Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2016, Article ID 3149482, 14 pages
http://dx.doi.org/10.1155/2016/3149482

Research Article

Hindawi

Multiplicity Results for the p(x)-Laplacian
Equation with Singular Nonlinearities and
Nonlinear Neumann Boundary Condition

K. Saoudi, M. Kratou, and S. Alsadhan

College of Sciences at Dammam, University of Dammam, Dammam 31441, Saudi Arabia

Correspondence should be addressed to K. Saoudi; kasaoudi@gmail.com

Received 5 April 2016; Accepted 22 June 2016

Academic Editor: Julio D. Rossi

Copyright © 2016 K. Saoudi et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the singular Neumann problem involving the p(x)-Laplace operator: (Py){—A Pl t [u]?®2y = 1/u°® + fx,u),
inQ; u > 0, in Q [VulP®20u/dv = W™, on 9Q}, where O ¢ RY(N > 2) is a bounded domain with C? boundary; A is
a positive parameter, and p(x), q(x), 6(x), and f(x,u) are assumed to satisfy assumptions (H0)-(H5) in the Introduction. Using
some variational techniques, we show the existence of a number A € (0, 00) such that problem (P, ) has two solutions for A € (0, A),

one solution for A = A, and no solutions for A > A.

1. Introduction

The purpose of this paper is to study the existence of mul-
tiple solutions for the following inhomogeneous singular
Neumann problem involving the p(x)-Laplace operator:

1
_ px)-2 . _ :
A pu + ul u= e + f(x,u), inQ,
(P,) {u>0, inQ, (1
Vg2 2 a0, on 0.
o0v

Here O ¢ RN(N > 2) is a bounded domain with C?
boundary; A is a positive parameter. For any continuous and
bounded function a we define a® = supa(x) and a~ :=
inf a(x). Associated with problem (P,) we have the singular

functional E, : W"*®)(Q) — R given by
P p(x)
E; (u) &ef J de + J &dx
a px) a px)

- |u|1—6(x) ~ 5
L}—I—S(x)dx JQF(x,u)dx (2)

q(x)+1
_ Aj W s
a0 q(x) +1

where F(x,t) = JZ f(x,s)ds.

Definition 1. u € W"P*)(Q) is called a generalized solution
of the equation

-A

_ 1
2
oot + [P u = 2o T f(xu) ®3)

if for all ¢ € C;°(2)

J VP2 Vuve dx + J w7 ugp dx
Q Q

_ I ul ™ g dx + I f (o) dx (4)
Q Q

+A J u]7™ ¢ dx.
20

Obviously, every weak solution of problem (P,) is also a
generalized solution of (3).

The operator A Pl = div(|VulP® V1) is called p(x)-
Laplace where p is a continuous nonconstant function. This
differential operator is a natural generalization of the p-
Laplace operator A ,u := div(|Vul?2Vu), where p >
1 is a real constant. However, the p(x)-Laplace operator
possesses more complicated nonlinearity than p-Laplace
operator, due to the fact that A ) is not homogeneous. This
fact implies some difficulties; for example, we cannot use



the Lagrange Multiplier Theorem in many problems involv-
ing this operator.

The study of differential and partial differential equations
involving variable exponent is a new and an interesting
topic. The interest in studying such problems was stimulated
by their applications in elastic mechanics, fluid dynamics,
electrorheological fluids, image processing, flow in porous
media, calculus of variations, nonlinear elasticity theory, het-
erogeneous porous media models (see Acerbi and Mingione
[1], Diening [2]), and so forth. These physical problems
were facilitated by the development of Lebesgue and Sobolev
spaces with variable exponent.

At this point, we briefly recall related existence and multi-
plicity results for elliptic equations with Neumann boundary
conditions. Neumann type problems are studied in [3-6]
and references therein. The multiplicity result for Neumann
problem with Sobolev critical nonlinearity has been studied
in [5] where authors considered the problem

“Au+u=uf, u>0inQ,

©)
ou q
3, = Ayu?  on 0Q.
Here Q c RN, N >3,and0 < g < 1 < p < 2N/(N -2). They
proved the existence of A such that problem (5) admits at least
two solutions for all A € (0, A), one solution when A = A, and
no solutions for A > A. The problem in two dimensions has
been considered in [6] where the authors extended the results
obtained by [5].

Results for p(x)-Laplacian problems Neumann boundary
conditions are rare (see [7, 8]). In [7], Fan and Deng studied
the Neumann problems with p(x)-Laplace operator and the
nonlinear potential f(x,u) under appropriate assumptions.
By using the subsupersolution method and variation method,
the authors get the multiplicity of positive solutions. In [8],
Sreenadh and Tiwari extend previous works on nonlinear
parametric problems with the p(x)-Laplace operator to the
case where the Neumann boundary condition is nonlin-
ear. Precisely, under supplementary hypotheses on p, g, the
authors show that there exists a finite number A such that the
posed problem has two solutions for A € (0, A), one solution
for A = A, and no solutions for A > A.

Before stating our main results, we make the following
assumptions throughout this paper:

(HO) p(-) € C(Q), 1 < p~ < p* < N,and p* < p,. As
usual, p*(x) = Np(x)/(N — p(x)).
(H1) 0 < g(x) € CP(0Q) for some B € (0,1) satistying
0<q +1<p(p /p").
(H2) 0 < 8(x) € C(Q) satisfying 0 < 8 < 8" < L.
Let f: OxR — Rbeanondecreasing Carathéodory function
satisfying the following:
(H3) f(x,0) =0and f(x,t)t > 0forall (x,t) € QA xR.
(H4) There exist C,,C, > 0 such that, for y > 0, a(x) €
C(Q) with p* —1 <ypand p* <a".

Cut < f (1) <Ct*™™, vxeq, t>0.  (6)
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(H5) There exist a constant M > 0 and 6 > p* such that

0 <OF (x,t) < f(x,t)t, VxeQ, [t| > M. 7)

Next we describe in a more precise way our main
results.

