝑝(𝑥)(Ω), since 𝑢𝜆𝑘 is a
solution of problem (𝑃𝜆𝑘), we have that, for each 𝑘,

∫
Ω

∇𝑢𝜆𝑘 𝑝(𝑥)−2 ∇𝑢𝜆𝑘∇V 𝑑𝑥 + ∫
Ω

𝑢𝜆𝑘 𝑝(𝑥)−2 𝑢𝜆𝑘V 𝑑𝑥
= ∫

Ω

𝑢𝜆𝑘 −𝛿(𝑥) V 𝑑𝑥 + ∫
Ω
𝑓 (𝑥, 𝑢𝜆𝑘) V 𝑑𝑥

+ 𝜆𝑘 ∫
𝜕Ω

𝑢𝜆𝑘 𝑞(𝑥) V 𝑑𝑥.
(39)

Passing to the limit in (39) as 𝑘 → ∞ yields

∫
Ω

∇𝑢Λ𝑝(𝑥)−2 ∇𝑢Λ∇V 𝑑𝑥 + ∫
Ω

𝑢Λ𝑝(𝑥)−2 𝑢ΛV 𝑑𝑥
= ∫

Ω
𝑢−𝛿(𝑥)Λ V 𝑑𝑥 + ∫

Ω
𝑓 (𝑥, 𝑢Λ) V 𝑑𝑥

+ Λ∫
𝜕Ω
𝑢𝑞(𝑥)Λ V 𝑑𝑥,

(40)

which shows that 𝑢Λ is a solution of (𝑃Λ). Obviously 𝑢Λ ≥ 0
and 𝑢Λ ̸≡ 0. Hence 𝑢Λ is a positive solution of (𝑃Λ) in𝑊1,𝑝(𝑥)(Ω).This completes the proof of Lemma 11.

Then we prove the following nonexistence result.

Lemma 12. Consider the following:Λ < ∞.

Proof. Let 𝑢𝜆 be a solution of (𝑃𝜆). Taking 𝜑 ≡ 1 as a test
function in the weak formulation of (𝑃𝜆), we get

∫
Ω
𝑢𝑝(𝑥)−1
𝜆

𝑑𝑥 = ∫
Ω
𝑢−𝛿(𝑥)𝜆 𝑑𝑥 + ∫

Ω
𝑓 (𝑥, 𝑢𝜆) 𝑑𝑥

+ 𝜆∫
𝜕Ω
𝑢𝑞(𝑥)
𝜆

𝑑𝑥.
(41)

On the other hand, we have

∫
Ω
𝑢𝑝(𝑥)−1
𝜆

≤ ∫
Ω
𝑢𝑝+−1
𝜆

+ 𝐶1. (42)

Using assumption (H2) we have 𝐶2 ∫Ω 𝑢−𝛿+𝜆 ≤ ∫
Ω
𝑢−𝛿(𝑥), and

using (6) we have 𝐶3 ∫Ω 𝑢𝛾𝜆 ≤ ∫
Ω
𝑓(𝑥, 𝑢)𝑑𝑥. Therefore, from

(41) and (42) we get

∫
Ω
𝑢𝛾
𝜆
≤ 𝐶3 ∫

Ω
𝑢𝑝+
𝜆
− 𝐶4 ∫

Ω
𝑢−𝛿+𝜆 + 𝐶5. (43)

Now, since 𝑝+ − 1 < 𝛾 and −𝛿+ < 𝛾, by the embedding
of 𝐿𝛾(Ω) into 𝐿𝑝+−1(Ω) and by the embedding of 𝐿𝛾(Ω) into𝐿−𝛿+(Ω) we obtain

∫
Ω
𝑢𝑝+−1
𝜆

≤ 𝐶6 (∫
Ω
𝑢𝛾
𝜆
)(𝑝+−1)/𝛾 ,

∫
Ω
𝑢−𝛿+𝜆 ≤ 𝐶7 (∫

Ω
𝑢𝛾
𝜆
)−𝛿+/𝛾 .

(44)

Substituting (44) in (43) we get
𝑢𝜆𝛾𝐿𝛾(Ω) ≤ 𝐶8 + 𝐶9

𝑢𝜆𝑝+−1𝐿𝛾(Ω) + 𝐶10
𝑢𝜆−𝛿+𝐿𝛾(Ω) . (45)

Hence, ‖𝑢𝜆‖𝐿𝛾(Ω) is bounded by a constant independent of
𝜆. Now, taking 𝜑 = 𝑢−𝑞−

𝜆
as a test function in the weak

formulation of (𝑃𝜆) and using (H2) we get

∫
Ω

𝑢𝜆𝑝(𝑥)−1−𝑞− 𝑑𝑥 ≥ ∫
Ω
𝑢−𝛿(𝑥)−𝑞−
𝜆

𝑑𝑥
+ ∫

Ω
𝑓 (𝑥, 𝑢𝜆) 𝑢−𝑞−𝜆

𝑑𝑥
+ 𝜆∫

𝜕Ω
𝑢𝑞(𝑥)−𝑞−
𝜆

𝑑𝑥
≥ 𝜆∫

𝜕Ω
𝑢𝑞(𝑥)−𝑞−
𝜆

𝑑𝑥
≥ 𝜆∫

Γ
𝑢𝑞−−𝑞−
𝜆

𝑑𝑥 = 𝜆 |Γ|𝑁−1 .

(46)

Now since

∫
Ω

𝑢𝜆𝑝(𝑥)−1−𝑞− 𝑑𝑥 ≤ 𝐶 + 𝑢𝜆𝛾𝐿𝛾(Ω) (47)

it follows that Λ is finite. The proof of Lemma 12 is now
completed.

Proof of Theorem 2. Theorem 2 follows from Lemmas 10, 11,
and 12.
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Now, we prove that the solution of problem (𝑃𝜆) obtained
in Lemma 10 is a local minimum for the functional energy
associated to problem (𝑃𝜆). Precisely, we have the following
result.

Lemma 13. Let 𝑢𝜆 be the weak solution of problem (𝑃𝜆)
obtained in Lemma 10. Then, 𝑢𝜆 is a local minimum for𝐸𝜆\𝐶1(Ω).
Proof. Fix 0 < 𝜆1 < 𝜆 < 𝜆2 < Λ and let 𝑢𝜆1 , 𝑢𝜆2 be solutions
to (𝑃𝜆) for 𝜆 = 𝜆1 and 𝜆 = 𝜆2, respectively, such that 𝑢𝜆1 ≤𝑢𝜆 ≤ 𝑢𝜆2 . By Lemma 7, 𝑢𝜆1 < 𝑢𝜆 < 𝑢𝜆2 on Ω. Define the
following cut-off functions:

�̂� (𝑥, 𝑡) =
{{{{{{{{{

𝑓(𝑥, 𝑢𝜆1 (𝑥)) , 𝑡 < 𝑢𝜆1 (𝑥) ,
𝑓 (𝑥, 𝑡) , 𝑢𝜆1 (𝑥) ≤ 𝑡 ≤ 𝑢𝜆2 (𝑥) ,
𝑓 (𝑥, 𝑢𝜆2 (𝑥)) , 𝑡 > 𝑢𝜆2 (𝑥) ,