Theorem 2. Assume that (H0O)-(H5) hold and a(x) <
p*(x) = Np(x)/(N - p(x)) in (6). Then there exists A > 0
with the following properties:

(1) Problem (Py) has a solution u,, for every A € (0, A).
(2) Problem (Py) has a solution if A = A.
(3) Problem (Py) does not have any solution if A > A.

Theorem 3. Assume that (H0)-(H5) hold and a(x) < p*(x)
in (6). Then, problem (Py) has at least two distinct solutions
uy (x) and v, (x) for every A € (0, A).

This paper is organized as follows. In Section 2, we will
recall some basic facts about the variable exponent Lebesgue
and Sobolev spaces which we will use later. Proofs of our
results will be presented in Sections 3 and 5.

2. Generalized Lebesgue-Sobolev
Spaces Setting

To deal with the p(x)-Laplacian problem, we need to intro-
duce some functional spaces LPOQ), whrO(Q), WOI"D(')(Q)
and properties of the p(x)-Laplacian which we will use
later. Denote by S(Q)) the set of all measurable real-valued
functions defined in Q. Note that two measurable functions
are considered as the same element of S(Q2) when they are
equal almost everywhere. Let

L9 () = {u €S(Q) J ()PP dx < oo}, (8)
Q

with the norm

lulpy = U0 ()

=inf{A>O:J
Q

The space (LPY(Q), | - |P(')) becomes a Banach space. We call
it variable exponent Lebesgue space. Moreover, this space is
a separable, reflexive, and uniform convex Banach space; see
[9, Theorems 1.6, 1.10, and 1.14].

The variable exponent Sobolev space

u()

p(x) 9)
dx < 1} .

W9 (@) = [u e 179 Q) : [Vul e 0@} (10)
can be equipped with the norm
leall = Jul g + Vil iy Ve WO Q). (1)

Note that W,"*"(Q) is the closure of C2(Q) in W *1(Q)
under the norm [lul = |Vul,. The spaces WhPO(Q) and
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WO1 P (')(Q) are separable, reflexive, and uniform convex
Banach spaces (see [9, Theorem 2.1]). The inclusion between
Lebesgue spaces also generalizes naturally: if 0 < |Q < oo
and p,, p, are variable exponents so that p,(x) < p,(x)
almost everywhere in Q then there exists the continuous
embedding L™ (Q) «— LA¥(Q).

We denote by L19(Q) the conjugate space of L? *(Q),
where 1/q(x)+1/p(x) = 1. Foru € LP¥(Q)and v € LI9(Q),
the Holder type inequality

HQ u(x) v (x) dxl < (PL N qi> il Wy (12)

holds true.

An important role in manipulating the generalized
Lebesgue spaces is played by the modular of the LF™(()
space, which is the mapping p,,) : L” @ (Q) — R defined
by

b (@) = [ 1l dx. (13)

If (u,),u € L¥ ®)(Q) and p* < 00, then the following relations
hold true.

Lemma 4. Consider the following:

lullper > 1 =

- +
"u”f}y(x) < Pp(x) (u) < ||u||§p(x) >

l[ullpper <1 = (14)

p+

14l < Ppiy (10) < Nl

4, = 1a]| oy — O iff Py (thy — 14) — 0.

The following result generalizes the well-known Sobolev
embedding theorem.

Theorem 5 (see [10, 11]). Let Q ¢ RN be an open bounded
domain with Lipschitz boundary and assume that p € C(Q)
with p(x) > 1 for each x € Q. Ifr e C(Q) and plx) <
r(x) < p*(x) forall x € Q, then there exists a continuous
embedding WhPH(Q) — L'(Q). Also, the embedding is
compact r(x) < p*(x) almost everywhere in Q, where

Np (x)
p ()= <|N-P(x)’

+00,

if p(x) <N,
if p(x) = N.

Now, we recall the following boundary trace embedding
theorem from [12].

(15)

Theorem 6. Let QO ¢ RY be an open bounded domain with
Lipschitz boundary. If g € C(0Q2) such that

(N-1)p(x)
N -p(x)
then WHPX 5 199 (50)).

1<qx)< , Vx €0Q, (16)

Next we give a comparison principle as follows.

Lemma 7 (see [8, Lemma 3.2]). Letu,v € W"?O(Q) be non-
negative functions satisfying
-A

sl t uPt > AVt O (x e ),

L ov 17)
5.

Then u > v almost everywhere in Q.

—2 Ou -
[Vl == > [7vP
v

We recall the following strong maximum principle from
[13].

Theorem 8. Let u,v € C*P(Q), for some 0 < B < 1, satisfy
0su 05 vand

A
A = 5 =g (x) 2 h(x) =D,y - (18)

uox - e >

withu = v = 0 on 0Q, where g,h € L®(Q) are such that
0 < g < h pointwise everywhere in Q. If
ou
on

ov (19)
— >0,
on g

>0,

on 0Q),

where n is the inward unit normal on 0Q), then, the following
strong comparison principle holds:

u>v,
in Q;
o(u—-v) (20)

there is a positive € such that >e€

>

on 0Q.

3. Existence of a Solution

In this section, we show the existence of a local minimum
for E; in a small neighborhood of the origin in Wl’P(x)(Q).
Firstly, let us define

AY sup{A > 0:(P,) has a weak solution}. (1)

Lemma 9. There exists A, > 0 such that (Py) admits a solution
for A < A,

Proof. Using (14) and the embeddings in Theorem 5, we
estimate E, (u) for [[ullyyirw (q) = r as follows:

|VM|P(x) J |u|P(x)
E = d d
AW)Lapm Tlapw ™

|u|1*8(9€)
- dx—-| F(x,u)d
JQI—S(x)x JQ (x,u)dx

|u|q(x)+l

_ J M
00 q(x+1)




* * 1-6"
> [Vl g+ 180y = il 500

v

a q +1
Nl gy~ Al

+

P
S5 (9l + Nl o)

1-6* - T+l
- "unwl»}’(x)(g) - ”l’llls\]LP(X)(Q) -A ”u"‘q/vl,p(x)(g)

1-6*
Wl,P(x)(Q)

P+
Tl
- 41
— oy = Ml -

(22)