(𝑥 ∈ Ω, 𝑡 ∈ R) ,

�̂� (𝑥, 𝑡) =
{{{{{{{{{

𝑢−𝛿(𝑥)
𝜆1(𝑥)

, 𝑡 < 𝑢𝜆1 (𝑥) ,
𝑡−𝛿(𝑥), 𝑢𝜆1 (𝑥) ≤ 𝑡 ≤ 𝑢𝜆2 (𝑥) ,
𝑢−𝛿(𝑥)
𝜆2

, 𝑡 > 𝑢𝜆2 (𝑥) ,
(𝑥 ∈ Ω, 𝑡 ∈ R) ,

ℎ̂ (𝑥, 𝑡) =
{{{{{{{{{

𝜓 (𝑥) 𝑢𝑞(𝑥)𝜆1
, 𝑡 < 𝑢𝜆1 (𝑥) ,

𝜓 (𝑥) 𝑡𝑞(𝑥), 𝑢𝜆1 (𝑥) ≤ 𝑡 ≤ 𝑢𝜆2 (𝑥) ,
𝜓 (𝑥) 𝑢𝑞(𝑥)𝜆2

, 𝑡 > 𝑢𝜆2 (𝑥) ,
(𝑥 ∈ 𝜕Ω, 𝑡 ∈ R) .

(48)

Then the corresponding functional �̂�𝜆 : 𝑊1,𝑝(𝑥)(Ω) → R

given by

�̂�𝜆 (𝑢) = ∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) + ∫
Ω

|𝑢|𝑝(𝑥)𝑝 (𝑥) − ∫
Ω
�̂� (𝑥, 𝑢)

− ∫
Ω
�̂� (𝑥, 𝑢) − 𝜆∫

𝜕Ω
�̂� (𝑥, 𝑢) ,

(49)

where �̂�(𝑥, 𝑢) = ∫𝑢
0
�̂�(𝑥, 𝑡)𝑑𝑡 (𝑥 ∈ Ω), �̂�(𝑥, 𝑢) = ∫𝑢

0
�̂�(𝑥,

𝑡)𝑑𝑡 (𝑥 ∈ Ω), and �̂�(𝑥, 𝑢) = ∫𝑢
0
ℎ̂(𝑥, 𝑡)𝑑𝑡(𝑥 ∈ 𝜕Ω). Firstly,

from Lemma A.4 �̂�𝜆 is 𝐶1(𝑊1,𝑝(𝑥)(Ω),R).Then, it is simple
to see that �̂�𝜆 is coercive and bounded below. Let 𝑢𝜆 denote
the global minimum of �̂�𝜆 on𝑊1,𝑝(𝑥)(Ω) which satisfies the
equation

− div (|∇𝑢|𝑝(𝑥)−2 ∇𝑢) + |𝑢|𝑝(𝑥)−2 𝑢
= �̂� (𝑥, 𝑢) + �̂� (𝑥, 𝑢) , 𝑢 > 0 in Ω,

|∇𝑢|𝑝(𝑥)−2 𝜕𝑢𝜕] = 𝜆ℎ̂ (𝑥, 𝑢) , on 𝜕Ω.
(50)

Therefore, from the regularity results Theorem 16, we con-
clude that 𝑢𝜆 is in 𝐶1,𝛼(Ω) for some 0 < 𝛼 < 1. Now, using
(H2) and since 𝑓(𝑥, 𝑡) is nondecreasing, by the definition of�̂�, �̂�, and ℎ̂ we have

�̂� (𝑥, 𝑢𝜆1) ≤ �̂� (𝑥, 𝑢𝜆) ≤ �̂� (𝑥, 𝑢𝜆2) , ∀𝑥 ∈ Ω,
�̂� (𝑥, 𝑢𝜆1) ≤ �̂� (𝑥, 𝑢𝜆) ≤ �̂� (𝑥, 𝑢𝜆2) , ∀𝑥 ∈ Ω,
ℎ̂ (𝑥, 𝑢𝜆1) ≤ ℎ̂ (𝑥, 𝑢𝜆) ≤ ℎ̂ (𝑥, 𝑢𝜆2) , ∀𝑥 ∈ 𝜕Ω.

(51)

Again, by the strong comparison principle (see Lemma 7), we
conclude that 𝑢𝜆1 ≤ 𝑢𝜆 ≤ 𝑢𝜆2 in Ω. Let 𝛽 = inf𝑥∈Ω{|𝑢𝜆1 −𝑢𝜆2 | + |∇𝑢𝜆1 − ∇𝑢𝜆2 |}.We claim that 𝛽 > 0. If not, then there
exists 𝑥 ∈ 𝜕Ω such that 𝑢𝜆1 = 𝑢𝜆2 and ∇𝑢𝜆1 = ∇𝑢𝜆2 . But this
contradicts the boundary data as 𝜆1 ̸= 𝜆2. Therefore, if V ∈
C = {𝑢 ∈ 𝐶1(Ω) \ ‖𝑢 − 𝑢𝜆‖𝐶1(Ω) < 𝛽/2} then 𝑢𝜆1 < 𝑢𝜆 < 𝑢𝜆2
inΩ since𝐸𝜆 ≡ �̂�𝜆 on the setC.Hence 𝑢𝜆 is a localminimum
for 𝐸𝜆\𝐶1(Ω).This completes the proof of Lemma 13.

4. 𝐶1 versus 𝑊1,𝑝(𝑥) Local Minimizers of
the Energy

The following lemma is crucial in showing multiplicity of
solutions. It has been shown in the case 𝑝 = 2 in [18] for
the case of critical growth functionals 𝐸𝜆: 𝐻1

0 (Ω) → R,Ω ⊂ R𝑁, 𝑁 ≥ 3 and later for critical growth functionals𝐸𝜆 : 𝑊1,𝑝
0 (Ω) → R, 1 < 𝑝 < 𝑁, Ω ⊂ R𝑁, 𝑁 ≥ 3 in

[19]. A key feature of these latter works is the uniform 𝐶1,𝛼

estimate they obtain for equations like (𝑃𝜖) but involving two𝑝-Laplace operators. Using constraints based on 𝐿𝑝-norms
rather than Sobolev norms as in [19], the equations for which
uniform estimates are required can be simplified to a standard
type involving only one 𝑝-Laplace operator. This approach
was followed in [20] in the subcritical case, in [21] in the
critical case, in [22–24], and also in this work to deal with
the boundary value problem involving the nonlinear 𝑝(𝑥)-
Laplacian case. More precisely, we have the following result.