Hence, noting that 0 < 6" < land 1 -68" < p* < a”, we
can choose r, > 0 small enough, and there exists §, > 0 such
that

|Vu|p(x) J |“|p(x) J»
d dx—-| F(x,u)d
J;) () X+ 0 p() X 5 (x,u)dx

|u|q(x)+1

_ALQ q(x+1)

|Vu|P(x) J |u|P(x) J
—d ——dx—-| F(x,u)d
JQ () X+ () X 5 (x,u)dx

dx >0, VYuce Br0>
(23)

|u|q(x)+1

—AJ M x>, VuedB,.
a0 q(x+1) 0

Moreover, since WI’P(")(Q) — Ll_a(x)(Q), we have, for A > 0,
small enough,

1)
E)\sp, > ?f > 0. (24)
Set
CO = ule%t:oEA (I/l) . (25)

Now, note that, for t — 0% and u € W"?®(Q), we have

tP(x) |VM|P(X) |tu|P(x)
E, (tu) =
A (1) L p(x) L » ()
|tu|1—8(x) J
—| ———dx—-| F(x,tu)dx
Jo s Foen
q(x)+1
_ I ™
00 q(x) +1

+

th th
< — J IVul P dx + — J [ulP™ dx
Q Pt Ja

t1—5* 180
——+J lu] " dx
1-6% Ja
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- J F (x,tu) dx
tu>t,

A |t|q7+l

J |u|q(x)+1dx
q +1 Jaa

+

th tP
< — J [Vu|?® dx + — J [ulP™ dx
Q P Ja

1-8*

1-90%

J u]' 0% dx
Q

£
-5 J F (x,tu) dx
t* tu>t,

A |t|q7+l

— j |u|q(x)+1 dx
q +1 Jaa

th th
< — J [VulP“) dx + — J [ulP® dx
Q pt Ja

P+
1-6*

-6t

J w70 dx
Q

— J F(x,t,)dx
u>t,

A tq7+l
) q|_|+1 LQ " dx.

(26)

Since 1 - 8" < p* < 0, this implies that E, (fu) — —oo as
t — 00. Thus, 1nf”u||wlyp(x)(m9E/\(u) = ¢, < 0. Now, let {uj} C
B, be a minimizing sequence for ¢,. Then [[u;llyy1500(0) < 1o
forr, € (0,7). Now by the Ekeland variational principle, there
exists a sequence {vj} such that "Vj"wl,p(x)(Q) <rand
1
"”J’ Vi “whﬂw(o) w

Ey (vj) < Ex (1))

Ey (v;) — 0 in (W'Y ()

IA

(27)

*
>

v; — u, weakly in whPe ().
Moreover, using the Brézis-Lieb lemma in [14] combined with
the p(x) version of Theorem 2.1 in Boccardo and Murat [15],
it follows that Vv, (x) = Vu, (x) for almost every x € Q,

(x) (x)
vl x:J v (v )’
a px) Q p(x)
p(x)
+ JQ % +0;(1),



International Journal of Differential Equations

JQf(x, vj)dx = JQf(x,uA) dx

+ ij(x,vj—uA)dx+oj(l),

[R— ]
al-38(x) aol-6(x)

|V u'l—ﬁ()
i~ "
—d (1).
+‘|-Q ) x+oJ()

(28)

Hence, from (28) and the compact boundary trace embed-
ding in Theorem 5, we get EA(vj) > E\(uy) + oj(l). Thus, it
follows that E; (u,) = ¢, < 0. Hence u;, # 0 and it is a local
minimizer of E; in WP (). O

We prove now the existence of positive solution to (Py)
for 0 < A < A. Precisely, we have the following result.

Lemma 10. Problem (Py) possesses a solution uy for 0 < A <
A.

Proof. Fix 0 < A < A, < A. A, such that there exist solutions
to (P)) for A = A,, sayu, . Note thatu,  isa supersolution for
(Py). Itis clear that 0 is not alocal minimizer of E; on [0, uy, In

WLPH(Q) since E,(0) = 0 and E,(tv) < 0 for t — 0*. Now,
we show the existence of a local minimizer of the functional
energy. For this, we use the cut-off argument. Define

(£ (x,0),
]Nf(x,s) =4 f(x5s),

\f(x,qu), ifs>uy (x),

if s <0,

ifo<s<uy,

0, if s <0,

Gxs)={s°W, ifo<s< Up,» (29)
u;f(x), if s >uy (x),
0, if s < 0,

i(x,s) = 4519,

qx) .
[y, > ifs>uy (x).

f0<s<u,

Also define the functional E; : W™ (Q) — R by

Vu p(x) u p(x)
Vel™ e+ J ™
Q

EA(“)ZJ mx

o px)

—J é(x,u)dx—J F (x,u)dx (30)
Q Q

—)LJ H (x,u)dx,
30

= fot f(x,8)ds, G(x,t) = jot G(x,s)ds, and

where F(x,t)
H(x,t) = f; h(x,s)ds. From the dominated convergence

and the compact boundary trace embedding in Theorem 5,
it is easy to see that E, is bounded below and is weakly
lower semicontinuous in W) (Q). Then, there exists iy €
whp (x)(Q) such that EA achieves its global minimum in
WhP(Q). Moreover, since E, is C'(W"P™(Q),R) from
Lemma A4, i, solves the equation

= P02~~~ -
—A ety + |“A|p Ta = gm)+ f (i),
in Q, (31)

Vi, [P aaﬂ = M (x,ii,), on dQ.
vV

Now, using the strong maximum principle (see Theo-
rem 8) #i; # 0and #i; > 0 since 0 is not a local minimizer of

E, on [0,u, ] n W"*¥)(Q). By the definition of f, g, and &
we have

G(x0) <G (xiy) <g(xu,,), VxeQ,

1

F(x,0) < fxmy) < (x, ”AZ): VxeQ, (32)

=

h(x,0) < h(x,u,)< E(x,u,\z), Vx € Q.

Again, by the strong comparison principle (see Lemma 7), we
conclude that i) <u, inQand (9/9v)(u,, —,) < 0 on Q.
Hence 1, is a solution to (P,). This completes the proof of
Lemma 10. O

Now, we show the following result.

Lemma 11. There exists at least one positive weak solution for
A = A to problem (P)).