Lemma 14. Suppose that conditions (H0)–(H5) are satisfied.
Let 𝑢0 ∈ 𝐶1(Ω) satisfying

𝑢0 ≥ 𝜂𝑑 (𝑥, 𝜕Ω) for some 𝜂 > 0 (52)

be a local minimizer of 𝐸𝜆 in 𝐶1(Ω) ∩ 𝐶0(Ω) topology. Then,𝑢0 is a local minimum of 𝐸𝜆 in𝑊1,𝑝(𝑥)(Ω) also.
For proving Lemma 14, we will need the following

uniform 𝐿∞-estimates for a family of solutions to (𝑃𝜖).
Proposition 15. Let {𝑢𝜖}𝜖∈(0,1) be a family of solutions to (𝑃𝜖),
where 𝑢0 satisfies (52) and solves (𝑃𝜆). Let 𝛾 > 1 be such that

sup
𝜖∈(0,1)

(𝑓 (𝑥, 𝑢𝜖)𝐿𝛾 + 𝑢𝜖𝑊1,𝑝(𝑥)(Ω)) < ∞. (53)

Then, 𝑢𝜖𝐿∞(Ω) < 𝐶. (54)
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The proof of Proposition 15 is a consequence of the results
proved in Appendix A in [13]. Hence, the regularity results of
Saoudi and Ghanmi [13] give the following regularity result
for weak solutions to problem (𝑃𝜆).
Theorem 16. Let 𝑢 ∈ 𝑊1,𝑝(𝑥)(Ω) ∩ 𝐿∞(Ω) be a solution
to problem (𝑃𝜆). Then, there exists 0 < 𝐾 = 𝐾(‖𝑢‖𝐿∞(Ω),𝑝+, 𝑝−, 𝛿+, 𝛿−, Ω,𝑁) such that any weak solution to problem(𝑃𝜆) belongs to 𝐶1,𝛼(Ω) for some 𝛼 ∈ (0, 1).
Proof of Lemma 14. Assume that the conclusion of Lemma 14
is not true. We define the following constraint for each 𝜖 > 0:

S𝜖

def= {𝑢 ∈ 𝑊1,𝑝(𝑥) (Ω) : 𝜌 (𝑢) def= ∫
Ω

𝑢𝛼(𝑥)𝛼 (𝑥)
+ 1𝑝− ∫𝜕Ω 𝑢𝑝

− ≤ 𝜖} .
(55)

We consider the following constraint minimization problem:

𝐼𝜖 = inf
𝑢∈S𝜖

𝐸𝜆 (𝑢) . (56)

Firstly, clearly 𝐼𝜖 > −∞. Moreover, we note that S𝜖 is a
convex set. Using the trace embeddings we see thatS𝜖 is also
a closed set in 𝑊1,𝑝(𝑥)(Ω) which implies that S𝜖 is weakly
closed in 𝑊1,𝑝(𝑥)(Ω); with the fact that 𝐸𝜆 is weakly low
semicontinuous in𝑊1,𝑝(𝑥)(Ω), it follows that for 𝜖 ∈ (0, 1) 𝐼𝜖
is achieved on some 𝑢𝜖 ∈ S𝜖; that is

𝐸𝜆 (𝑢𝜖) = 𝐼𝜖,
𝐸𝜆 (𝑢𝜀) < 𝐸𝜆 (𝑢0)

∀𝜖 ∈ (0, 1) .
(57)

Moreover, since 𝐸𝜆(𝑢+𝜖 ) ≤ 𝐸𝜆(𝑢𝜖) and 𝑢+𝜖 ∈ S𝜖, we may
assume that 𝑢𝜖 ≥ 0.

We now consider the following two cases.
(1) Let 𝜌(𝑢𝜖) < 𝜖.Then 𝑢𝜖 is also a localminimizer of𝐸𝜆 in𝑊1,𝑝(𝑥)(Ω).We now show that 𝐸𝜆 admits Gâteaux derivatives

on 𝑢𝜖 to derive that 𝑢𝜖 satisfies the Euler-Lagrange equation
associated with 𝐸𝜆. For this, according to Lemma A.2, in the
Appendix, we need to prove that ∃�̃� > 0 such that

𝑢𝜖 ≥ �̃�𝑑 (𝑥) dist (𝑥, 𝜕Ω) , (58)

where 𝑑(𝑥) def= dist(𝑥, 𝜕Ω). To prove (58), we argue by
contradiction: ∀𝜂 > 0 let

Ω𝜂 = Supp {(𝜂𝑑 (𝑥) − 𝑢𝜖)+} , (59)

and suppose thatΩ𝜂 has a nonzero measure.
Let 𝑢𝜂 = (𝜂𝑑(𝑥) − 𝑢𝜖)+ and for 0 < 𝑡 ≤ 1 set 𝜉(𝑡) =𝐸𝜆(𝑢𝜖 + 𝑡𝑢𝜂). Then, there exists 𝑐(𝑡) satisfying 𝑐(𝑡) > 𝜂𝑡 such

that inf((𝑢𝜖 + 𝑡𝑢𝜂)/𝑑(𝑥)) ≥ 𝑐(𝑡) for 𝑡 > 0. Then, from
Lemma A.4 𝜉 is differentiable for 0 < 𝑡 ≤ 1 and 𝜉(𝑡) =⟨𝐸𝜆(𝑢𝜖 + 𝑡𝑢𝜂), 𝑢𝜂⟩. Thus,

𝜉 (𝑡) = ∫
Ω

∇ (𝑢𝜖 + 𝑡𝑢𝜂)𝑝(𝑥)−2 ∇ (𝑢𝜖 + 𝑡𝑢𝜂) ∇𝑢𝜂

+ ∫
Ω

𝑢𝜖 + 𝑡𝑢𝜂𝑝(𝑥)−2 𝑢𝜂
− ∫

Ω
(𝑢𝜖 + 𝑡𝑢𝜂)−𝛿(𝑥) 𝑢𝜂

− ∫
Ω
𝑓 (𝑥, 𝑢𝜖 + 𝑡𝑢𝜂) 𝑢𝜂

− 𝜆∫
Ω

𝑢𝜖 + 𝑡𝑢𝜂𝑞(𝑥)−1 (𝑢𝜖 + 𝑡𝑢𝜂) 𝑢𝜂.
(60)

From (H1)–(H3), we see that

𝜉 (1) = ∫
Ω

∇𝜂𝑑 (𝑥)𝑝(𝑥)−2 ∇ (𝜂𝑑 (𝑥)) ∇𝑢𝜂
+ ∫

Ω

𝜂𝑑 (𝑥)𝑝(𝑥)−2 𝑢𝜂 − ∫
Ω
(𝜂𝑑 (𝑥))−𝛿(𝑥) 𝑢𝜂

− ∫
Ω
𝑓 (𝑥, 𝜂𝑑 (𝑥)) 𝑢𝜂

− 𝜆∫
Ω

𝜂𝑑 (𝑥)𝑞(𝑥)−1 (𝜂𝑑 (𝑥)) 𝑢𝜂 < 0,

(61)

for 𝜂 > 0 small enough.
Now, since 𝑠−𝛿(𝑥)+𝑓(𝑥, 𝑠)+𝜆𝑠𝑞(𝑥) is nonincreasing for 0 <𝑠 small enough uniformly to 𝑥 ∈ Ω (by (H1)–(H3)) and from

themonotonicity of the operator−Δ𝑝(𝑥)𝑢+|𝑢|𝑝(𝑥)−1𝑢, we have
that for 0 < 𝜂 small enough 0 ≤ 𝜉(1) − 𝜉(𝑡).Therefore, from
Taylor’s expansion and since 𝜌(𝑢𝜖) ≤ 𝜖, there exists 0 < 𝛾 < 1
such that

0 ≤ 𝐸𝜆 (𝑢𝜖 + 𝑢𝜂) − 𝐸𝜆 (𝑢𝜖) = ⟨𝐸𝜆 (𝑢𝜖 + 𝛾𝑢𝜂) , 𝑢𝜂⟩
= 𝜉 (𝛾) . (62)