Proof. Let {Aihieny € (0,A), A T Aask — 00, and u,,_be
a solution of (P ) such thatu; < u, forallx € Q. Now,
taking u, as test function in (P),), we get

J |VuAk'P(x) dx + J |u)tk|P(x) dx
Q Q
= J u/l\;t‘?(X)dx + J f (x, u,\k) uy dx (33)
Q Q
q(x)+1
+Ag LQ Uy, dx.

Moreover, as E; (”Ak) < Elk(O) = 0, we have

|Vu,1 p(x) '”A p(x) u/ll—é(x)
J K dx + J K dx — J —k___dx
a px) a px) al-08(x)
(34)
;(X)+1
—| F(xu, Jdx—-2A J k dx <0
JQ ( : ) Flaaq)+1



6
It follows that
1 px) plx)
F (L |Vu,1k' dx + L 'ulk| dx)
1-6(x)
< L Uy “dx + JQF(x,u,\k)dx (35)

+A J w1 g
k 20 A

Now, from (7) there exists C > 0 such that, for 6 > p, and for
allt > 0,

OF (x,t) < tf (x,t) +C. (36)

Moreover, using Theorem 4.2 in [16], we get the existence of
the constants C; > 0, C, > 0 such that

C, 1d (1% <uy (%) < C, [d (0], (37)

where 0, = max;,,(p(x)/(p(x) = 1 + 8(x))), 6, =
ming <, (P(x)/(p(x) = 1 + 8(x))), and d(x) = dist(x, 0Q).
On the other hand, we recall the following inequality due to
Lieberman [17]. There exists a constant K(Q2) > 0 such that

J |u|sj |Vu|+K(Q)j lul, Yuew" (Q). (38)
o0Q Q Q

Inserting (36), (37), and (38) in (33), we get sup,y
lur lwrpo ) < oo. It follows that {”Ak} is bounded in

WhPX () since u,\k(x) > u, (x) for all x € Q. Without
loss of generality, u,, — u, in WP () and then by the
Sobolevimbedding u; — u, in L19)(Q2) and Uy, (x) = Up (%)

for a.e. x € Q. By the L*(Q)-regularity results of
[13], the boundedness of {IIuAkII} implies the boundedness

of {|uAk|Loo(Q)}. By the Cl’”‘(Q)-regularity Theorem 16, the
boundedness of {IuAkILoo(Q)} implies the boundedness of
{lluy, IICl,,x@)}, where o« € (0,1) is a constant. Thus, we have

uy, — uy in C'(Q). For every v € W"P¥(Q), since u, isa
solution of problem (PAk)’ we have that, for each k,

plx)-2

JQ |Vu,\k|p(x)_2 Vu, Vvdx + L |”Ak| uy, vdx

= L 'ulk|_6(x) vdx + JQ f (x, u,\k) vdx (39)

+Ag J 'ulk|q(x) vdx.
20
Passing to the limit in (39) as k — oo yields

J |VuA|P(x)_2 Vu,Vvdx + J |uA|‘D(x)_2 uyvdx
) )

= j u Py dx + J f(x,uy)vdx (40)
0 Q

+A J u?\(x)v dx,
0

which shows that u, is a solution of (P,). Obviously u, > 0
and u, # 0. Hence u, is a positive solution of (P,) in
WhPX(Q). This completes the proof of Lemma 11. O

Then we prove the following nonexistence result.
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Lemma 12. Consider the following:
A < oo.

Proof. Let u, be a solution of (P)). Taking ¢ = 1 as a test
function in the weak formulation of (P, ), we get

J uﬁ(x)_ldx = J u;‘s(x)dx + J f(x,uy)dx
Q Q Q

(41)
+1 J u?\(x)dx.
20
On the other hand, we have
J-Q ui(XH < JQ uﬁnl +C;. (42)

Using assumption (H2) we have C, _[Q u;y < fQ u?®, and
using (6) we have C, _[Q ”3{ < _[Q f(x,u)dx. Therefore, from
(41) and (42) we get
J uK <G J u§+ - C4J u;y +Cs. (43)
Q Q Q

Now, since p* — 1 < y and —-8" < 1y, by the embedding
of LY(Q) into L? +_1(Q) and by the embedding of L"(Q) into
o (Q) we obtain

. @' -Diy
J ul "<, <J uK) ,
Q Q

(44)
+ 78+/V
J uf SC7<j uK) .
Q Q
Substituting (44) in (43) we get
"”/\”E(Q) <G+ Gy "”‘/\"}L)v(_ol) +Cyp ””A"_E(Q) . (45)

Hence, [t [l1y(q) is bounded by a constant independent of

A. Now, taking ¢ = u;? as a test function in the weak

formulation of (P;) and using (H2) we get

J |u,\|p(x)717qi dx > J uza(x)_qidx
) o

+ JQ f(ouy)u® dx

A [ ax (46)

90
9()-9~
> A [l ax
20

> AJ W dx = ATy, .
T
Now since
[l dx < € g )

it follows that A is finite. The proof of Lemma 12 is now
completed. O

Proof of Theorem 2. Theorem 2 follows from Lemmas 10, 11,
and 12. O]
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Now, we prove that the solution of problem (P, ) obtained
in Lemma 10 is a local minimum for the functional energy
associated to problem (P,). Precisely, we have the following
result.

Lemma 13. Let u, be the weak solution of problem (P)
obtained in Lemma 10. Then, u, is a local minimum for

E/\\Cl (6)

Proof. Fix0 < A; <A <A, < Aandletu, ,u,, be solutions
to (Py) for A = A, and A = A,, respectively, such that u; <

uy < uy . Bylemma7,u, < u; <u on Q. Define the
following cut-off functions:

f (%o, @),
f(x1),
f (x’ Uy, (x)) >

t<uy (x),

f(x1) =

uy, (x) <t <uy, (x),

t> uAZ (.x),

(xeQ, teR),
-8(x)
Uy (x>

glxt)= 1t7°9,

-8(x)
u/\Z

t<uy, (x),
uy, (x) <t<uy (x),

, E>uy (x), (48)

(xeQ, teR),

1// (X) uq( ))

v (x) 119,

(x) uq( )’

t<uy, (x),
h(x,t) = uy (x) <t <uy (x),
t>uy (x),

(x €0Q, teR).

Then the corresponding functional E;, : W"?™(Q) — R

given by

|Vu|P(x) |u|P(x)
)

Ea(w) = L @ o

- J G (x,u)
“ (49)

- LF(x,u)—ALQH(X>U)>

where F(x,u) = [ f(x,0)dt (x € Q), Glxu) = [ glx,
t)dt (x € Q),and H(x,u) = [ h(x,t)dt(x € 0Q). Firstly,
from Lemrrla A4 EA is C'(W" P (Q), R). Then, it is simple
to see that E, is coercive and bounded below. Let u; denote

the global minimum of E, on W"? *) () which satisfies the
equation

- d1v(|Vu|P(x Vu) +uP® 2y

=gxw+fnu), u>0inQ, (50)

[Vul? M (x,u),

(x)-2 gu on 0Q.

Therefore, from the regularity results Theorem 16, we con-
clude that u, is in C"*(Q) for some 0 < « < 1. Now, using
(H2) and since f(x,t) is nondecreasing, by the definition of

jAf, g>and h we have
g(x,uAl) <g(xuy) < ?](x,ukz), Vx € Q,
]A‘(x,ukl) < flxuy)< j‘(x,u,lz),
ﬁ(x,u,\l) <h(xuy) < E(x,qu),

Vx € Q, (51)

Vx € 0Q).

Again, by the strong comparison principle (see Lemma 7), we
conclude that u) < uy < u; in Q. Let f = inf _{luy -
uy | +Vu, —Vu, |}. We claim that 8 > 0. If not, then there
exists x € 0Q such that uy, =uy, and Vu, = Vu, . But this
contradlcts the boundary data as A # A, Therefore, if v €

={ueCi(Q)\u- e < B/2} then Uy, <uy <uy,
in QO since E, = E, on the set . Hence u, isalocal minimum
for E)\c - This completes the proof of Lemma 13. O

4. C! versus W"?™ Local Minimizers of
the Energy

The following lemma is crucial in showing multiplicity of
solutions. It has been shown in the case p = 2 in [18] for
the case of critical growth functionals E;: Hy(Q) — R,
Q ¢ RN, N > 3 and later for critical growth functionals
E, : WPQ) - R 1<p<NQcRY,N=>3in
[19]. A key feature of these latter works is the uniform C Lo
estimate they obtain for equations like (P,) but involving two
p-Laplace operators. Using constraints based on LP-norms
rather than Sobolev norms as in [19], the equations for which
uniform estimates are required can be simplified to a standard
type involving only one p-Laplace operator. This approach
was followed in [20] in the subcritical case, in [21] in the
critical case, in [22-24], and also in this work to deal with
the boundary value problem involving the nonlinear p(x)-
Laplacian case. More precisely, we have the following result.

Lemma 14. Suppose that conditions (H0)-(H5) are satisfied.
Let uy € C'(Q) satisfying
uy > nd (x,0Q) for some >0 (52)

be a local minimizer of E, in C'(Q) N C,(Q) topology. Then,
u, is a local minimum of E, in W"P®(Q) also.

For proving Lemma 14, we will need the following
uniform L -estimates for a family of solutions to (P.).

Proposition 15. Let {u.}.c(o 1) be a family of solutions to (P,),
where u,, satisfies (52) and solves (Py). Let y > 1 be such that

SFP) ("f (x,u) | + ””e"wlvp(x’(m) < ©0. (53)

€€(0,1

Then,

e ||L°°(Q) <C. (54)



The proof of Proposition 15 is a consequence of the results
proved in Appendix A in [13]. Hence, the regularity results of
Saoudi and Ghanmi [13] give the following regularity result
for weak solutions to problem (P,).

Theorem 16. Let u € W PX(Q) n L®(Q) be a solution
to problem (Py). Then, there exists 0 < K = K(|ltllro(q)
P p, 87,87, Q, N) such that any weak solution to problem
(Py) belongs to Cl’“(ﬁ)for somea € (0,1).

Proof of Lemma 14. Assume that the conclusion of Lemma 14
is not true. We define the following constraint for each € > 0:

a(x)
s < {u e W™ Q)i pw) < J “
Q

o (x)
1 P
+ _p’ Jao ul < e} .

We consider the following constraint minimization problem:

(55)

I = JéliE/\ (u). (56)

Firstly, clearly I. > —o0o. Moreover, we note that &, is a
convex set. Using the trace embeddings we see that & is also

a closed set in W™ (Q) which implies that &, is weakly
closed in W™ (Q); with the fact that E, is weakly low

semicontinuous in W) (Q), it follows that fore € (0, 1) I
is achieved on some u, € &; that is

E/l (ue) = Ie’
E) (u,) < E, () (57)
Ve € (0,1).

Moreover, since E)(u}) < E;(u.) and u! € S, we may
assume that 1, > 0.

We now consider the following two cases.

(1) Let p(u,) < €. Then u, isalso alocal minimizer of E, in
WPM) (). We now show that E , admits Gateaux derivatives
on u, to derive that u, satisfies the Euler-Lagrange equation
associated with E, . For this, according to Lemma A.2, in the
Appendix, we need to prove that 3% > 0 such that

u, > 7d (x) dist (x,0Q)), (58)

where d(x) def dist(x,0Q). To prove (58), we argue by
contradiction: VY > 0 let

Q, = Supp {(nd (x) - u.)'}, (59)

and suppose that Q, has a nonzero measure.

Letu, = (nd(x) - u;)" and for 0 < t < 1set &(t) =
E; (u, + tu,). Then, there exists c(t) satisfying c(t) > #t such
that inf((u, + tu,l)/d(x)) > c¢(t) for t > 0. Then, from
Lemma A.4 & is differentiable for 0 < ¢ < 1 and &'(¢) =
(E)\(u + tu,), u,). Thus,

E/ t) = L |V (“e + tuq)|P(x)—2 \v} (ue + tun) qu
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+ JQ |u€ + l‘uﬂ"f)(x%2

_ JQ (ue + tu,])_é(X) Uy
- JQ f (x, u, + tuﬂ) U,

),

From (H1)-(H3), we see that

Uy

u, +tu |q(x)_1 (

e n u, + tun) Uy.