Letting 𝑡 = 𝛾 we have 𝜉(𝛾) ≤ 𝜉(1) < 0. We obtain a
contradiction with (62) and then 𝑢𝜖 ≥ 𝜂𝑑(𝑥) for some 𝜂 > 0
(which depends a priori on 𝜖). Since 𝑢𝜖 is a local minimizer of𝐸𝜆 and𝐸𝜆 is Gâteaux differentiable in 𝑢𝜖, we get that𝐸𝜆(𝑢𝜖) is
defined and 𝐸𝜆(𝑢𝜖) = 0. Recalling that 𝑢 is the solution to the
pure singular problem given byTheorem 4.2 in [16] and from
the weak comparison principle, there exist 𝐶1 > 0, 𝐶2 > 0
such that

𝐶1 [𝑑 (𝑥)]𝜃1 ≤ 𝑢 ≤ 𝑢𝜖, (63)

where 𝜃1 = max𝑑(𝑥)≤𝜎(𝑝(𝑥)/(𝑝(𝑥) − 1 + 𝛿(𝑥))), for some 𝜂 >0 (independent of 𝜖). Since 𝑢𝜖 ∈ S𝜖 and from the fact that𝑢𝜖 satisfies (𝑃𝜆), we get that {𝑢𝜖}𝜖≥0 is uniformly bounded in𝑊1,𝑝(𝑥)(Ω). Now, using Proposition 15 and Theorem 16, we
get 𝑢𝜖𝐶1,𝛼(Ω) ≤ 𝐶 for some 𝛼 ∈ (0, 1) (64)

and as 𝜖 → 0+
𝑢𝜖 → 𝑢0 in 𝐶1 (Ω) (65)

which contradicts the fact that 𝑢0 is a local minimizer in𝐶1(Ω) ∩ 𝐶0(Ω).
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Now, we deal with the second case.
(2) 𝜌(𝑢𝜖) = 𝜖: we again show that 𝑢𝜖 ≥ 𝜂𝑑(𝑥) in Ω for

some 𝜂 > 0. Taking 𝑢𝜂 = (𝜂𝑑(𝑥) − 𝑢𝜖)+, 𝜉(𝑡) = 𝐸𝜆(𝑢𝜖 + 𝑡𝑢𝜂),
we obtain as above that 𝜉(𝑡) ≤ 𝜉(1) < 0 for 0 < 𝑡 < 1 and0 < 𝜂 small enough.

Then 𝜉(𝑡) = 𝐸𝜆(𝑢𝜖 + 𝑡𝑢𝜂) is decreasing. This implies that𝐸𝜆(𝑢𝜖) > 𝐸𝜆(𝑢𝜖 + 𝑡𝑢𝜂) for 𝑡 > 0 and using (52)

𝜌 (𝑢𝜖 + 𝑡𝑢𝜂) < 𝜌 (𝑢𝜖) = 𝜖. (66)

This yields a contradiction with the fact that 𝑢𝜖 is a global
minimizer of 𝐸𝜆 on S𝜖. In this case, using Lemma A.4 and
from the Lagrange multiplier rule we have

𝐸𝜆 (𝑢𝜖) = 𝜇𝜖𝜌 (𝑢𝜖) , for some 𝜇𝜖 ∈ R. (67)

We first show that 𝜇𝜖 ≤ 0. We argue by contradiction.
Suppose that 𝜇𝜖 > 0; then there exists 𝜑 ∈ 𝑊1,𝑝(𝑥)(Ω) such
that

⟨𝐸𝜆 (𝑢𝜖) , 𝜑⟩ < 0,
⟨𝜌 (𝑢𝜖) , 𝜑⟩ < 0 (68)

and then for 𝑡 small we have

𝐸𝜆 (𝑢𝜖 + 𝑡𝜑) < 𝐸𝜆 (𝑢𝜖) ,
𝜌 (𝑢𝜖 + 𝑡𝜑) < 𝜌 (𝑢𝜖) ≤ 𝜖. (69)

This contradicts the fact that 𝑢𝜖 is a global minimizer of 𝐸𝜆 in
S𝜖.

We deal now with the two following cases.

Case 1 (inf𝜖∈(0,1)𝜇𝜖 def= 𝑙 > −∞). In this case, we write (67) in
its PDE form as

(𝑃𝜖)
{{{{{{{
−Δ𝑝(𝑥)𝑢𝜀 + 𝑢𝜀𝑝(𝑥)−1 𝑢𝜖 = 1𝑢𝜀𝛿(𝑥) + 𝑓 (𝑥, 𝑢𝜀) + 𝜇𝜀

𝑢𝜀𝛼(𝑥)−2 𝑢𝜀, 𝑢𝜀 > 0 in Ω,
∇𝑢𝜀𝑝(𝑥)−2 𝜕𝑢𝜀𝜕] = 𝜆𝑢𝑞(𝑥)𝜀 + 𝜇𝜀 𝑢𝜀𝑝−−2 𝑢𝜀, on 𝜕Ω. (70)

In this case, from (57), we have that sup𝜖∈(0,1)‖𝑢𝜖‖𝑊1,𝑝(𝑥)(Ω)< ∞. Hence, we can apply Proposition 15 to conclude
that sup𝜖∈(0,1)‖𝑢𝜖‖𝐿∞(Ω) < 𝐾 for some constant 𝐾 > 0
independent of 𝜖. Therefore, using Theorem 16 we conclude
that |𝑢𝜖|𝐶1,𝛼(Ω) ≤ 𝐶 for some constant 𝐶 > 0 independent of 𝜖
and as 𝜖 → 0+

𝑢𝜖 → 𝑢0 in 𝐶1 (Ω) (71)

which contradicts the fact that 𝑢0 is a local minimizer in𝐶1(Ω) ∩ 𝐶0(Ω).
Now, we deal with the second case.

Case 2 (inf𝜖∈(0,1)𝜇𝜖 = −∞). From above, we can assume that𝜇𝜖 ≤ −1 for 0 < 𝜖 small enough. Furthermore, we can find
a number 𝑀 > 0 independent of 𝜖 > 0 and 𝑥 ∈ Ω, such
that (1/𝑠𝛿(𝑥) + 𝑓(𝑥, 𝑠) + 𝜇𝜀|𝑠|𝛼(𝑥)−2𝑠) and (|𝑠|𝑞(𝑥) + 𝜇𝜀|𝑠|𝑝−−2𝑠)𝑠
are negative for all |𝑠| ≥ 𝑀.Then, from the weak comparison
principle (see Lemma 7 and using (𝑢𝜀 −𝑀)+ as test function)
we have that sup𝜖∈(0,1)‖𝑢𝜖‖𝐿∞(Ω) ≤ 𝑀 for 𝜖 > 0 small enough.
Now, since 𝑢0 ∈ 𝑊1,𝑝(𝑥)(Ω) is a 𝐶1 local minimizer, 𝑢0 is a
weak solution to (𝑃𝜆); that is, satisfies ess inf𝐾𝑢0 > 0 over
every compact set 𝐾 ⊂ Ω and