(60)

gy=| |Vad (0P
Q

+ L Ind (x)|p(x)72 u, - L (nd (x)) ™ u,

V (nd (x)) Vu,

(61)
- L f (x,nd (x)) U,

-A L |”ld (X)|q(x)71 (nd (x)) u, <0,

for # > 0 small enough.

Now, since s °® + flx,8)+ 2519 ig nonincreasing for 0 <
s small enough uniformly to x € Q (by (H1)-(H3)) and from
the monotonicity of the operator —A , u+|ul? =13, we have
that for 0 < 7 small enough 0 < &(1) — & (t). Therefore, from
Taylor’s expansion and since p(u,) < ¢, there exists 0 < y < 1
such that

0< E)L (ue + u’l) - E)L (ue) = <E;L (uf + yu’i) ’u’7>

=& (y).

Letting t = y we have E'(y) < (1) < 0. We obtain a
contradiction with (62) and then u, > #nd(x) for some 7 > 0
(which depends a priori on €). Since u, is a local minimizer of
E, and E, is Gateaux differentiable in u,, we get that E) () is
defined and E} (1) = 0. Recalling that u is the solution to the
pure singular problem given by Theorem 4.2 in [16] and from
the weak comparison principle, there exist C; > 0,C, > 0
such that

(62)

Cld@))* <u<u, (63)

where 0, = max;,.,(p(x)/(p(x) — 1 + 8(x))), for some 1 >
0 (independent of €). Since u, € &, and from the fact that
u, satisfies (P)), we get that {1}, is uniformly bounded in

WhPH(Q). Now, using Proposition 15 and Theorem 16, we
get

|u€|C1,a(5) <C for some « € (0,1) (64)
andase — 0°
u, —u, inC' (5) (65)

which contradicts the fact that u, is a local minimizer in
C'(Q) N Cy(Q).
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Now, we deal with the second case.

(2) p(u,) = e: we again show that u, > nd(x) in Q for
some # > 0. Taking u, = (nd(x) - u,.)", &(t) = E,(u, + tu,),
we obtain as above that &'(t) < £'(1) < 0for0 < t < 1 and
0 < 7 small enough.

Then &(t) = E, (u, + tu,) is decreasing. This implies that
Ej(up) > Ej(u, +tu,) for t > 0 and using (52)

p(u+tu,) <p(u)=e (66)

This yields a contradiction with the fact that u, is a global
minimizer of E; on &,. In this case, using Lemma A.4 and
from the Lagrange multiplier rule we have

Ey (u) = pep' (u.), for some y, € R. (67)

x)—1

—A gt + |uS|P(

"

P

¢ x)—2 OU,
|V [P 5

In this case, from (57), we have that sup_ q ) It .o ()
< ©00. Hence, we can apply Proposition 15 to conclude
that sup.c()lltellio) < K for some constant K > 0
independent of €. Therefore, using Theorem 16 we conclude
that || i) < C for some constant C > 0 independent of €

andase — 0"
u, —u, inC' (5) (71)

which contradicts the fact that u, is a local minimizer in
CH(Q) N C,y(Q).
Now, we deal with the second case.

Case 2 (inf ¢ (o 1) = —00). From above, we can assume that
pe < —1for 0 < e small enough. Furthermore, we can find
a number M > 0 independent of ¢ > 0 and x € Q, such
that (1/s°% + £(x,5) + tels|®@72s) and (Is|% + i, Is|P ~s)s
are negative for all [s| > M. Then, from the weak comparison
principle (see Lemma 7 and using (1, — M)" as test function)
we have that sup, g ) lltcll o) < M for € > 0 small enough.
Now, since 1, € W"?*)(Q) is a C" local minimizer, u, is a
weak solution to (P,); that is, satisfies ess infu, > 0 over
every compact set K ¢ Q) and

J |Vuo|p(x)72 Vu, Ve dx + j |L¢0|P(x)72 $dx
) )

_ J %dex - J-Q f (% uy) pdx (72)

oul

-4 J |”‘o|q(X)_1 U dx,
30

Uy = —
™

v - /\uz(x) + U, |u£lP7*2 U,

We first show that g, < 0. We argue by contradiction.

Suppose that y. > 0; then there exists ¢ € W"? “)(Q) such
that

(B} (u.),9) <0,

(68)
!
(p' (u),9) <0
and then for t small we have
E/l (ue + t(P) < EA (ue) >
(69)

p(uc+tp) < p(u) <e.

This contradicts the fact that u, is a global minimizer of E, in
Se.
We deal now with the two following cases.

def
Case I (inf ¢ (g 1) = [ > —00). In this case, we write (67) in
its PDE form as

+ f (0 u,) + pe |uE|D‘(X)_2 u, u,>0in Q,

(70)
on 0Q.

for all ¢ € C°(Q). Therefore, for every function w ¢
WHP(Q), u, satisfies

J |Vu0|P(x)72 VuOVw dx+J |u0|P(x)72wdx
Q Q
1
Q u Q

-2 J |uo|q(x)_1 uyw dx.
30
Similarly,

J- IVur [P Vu Y dix + J || wdx
o o
1
= | Sewdx- f(xu)wdx (74)
Q Ue Q

-A J |ue|q(x)71 uwdx.
20

Now, substracting the above relations with w = (u, —u,)|u, -
uoP~1, with B > 1, as a test function in (P,), integrate by parts
and use the fact that u +— —A ,yu + |u| PO

operator to obtain

— U [JQ |u£ - u0|a(X) |ue - uolﬁ_l (us - uO) dx

ppel ] j 1 1
+ u, —u dx| < —_ =
LQ | e 0| 0 (uf(x) ug(x)

u is a monotone




10

’ |ue - 1"0|ﬁ_1 (ue - ”o)dx
o [ 0 G = 7 Goo) =l

(e —wo) e A [ (™ ol )

’ |ue - l’£0|ﬁ71 (us - uO)dx'
(75)