∫
Ω

∇𝑢0𝑝(𝑥)−2 ∇𝑢0∇𝜙𝑑𝑥 + ∫
Ω

𝑢0𝑝(𝑥)−2 𝜙𝑑𝑥
= ∫

Ω

1
𝑢𝛿(𝑥)0

𝜙𝑑𝑥 − ∫
Ω
𝑓 (𝑥, 𝑢0) 𝜙 𝑑𝑥

− 𝜆∫
𝜕Ω

𝑢0𝑞(𝑥)−1 𝑢0𝜙𝑑𝑥,
(72)

for all 𝜙 ∈ 𝐶∞
𝑐 (Ω). Therefore, for every function 𝑤 ∈𝑊1,𝑝(𝑥)(Ω), 𝑢0 satisfies

∫
Ω

∇𝑢0𝑝(𝑥)−2 ∇𝑢0∇𝑤𝑑𝑥 + ∫
Ω

𝑢0𝑝(𝑥)−2 𝑤𝑑𝑥
= ∫

Ω

1
𝑢𝛿(𝑥)0

𝑤𝑑𝑥 − ∫
Ω
𝑓 (𝑥, 𝑢0) 𝑤 𝑑𝑥

− 𝜆∫
𝜕Ω

𝑢0𝑞(𝑥)−1 𝑢0𝑤𝑑𝑥.
(73)

Similarly,

∫
Ω

∇𝑢𝜖𝑝(𝑥)−2 ∇𝑢𝜖∇𝑤𝑑𝑥 + ∫
Ω

𝑢𝜖𝑝(𝑥)−2 𝑤𝑑𝑥
= ∫

Ω

1
𝑢𝛿(𝑥)𝜖

𝑤𝑑𝑥 − ∫
Ω
𝑓 (𝑥, 𝑢𝜖) 𝑤 𝑑𝑥

− 𝜆∫
𝜕Ω

𝑢𝜖𝑞(𝑥)−1 𝑢𝜖𝑤𝑑𝑥.
(74)

Now, substracting the above relations with𝑤 = (𝑢𝜖 −𝑢0)|𝑢𝜖 −𝑢0|𝛽−1, with 𝛽 > 1, as a test function in (𝑃𝜖), integrate by parts
and use the fact that 𝑢 → −Δ𝑝(𝑥)𝑢 + |𝑢|𝑝(𝑥)−1𝑢 is a monotone
operator to obtain

− 𝜇𝜀 [∫
Ω

𝑢𝜀 − 𝑢0𝛼(𝑥) 𝑢𝜖 − 𝑢0𝛽−1 (𝑢𝜀 − 𝑢0) 𝑑𝑥
+ ∫

𝜕Ω

𝑢𝜀 − 𝑢0𝑝−+𝛽−1 𝑑𝑥] ≤ ∫
Ω
( 1
𝑢𝛿(𝑥)𝜀

− 1
𝑢𝛿(𝑥)0

)
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⋅ 𝑢𝜖 − 𝑢0𝛽−1 (𝑢𝜖 − 𝑢0) 𝑑𝑥
+ ∫

Ω
(𝑓 (𝑥, 𝑢𝜀) − 𝑓 (𝑥, 𝑢0)) 𝑢𝜖 − 𝑢0𝛽−1

⋅ (𝑢𝜖 − 𝑢0) 𝑑𝑥 + 𝜆∫
𝜕Ω
(𝑢𝜀𝑞−1 𝑢𝜀 𝑢0𝑞−1 𝑢0)

⋅ 𝑢𝜖 − 𝑢0𝛽−1 (𝑢𝜖 − 𝑢0) 𝑑𝑥.
(75)

Using the bounds of 𝑢𝜖, 𝑢0 we get
− 𝜇𝜀 [∫

Ω

𝑢𝜀 − 𝑢0𝛼(𝑥) 𝑢𝜖 − 𝑢0𝛽−1 (𝑢𝜀 − 𝑢0) 𝑑𝑥
+ 𝜆∫

𝜕Ω

𝑢𝜀 − 𝑢0𝑝−+𝛽−1 𝑑𝑥] ≤ 𝐶 [∫
Ω

𝑢𝜖 − 𝑢0𝛽 𝑑𝑥
+ 𝜆∫

𝜕Ω

𝑢𝜖 − 𝑢0𝛽 𝑑𝑥] ,
(76)

where 𝐶 does not depend on 𝛽 and 𝜖. Now, using Hölder’s
inequality and the bounds of 𝑢𝜖 combined with Lemma 4 we
obtain

∫
Ω

𝑢𝜀𝛽 ≤ 𝐶 𝑢𝜀𝛽𝐿𝛼(𝑥)+𝛽−1
≤ (∫

Ω

𝑢𝜀𝛼(𝑥)+𝛽−1)𝛽/(𝛼−+𝛽−1) .
(77)

Therefore

− 𝜇𝜀 [∫
Ω

𝑢𝜀 − 𝑢0𝛼(𝑥) 𝑢𝜖 − 𝑢0𝛽−1 (𝑢𝜀 − 𝑢0) 𝑑𝑥
+ 𝜆∫

𝜕Ω

𝑢𝜀 − 𝑢0𝑝−+𝛽−1 𝑑𝑥] ≤ 𝐶 (|Ω|)
⋅ [∫

Ω

𝑢𝜖 − 𝑢0𝛼(𝑥)+𝛽−1 𝑑𝑥
+ 𝜆∫

𝜕Ω

𝑢𝜖 − 𝑢0𝛼(𝑥)+𝛽−1 𝑑𝑥]𝛽/(𝛼−+𝛽−1) .

(78)

Thus for any 𝛽 > 1
− 𝜇𝜖 [𝑢𝜖 − 𝑢0𝛼−−1𝐿𝛼(𝑥)+𝛽−1(Ω)

+ 𝑢𝜖 − 𝑢0𝛼−−1𝐿𝛼(𝑥)+𝛽−1(𝜕Ω)
]

≤ 𝐶 (|Ω|) . (79)

Passing to the limit in (79) 𝛽 → +∞ we get

sup (−𝜇𝜖) [𝑢𝜖 − 𝑢0𝛼−−1𝐿∞(Ω) + 𝑢𝜖 − 𝑢0𝛼−−1𝐿∞(𝜕Ω)]
≤ 𝐶 (|Ω|) . (80)

Then, using (80) combined with Proposition 15, the uniform𝐿∞ bounds for {𝑢𝜀}𝜀∈(0,1) in Ω as well as 𝜕Ω, we get that
the right-hand side terms in (𝑃𝜀) are uniformly bounded
in 𝐿∞(Ω) and in 𝐿∞(𝜕Ω) from which as in the first case
we obtain that 𝑢𝜖 (0 < 𝜖 ≤ 1) is bounded in 𝐶1,𝛼(Ω)

independently of 𝜖. Finally, using Ascoli-Arzela Theorem we
find a sequence 𝜖𝑛 → 0+ such that

𝑢𝜖𝑛 → 𝑢0 in 𝐶1 (Ω) . (81)

It follows that, for 𝜖 > 0 sufficiently small,

𝐸𝜆 (𝑢𝜖𝑛) < 𝐸𝜆 (𝑢0) , (82)

which contradicts the fact that 𝑢0 is a local minimizer of 𝐸𝜆
for the 𝐶1(Ω) ∩ 𝐶0(Ω) topology. The proof of Lemma 14 is
now completed.

5. Existence of a Second Weak Solution for0 < 𝜆 < Λ
In this section, we fix 𝜆 ∈ (0, Λ) and let 0 < 𝜆1 < 𝜆 <𝜆2 < Λ, 𝑢𝜆1 and 𝑢𝜆2 be as in Section 3. Now, we are able to
show the existence of a second solution using the generalized
Mountain Pass Theorem. Since the functional is not 𝐶1, we
use the cut-off functional 𝐸𝜆 defined in (86). Define the cut-
off functions𝑔 : Ω ×R → R by

𝑔 (𝑥, 𝑠) =
{{{{{{{

1𝑠𝛿(𝑥) , if 𝑠 > 𝑢𝜆 (𝑥) ,1
𝑢 (𝑥)𝛿(𝑥)𝜆

, if 𝑠 ≤ 𝑢𝜆 (𝑥) , (83)

𝑓 : Ω ×R → R by

𝑓 (𝑥, 𝑠) = {{{
𝑓 (𝑥, 𝑠) , if 𝑠 > 𝑢𝜆 (𝑥) ,
𝑓 (𝑥, 𝑢𝜆 (𝑥)) , if 𝑠 ≤ 𝑢𝜆 (𝑥) , (84)

ℎ : 𝜕Ω ×R → R by

ℎ (𝑥, 𝑠) = {{{
𝜓 (𝑥) 𝑠𝑞(𝑥), if 𝑠 > 𝑢𝜆 (𝑥) ,
𝜓 (𝑥) 𝑢𝑞(𝑥)𝜆 (𝑥) , if 𝑠 ≤ 𝑢𝜆 (𝑥) , (85)

and define now the corresponding functional𝐸𝜆 : 𝑊1,𝑝(𝑥)(Ω)→ R given by

𝐸𝜆 (𝑢) = ∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) + ∫
Ω

|𝑢|𝑝(𝑥)𝑝 (𝑥) − ∫
Ω
𝐺 (𝑥, 𝑢) 𝑑𝑥

− ∫
Ω
𝐹 (𝑥, 𝑢) 𝑑𝑥 − 𝜆∫

𝜕Ω
𝐻(𝑥, 𝑢) 𝑑𝑥,

(86)

where 𝐺(𝑥, 𝑢) = ∫𝑢
0
𝑔(𝑥, 𝑡)𝑑𝑡, 𝐹(𝑥, 𝑢) = ∫𝑢

0
𝑓(𝑥, 𝑡)𝑑𝑡, and

𝐻(𝑥, 𝑢) = ∫𝑢
0
ℎ(𝑥, 𝑡)𝑑𝑡. Firstly, we prove the following lemma

on compactness of Palais-Smale sequences.

Lemma 17. The functional 𝐸𝜆 satisfies the Palais-Smale con-
dition.
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Proof. Let {𝑢𝑛} be a (PS) sequence; namely,𝐸𝜆(𝑢𝑛) is bounded
and 𝐸𝜆(𝑢𝑛) → 0 when 𝑛 → ∞.Then,

𝑐 ≥ 𝐸𝜆 (𝑢𝑛) − 1𝜃 ⟨𝐸𝜆 (𝑢𝑛) , 𝑢𝑛⟩ + 1𝜃 ⟨𝐸𝜆 (𝑢𝑛) , 𝑢𝑛⟩
≥ ∫

Ω

∇𝑢𝑛𝑝(𝑥)𝑝 (𝑥) + ∫
Ω

𝑢𝑛𝑝(𝑥)𝑝 (𝑥) − ∫
Ω
𝐺 (𝑥, 𝑢𝑛)

− ∫
Ω
𝐹 (𝑥, 𝑢𝑛) − 1𝜃 [∫Ω

∇𝑢𝑛𝑝(𝑥)𝑝 (𝑥) + ∫
Ω

𝑢𝑛𝑝(𝑥)𝑝 (𝑥)
− ∫

Ω
𝐺 (𝑥, 𝑢𝑛) − ∫

Ω
𝐹 (𝑥, 𝑢𝑛) − 𝜆∫

𝜕Ω
𝐻(𝑥, 𝑢𝑛)]

+ 1𝜃 ⟨𝐸𝜆 (𝑢𝑛) , 𝑢𝑛⟩ .

(87)

Now, we estimate the boundary term from above as follows:

∫
𝜕Ω
𝐻(𝑥, 𝑢𝑛) = ∫

𝜕Ω∩{𝑢𝑛≤1}
𝐻(𝑥, 𝑢𝑛)

+ ∫
𝜕Ω∩{𝑢𝑛>1}

𝐻(𝑥, 𝑢𝑛)

≤ 𝐾1 + ∫
𝜕Ω∩{𝑢𝑛≤1}

𝑢𝑛𝑞(𝑥)+1𝑞 (𝑥) + 1
≤ 𝐾1 + 1𝑞− + 1 ∫𝜕Ω

𝑢𝑛𝑞++1

≤ 𝐾1 + 𝐾2 (∫
Ω

∇𝑢𝑛𝑝−)(𝑞
++1)/𝑝− .

(88)

Hence, taking (88) in (87) and using (H2) combined with (7)
we get

≥ ( 1𝑝+ − 1𝜃)∫Ω (∇𝑢𝑛𝑝(𝑥) + 𝑢𝑛𝑝(𝑥))
− 𝐾1 (∫

Ω

∇𝑢𝑛𝑝−)(𝑞++1)/𝑝− + 1𝜃 ⟨𝐸𝜆 (𝑢𝑛) , 𝑢𝑛⟩
− 𝐾2

≥ ( 1𝑝+ − 1𝜃)∫Ω (∇𝑢𝑛𝑝(𝑥) + 𝑢𝑛𝑝(𝑥))
− 𝐾1 (∫

Ω

∇𝑢𝑛𝑝−)(𝑞++1)/𝑝−

− 1𝜃
𝐸𝜆 (𝑢𝑛) 𝑢𝑛𝑊1,𝑝(𝑥)(Ω) − 𝐾2.

(89)

Now, using Lemma 4 and the fact that 𝐿𝑝(𝑥) ⊂ 𝐿𝑝−(Ω), we get
∇𝑢𝑛𝑞++1𝐿𝑝(𝑥)

≥ ( 1𝑝+ − 1𝜃)∫Ω (∇𝑢𝑛𝑝(𝑥) + 𝑢𝑛𝑝(𝑥))
− 1𝜃

𝐸𝜆 (𝑢𝑛) 𝑢𝑛𝑊1,𝑝(𝑥)(Ω) − 𝐾2

≥ ( 1𝑝+ − 1𝜃) (∇𝑢𝑛𝑝
−

𝐿𝑝(𝑥)
+ 𝑢𝑛𝑝−𝐿𝑝(𝑥))

− 1𝜃 (∇𝑢𝑛𝐿𝑝(𝑥) + 𝑢𝑛𝐿𝑝(𝑥)) − 𝐾2.
(90)

Hence, ‖𝑢𝑛‖𝑊1,𝑝(𝑥)(Ω) is bounded. Without loss of generality,
we assume that there exists a subsequence of {𝑢𝑛} such that𝑢𝑛 ⇀ 𝑢0.Therefore, usingTheorems 5 and 6 we get

lim
𝑛→∞

∫
Ω
𝑔 (𝑥, 𝑢𝑛) (𝑢𝑛 − 𝑢0) → 0 as 𝑛 → ∞,

lim
𝑛→∞

∫
Ω
𝑓 (𝑥, 𝑢𝑛) (𝑢𝑛 − 𝑢0) → 0 as 𝑛 → ∞,

lim
𝑛→∞

∫
𝜕Ω
ℎ (𝑥, 𝑢𝑛) (𝑢𝑛 − 𝑢0) → 0 as 𝑛 → ∞.