Using the bounds of u,, u, we get
a(x) —
— U |:,|-Q |us_u0| |ue_u0|ﬁ l(us_uo)d'x

+/\J. |u£—u0|p_+ﬁ_ldx] sCH |u€—u0|ﬁdx (76)
20 )

+ /\j |ue - u0|ﬁdx] ,
20

where C does not depend on f and e. Now, using Holder’s
inequality and the bounds of ¢, combined with Lemma 4 we
obtain

B

Lot(x)+[3—l

[, el <Clu,

B/(ax_+B-1)
< (J |u€|0¢(x)+,871> )
Q

(77)

Therefore
— Ue [j |u£ - u0|“(x) |ue - MOlﬁ_1 (us - uO) dx
Q
2 J jue =l dx] < c 1
20
[fn e
Q

+A J |ue - 1,10|0‘(x)+ﬁ_1 dx
20

(78)
]ﬁ/(oc,+ﬂ—l)

Thus for any 3 > 1

T He ["”€ = thgass oy * ke = ”0";;)1*!**1@0)] (79)

sC(Qp.

Passing to the limit in (79) f — +co we get

sup (=) [t = ooy + e = ooy

<C(Ql.

(80)

Then, using (80) combined with Proposition 15, the uniform
L® bounds for {u}.c(o) in Q as well as 0Q, we get that
the right-hand side terms in (P,) are uniformly bounded
in L*°(Q) and in L*(0Q) from which as in the first case
we obtain that u. (0 < € < 1) is bounded in CcH*(Q)
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independently of . Finally, using Ascoli-Arzela Theorem we
find a sequence €, — 0" such that

U, — Uy in ok (5) (81)
It follows that, for € > 0 sufficiently small,

E, (uen) < E; (ug)» (82)

which contradicts the fact that u, is a local minimizer of E;
for the C'(Q) n Co(ﬁ) topology. The proof of Lemma 14 is
now completed. O

5. Existence of a Second Weak Solution for
0<A<A

In this section, we fix A € (0,A) andlet0 < A; < A <
Ay < A, uy and u, be as in Section 3. Now, we are able to
show the existence of a second solution using the generalized
Mountain Pass Theorem. Since the functional is not C', we
use the cut-off functional E\ defined in (86). Define the cut-
off functions

g: QxR — Rby

2@’ if s> uy (x),
g(x,s) = 1 _ (83)
( )6(x), if s<uy (x),
u(x)§

f: QxR — Rby

— f(x,s), ifs>u/1(x),
f(x; s) = (84)
f(x’u); (X))> lfSS u/\ (X),

h:0Q xR — R by

lI(x)’ if ,
s = <|1//(x)s it s > uy (x) (35

v (x) u/q\(x) (x), ifs<uy(x),

and define now the corresponding functional E, : W™ (Q))
— R given by

|Vu|p(x) j |u|P(x)
Q

E, (u) = JQ »(x) » () -

J G (x,u)dx
¢ (86)

-J F(x,u)dx-AI H (x, 1) dx,
Q 0Q

where G(x,u) = ['g(x,t)dt, Fx,u) = [, f(x,t)dt, and
H(x,u) = _[Ou h(x, t)dt. Firstly, we prove the following lemma
on compactness of Palais-Smale sequences.

Lemma 17. The functional E, satisfies the Palais-Smale con-
dition.
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Proof. Let {u,} bea (PS) sequence; namely, E\(un) isbounded
and Ej\(un) — 0 when n — 00. Then,

1,
)’un> + 5 <EA (un) ’un>
- | Ve | 2
o p) a px)
|Vu,, |P(x) |un|p(x)
JQ p(x) +JQ p(x) (87)

- L@(x, u,) — Ll_*"(x, u,) - A Jaﬂﬁ(x, un)]

c>E,(u,) <E,\

- J-Q G (x,u,)

- [ Flom)-;

| -
+ 5 <EA (un) ’un> .

Now, we estimate the boundary term from above as follows:

[ Aew)=]  Hxw)
Q 20N {u, <1}

+ J H (x,u,)
20n{u,>1)

|un|q(x)+1

|l
a0n{u,<1} q(x) +1

1 q'+1
qg_+1 LQ |u"|
N\ (@ +D)/p
<K, +K, (J |Va, [P )
Q

Hence, taking (88) in (87) and using (H2) combined with (7)
we get

(e
([ vl (B ) )

_K2

11 p(x) p(x)
= (; - 5) L(|Vun| + [ )
(q,+1)/p_
- K, (J qun|P’)
Q
1 (|—r
(u,)

(88)

<K, +

(89)

-K,.

Q)

Now, using Lemma 4 and the fact that LF® ¢ L? (Q), we get

I 1 (x) (x)
Vi, |;1;:c>1 2 (F - 5) JQ (|Vun|1’ + |u,|f )
—
()

_K2

_é| :

1

(L D) ekt o)

1
) ("Vun"LP(") + ”un”LP‘X)) - K.
(90)

Hence, [[u,[ly1r00(qy is bounded. Without loss of generality,
we assume that there exists a subsequence of {u,} such that
u, — u,. Therefore, using Theorems 5 and 6 we get

tim, |3 Gon) (-
n—00 Q

)— 0 asn— oo,

lingoj fou,) (u, —uy) — 0 asn— o0, (91
n— Q

lim J h(xu,) (4, -
0

Uy) — 0 as n— oo.
n—00

Observe that

<EA (u,),u, — u0> = J (|Vun|P(x)—2 u,V (u, — uy)
Q

+ u, [

(4, =) = | 7 0oa) (4, =) (92
- [ Fem) [ B (- m).

We already know that

<EA (w,),u, — u0> — 0 asn— co. (93)

Using (91), we obtain

J. <|Vun|P(x)_2 Vu,V (u, — uy)
¢ (94)
p(x)-2
+ |u,| un(un—uo)> — 0 asn— co.

This together with the convergence of u,, — 1, in W"*®(Q2)
implies that u, — u, strongly in W™ (Q); that is, E,
satisfies the (PS) condition. The proof of Lemma 17 is now
completed. O

Proof of Theorem 3. Firstly, note that E, (u) > E, (1) for any
solution u of (50). Hence, as in Section 3 we can conclude that
u, is a local minimum for E, in W"?®(Q). By the strong
comparison principle and Hopf lemma, we can conclude
that any critical point of E, is also a critical point of E,
and hence u also solves (P,). It is easy to see that u) and
u,, are a subsolution and a supersolution to the problem
associated with the functional energy E,. Therefore, using
the approach as in Theorem 2, we prove that this problem
has a solution v € [u, ,uy I N C'(Q) such that v, is a local
minimizer of E, in the C' topology. Now, by the comparison
principle we can see that vy > u, and also v, solves (Py). If
vy # u, the conclusion of Theorem 3 holds. That is, we can
assume v, = u, and u, is a strict local minimum of E, in
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the WP (Q)) topology. Then, from Lemma A.4, the func-
tional E, € C'(W"**)(Q), R) and note that E, (tp) — —co
ast — o00. Thus, we can apply Lemma 17 combined with
the Mountain Pass Theorem to conclude that problem (P;)
has a solution v, such that vy # u,. Therefore the proof of
Theorem 3 is now completed. O

Appendix

We start with an important technical tool which enables us
to estimate the singularity in the Géteaux derivative of the

energy functional E, : WhP@(Q) - R defined in (2).

Lemma A.l. Let 0 < § < 1. Then there exists a constant Cg >
0 such that the inequality

)

1 _
j |a+sb|_6 ds < Cg <5na)§|a+sb|> (A1)
0 <s<

holds true for all a,b € RY with |a] + [b] > 0.

An elementary proof of this lemma can be found in Takac¢
[25, Lemma A.1, p. 233]. We continue by showing the Gateaux
differentiability of the energy functional E, at a point u €
WP (Q) satisfying u > C,[dist(x)]*" in Q with 6, =
MaX i x<o (P(2)/(p(x) — 1+ 8(x))) (for details see Theorem
4.2 in [16]).

Lemma A.2. Let assumptions (HO0)-(H5) be satisfied.
Assume that u,v € WVYPY(Q) and u satisfies u >
C, [dist(x)]% in Q. Then we have

lim ~ (E) (u+tv) — E) (w))
t—0 t
= J [VulP® "2 Vy - Vvdx + J [P uy dx
! 1 ! (A2)
- J Wvdx— J- f(x,u)vdx
Qu Q
-2 J [u]9%) v dx.
20

Proof. We show the result only for the singular term

_[Q(v/ 0¥ dx; the other two terms are treated in a standard
way. So let

Hu) = j %dx, for u e WP (). (A.3)
ou
For & € R\ {0} we define
1 .
()= %H(F) - {W TR0
0, if £ <0.
Consequently,
%(H(u+tv) ~ H ()
(A.5)

= L <JOI z (u + stv) ds) vdx.
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Notice that for almost every x € Q) we have u(x) > 0 and

Jl z(u(x)+stv(x))ds — z(u(x)) = =&
’ u (A.6)

ast — 0.

Moreover, the integral on the left-hand side (with nonnega-
tive integrand) is dominated by

Jl z (u(x) + stv(x))ds

0

1
< CJ [u (x) + stv () °®) ds
0

< Cs- Ll |u (x) + stv (x)|_5+ ds (A7)

IN

_8+
,6*
Cs- (52;2 |u (x) + stv (x)I) <Csu

_ s+

<Gy (CIA@IY)° =Cyad ()™

with constants Cs- o > 0 independent of x € (). Here, we
have used the estimate (A.1) from Lemma A.l above. Finally,
we have vd(x)f‘vel e LY, by v € WhPX () and Hardy’s
inequality. Hence, we are allowed to invoke the Lebesgue
dominated convergence theorem in (A.5) from which the
lemma follows by letting ¢ — 0. O

Corollary A.3. Let assumptions (H0)-(H5) be satisfied. Then
the energy functional Ey, : W“P™(Q) — R is Gateaux
differentiable at every point u € W"P*)(Q) that satisfies u >
C, [d(x)]e1 in Q. Its Gdteaux derivative E;(u) at u is given by

<E:\ (u) ,v> = L IVulP2 vy - Vy dx

+ J [P uydx — J WO9ydx (A8)
Q

Q

—J f(x,u)vdx—)tJ' [ul1™ y dx
Q 20

forv e WHPM(Q),

We continue by proving the C'-differentiability of the cut-
off energy functional E, defined below.

Lemma A.4. Let assumptions (HO)-(H5) be satisfied, and
w € WHPON(Q) such that w > C,[d(x)]% in Q. Setting for
x €

h (x,5)

s 4 f (2, 5) + A1), ifszw(x), (A9)
= ) () + f (6w (%) + A |w (x)|q(x) , ifs<w(x),
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H(x,s) = [, h(x,t)dt and foru e W"P¥(Q)

|VM|P(x)

A.10
P () (A-10)

EA (u) = L dx - L H (x,u) dx,

we have that E, belongs to C'(W P (Q), R).

Proof. As in Lemma A.2, we concentrate on the singular
term, the others being standard. Let

s00) if s>w(x),

g(x,s) = (A.11)

wOW (x), ifs<w(x),

G(x,s) = IOS g(x, t)dt, and S(u) = In G(x,u)dx. Proceeding

asin Lemma A.2, we obtain that, for all u € WO1 P (x)(Q), S(u)
has a Gateaux derivative S’ () given by

(8" (w),v) = J (max {u (x), w (x)) v (x) dx. (A12)
Q
Letuy € Wol’p(x)(Q), . — uy. Then
(S () = S (ug), )|
= HQ ((max fue (%), w (x)})fs(x) v(x)

- (max {y, (x),w (x)})—é(x) 4 (x)) dx| (A.13)

< ZCJ w2 |y dx < ZCJ w? v dx
Q Q
<20C J [d ()] % v dx
Q

for all v € WP (Q). Again, as in Lemma A.2, we use

Hardy’s inequality to deduce that [d(x)]fye‘v e LYQ),
so that by Lebesgue’s dominated convergence theorem we
conclude that the Gateaux derivative of S is continuous which
implies that S € C' (W™ (Q), R). O
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