(91)

Observe that

⟨𝐸𝜆 (𝑢𝑛) , 𝑢𝑛 − 𝑢0⟩ = ∫
Ω
(∇𝑢𝑛𝑝(𝑥)−2 𝑢𝑛∇ (𝑢𝑛 − 𝑢0)

+ 𝑢𝑛𝑝(𝑥)−2 𝑢𝑛 (𝑢𝑛 − 𝑢0)) − ∫
Ω
𝑔 (𝑥, 𝑢𝑛) (𝑢𝑛 − 𝑢0)

− ∫
Ω
𝑓 (𝑥, 𝑢𝑛) − ∫

𝜕Ω
ℎ (𝑥, 𝑢𝑛) (𝑢𝑛 − 𝑢0) .

(92)

We already know that

⟨𝐸𝜆 (𝑢𝑛) , 𝑢𝑛 − 𝑢0⟩ → 0 as 𝑛 → ∞. (93)

Using (91), we obtain

∫
Ω
(∇𝑢𝑛𝑝(𝑥)−2 ∇𝑢𝑛∇ (𝑢𝑛 − 𝑢0)
+ 𝑢𝑛𝑝(𝑥)−2 𝑢𝑛 (𝑢𝑛 − 𝑢0)) → 0 as 𝑛 → ∞.

(94)

This together with the convergence of 𝑢𝑛 ⇀ 𝑢0 in𝑊1,𝑝(𝑥)(Ω)
implies that 𝑢𝑛 → 𝑢0 strongly in 𝑊1,𝑝(𝑥)(Ω); that is, 𝐸𝜆
satisfies the (PS) condition. The proof of Lemma 17 is now
completed.

Proof of Theorem 3. Firstly, note that 𝐸𝜆(𝑢) ≥ 𝐸𝜆(𝑢𝜆) for any
solution 𝑢 of (50). Hence, as in Section 3 we can conclude that𝑢𝜆 is a local minimum for 𝐸𝜆 in 𝑊1,𝑝(𝑥)(Ω). By the strong
comparison principle and Hopf lemma, we can conclude
that any critical point of 𝐸𝜆 is also a critical point of 𝐸𝜆
and hence 𝑢 also solves (𝑃𝜆). It is easy to see that 𝑢𝜆1 and𝑢𝜆2 are a subsolution and a supersolution to the problem
associated with the functional energy 𝐸𝜆. Therefore, using
the approach as in Theorem 2, we prove that this problem
has a solution V𝜆 ∈ [𝑢𝜆1 , 𝑢𝜆2] ∩ 𝐶1(Ω) such that V𝜆 is a local
minimizer of 𝐸𝜆 in the 𝐶1 topology. Now, by the comparison
principle we can see that V𝜆 ≥ 𝑢𝜆 and also V𝜆 solves (𝑃𝜆). If
V𝜆 ̸≡ 𝑢𝜆 the conclusion of Theorem 3 holds. That is, we can
assume V𝜆 ≡ 𝑢𝜆 and 𝑢𝜆 is a strict local minimum of 𝐸𝜆 in
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the 𝑊1,𝑝(𝑥)(Ω) topology. Then, from Lemma A.4, the func-
tional 𝐸𝜆 ∈ 𝐶1(𝑊1,𝑝(𝑥)(Ω),R) and note that 𝐸𝜆(𝑡𝜑) → −∞
as 𝑡 → ∞. Thus, we can apply Lemma 17 combined with
the Mountain Pass Theorem to conclude that problem (𝑃𝜆)
has a solution V𝜆 such that V𝜆 ̸= 𝑢𝜆. Therefore the proof of
Theorem 3 is now completed.

Appendix

We start with an important technical tool which enables us
to estimate the singularity in the Gâteaux derivative of the
energy functional 𝐸𝜆 : 𝑊1,𝑝(𝑥)(Ω) → R defined in (2).

Lemma A.1. Let 0 < 𝛿 < 1. Then there exists a constant 𝐶𝛿 >0 such that the inequality
∫1

0
|a + 𝑠b|−𝛿 𝑑𝑠 ≤ 𝐶𝛿 (max

0≤𝑠≤1
|a + 𝑠b|)−𝛿 (A.1)

holds true for all a, b ∈ R𝑁 with |a| + |b| > 0.
An elementary proof of this lemma can be found in Takáč

[25, Lemma A.1, p. 233].We continue by showing theGâteaux
differentiability of the energy functional 𝐸𝜆 at a point 𝑢 ∈𝑊1,𝑝(𝑥)(Ω) satisfying 𝑢 ≥ 𝐶1[dist(𝑥)]𝜃1 in Ω with 𝜃1 =
maxdist(𝑥)≤𝜎(𝑝(𝑥)/(𝑝(𝑥) − 1 + 𝛿(𝑥))) (for details see Theorem4.2 in [16]).

Lemma A.2. Let assumptions (H0)–(H5) be satisfied.
Assume that 𝑢, V ∈ 𝑊1,𝑝(𝑥)(Ω) and 𝑢 satisfies 𝑢 ≥𝐶1[dist(𝑥)]𝜃1 in Ω.Then we have

lim
𝑡→0

1𝑡 (𝐸𝜆 (𝑢 + 𝑡V) − 𝐸𝜆 (𝑢))
= ∫

Ω
|∇𝑢|𝑝(𝑥)−2 ∇𝑢 ⋅ ∇V 𝑑𝑥 + ∫

Ω
|𝑢|𝑝(𝑥)−2 𝑢V 𝑑𝑥

− ∫
Ω

1𝑢𝛿(𝑥) V 𝑑𝑥 − ∫Ω 𝑓 (𝑥, 𝑢) V 𝑑𝑥
− 𝜆∫

𝜕Ω
|𝑢|𝑞(𝑥) V 𝑑𝑥.

(A.2)

Proof. We show the result only for the singular term∫
Ω
(V/𝑢𝛿(𝑥))𝑑𝑥; the other two terms are treated in a standard

way. So let

𝐻(𝑢) = ∫
Ω

1𝑢𝛿(𝑥) 𝑑𝑥, for 𝑢 ∈ 𝑊1,𝑝(𝑥) (Ω) . (A.3)

For 𝜉 ∈ R \ {0} we define
𝑧 (𝜉) = 𝑑𝑑𝜉𝐻 (𝜉+) = {{{

1𝑢𝛿(𝑥) , if 𝜉 > 0;
0, if 𝜉 < 0. (A.4)

Consequently,
1𝑡 (𝐻 (𝑢 + 𝑡V) − 𝐻 (𝑢))

= ∫
Ω
(∫1

0
𝑧 (𝑢 + 𝑠𝑡V) 𝑑𝑠) V 𝑑𝑥.

(A.5)

Notice that for almost every 𝑥 ∈ Ω we have 𝑢(𝑥) > 0 and
∫1

0
𝑧 (𝑢 (𝑥) + 𝑠𝑡V (𝑥)) 𝑑𝑠 → 𝑧 (𝑢 (𝑥)) = 1𝑢𝛿(𝑥) ,

as 𝑡 → 0.
(A.6)

Moreover, the integral on the left-hand side (with nonnega-
tive integrand) is dominated by

∫1

0
𝑧 (𝑢 (𝑥) + 𝑠𝑡V (𝑥)) 𝑑𝑠
≤ 𝐶∫1

0
|𝑢 (𝑥) + 𝑠𝑡V (𝑥)|−𝛿(𝑥) 𝑑𝑠

≤ 𝐶𝛿− ∫1

0
|𝑢 (𝑥) + 𝑠𝑡V (𝑥)|−𝛿+ 𝑑𝑠

≤ 𝐶𝛿− (max
0≤𝑠≤1

|𝑢 (𝑥) + 𝑠𝑡V (𝑥)|)−𝛿+ ≤ 𝐶𝛿−𝑢−𝛿+

≤ 𝐶𝛿− (𝐶1 [𝑑 (𝑥)]𝜃1)−𝛿+ = 𝐶𝛿− ,𝐶1
𝑑 (𝑥)−𝛿+𝜃1

(A.7)

with constants 𝐶𝛿− ,𝐶1
> 0 independent of 𝑥 ∈ Ω. Here, we

have used the estimate (A.1) from Lemma A.1 above. Finally,
we have V𝑑(𝑥)−𝛿+𝜃1 ∈ 𝐿1(Ω), by V ∈ 𝑊1,𝑝(𝑥)(Ω) and Hardy’s
inequality. Hence, we are allowed to invoke the Lebesgue
dominated convergence theorem in (A.5) from which the
lemma follows by letting 𝑡 → 0.
Corollary A.3. Let assumptions (H0)–(H5) be satisfied.Then
the energy functional 𝐸𝜆 : 𝑊1,𝑝(𝑥)(Ω) → R is Gâteaux
differentiable at every point 𝑢 ∈ 𝑊1,𝑝(𝑥)(Ω) that satisfies 𝑢 ≥𝐶1[𝑑(𝑥)]𝜃1 in Ω. Its Gâteaux derivative 𝐸𝜆(𝑢) at 𝑢 is given by

⟨𝐸𝜆 (𝑢) , V⟩ = ∫
Ω
|∇𝑢|𝑝(𝑥)−2 ∇𝑢 ⋅ ∇V 𝑑𝑥

+ ∫
Ω
|𝑢|𝑝(𝑥)−2 𝑢V 𝑑𝑥 − ∫

Ω
𝑢−𝛿(𝑥)V 𝑑𝑥

− ∫
Ω
𝑓 (𝑥, 𝑢) V 𝑑𝑥 − 𝜆∫

𝜕Ω
|𝑢|𝑞(𝑥) V 𝑑𝑥

(A.8)

for V ∈ 𝑊1,𝑝(𝑥)(Ω).
Wecontinue by proving the𝐶1-differentiability of the cut-

off energy functional 𝐸𝜆 defined below.

Lemma A.4. Let assumptions (H0)–(H5) be satisfied, and𝑤 ∈ 𝑊1,𝑝(𝑥)(Ω) such that 𝑤 ≥ 𝐶1[𝑑(𝑥)]𝜃1 in Ω. Setting for𝑥 ∈ Ω
ℎ (𝑥, 𝑠)
= {{{

𝑠−𝛿(𝑥) + 𝑓 (𝑥, 𝑠) + 𝜆 |𝑠|𝑞(𝑥) , if 𝑠 ≥ 𝑤 (𝑥) ,
𝑤−𝛿(𝑥) (𝑥) + 𝑓 (𝑥, 𝑤 (𝑥)) + 𝜆 |𝑤 (𝑥)|𝑞(𝑥) , if 𝑠 < 𝑤 (𝑥) ,

(A.9)
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𝐻(𝑥, 𝑠) = ∫𝑠
0
ℎ(𝑥, 𝑡)𝑑𝑡 and for 𝑢 ∈ 𝑊1,𝑝(𝑥)(Ω)

𝐸𝜆 (𝑢) = ∫
Ω

|∇𝑢|𝑝(𝑥)𝑝 (𝑥) 𝑑𝑥 − ∫
Ω
𝐻(𝑥, 𝑢) 𝑑𝑥, (A.10)

we have that 𝐸𝜆 belongs to 𝐶1(𝑊1,𝑝(𝑥)(Ω),R).
Proof. As in Lemma A.2, we concentrate on the singular
term, the others being standard. Let

𝑔 (𝑥, 𝑠) = {{{
𝑠−𝛿(𝑥), if 𝑠 ≥ 𝑤 (𝑥) ,
𝑤−𝛿(𝑥) (𝑥) , if 𝑠 < 𝑤 (𝑥) , (A.11)

𝐺(𝑥, 𝑠) = ∫𝑠
0
𝑔(𝑥, 𝑡)𝑑𝑡, and 𝑆(𝑢) = ∫

Ω
𝐺(𝑥, 𝑢)𝑑𝑥. Proceeding

as in Lemma A.2, we obtain that, for all 𝑢 ∈ 𝑊1,𝑝(𝑥)
0 (Ω), 𝑆(𝑢)

has a Gâteaux derivative 𝑆(𝑢) given by

⟨𝑆 (𝑢) , V⟩ = ∫
Ω
(max {𝑢 (𝑥) , 𝑤 (𝑥)})−𝛿(𝑥) V (𝑥) 𝑑𝑥. (A.12)

Let 𝑢𝑘 ∈ 𝑊1,𝑝(𝑥)
0 (Ω), 𝑢𝑘 → 𝑢0. Then

⟨𝑆 (𝑢𝑘) − 𝑆 (𝑢0) , V⟩
= ∫Ω ((max {𝑢𝑘 (𝑥) , 𝑤 (𝑥)})−𝛿(𝑥) V (𝑥)
− (max {𝑢0 (𝑥) , 𝑤 (𝑥)})−𝛿(𝑥) V (𝑥)) 𝑑𝑥
≤ 2𝐶∫

Ω
𝑤−𝛿(𝑥) |V| 𝑑𝑥 ≤ 2𝐶∫

Ω
𝑤−𝛿+ |V| 𝑑𝑥

≤ 2𝐶𝐶−𝛿+

1 ∫
Ω
[𝑑 (𝑥)]−𝛿+𝜃1 |V| 𝑑𝑥

(A.13)

for all V ∈ 𝑊1,𝑝(𝑥)(Ω). Again, as in Lemma A.2, we use
Hardy’s inequality to deduce that [𝑑(𝑥)]−𝛿+𝜃1V ∈ 𝐿1(Ω),
so that by Lebesgue’s dominated convergence theorem we
conclude that the Gâteaux derivative of 𝑆 is continuous which
implies that 𝑆 ∈ 𝐶1(𝑊1,𝑝(𝑥)(Ω),R).
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