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Conventional incremental PCA methods usually only discuss the situation of adding samples. In this paper, we consider two
different cases: deleting samples and simultaneously adding and deleting samples. To avoid the NP-hard problem of downdating
SVDwithout right singular vectors and specific position information, we choose to use EVD instead of SVD, which is used bymost
IPCAmethods. First, we propose anEVDupdating anddowndating algorithm, called EVDdualdating,which permits simultaneous
arbitrary adding and deleting operation, via transforming the EVD of the covariance matrix into a SVD updating problem
plus an EVD of a small autocorrelation matrix. A comprehensive analysis is delivered to express the essence, expansibility, and
computation complexity of EVD dualdating. A mathematical theorem proves that if the whole data matrix satisfies the low-rank-
plus-shift structure, EVD dualdating is an optimal rank-k estimator under the sequential environment. A selection method based
on eigenvalues is presented to determine the optimal rank k of the subspace.Then, we propose three incremental/decremental PCA
methods: EVDD-IPCA, EVDD-DPCA, and EVDD-IDPCA, which are adaptive to the varyingmean. Finally, plenty of comparative
experiments demonstrate that EVDD-based methods outperform conventional incremental/decremental PCA methods in both
efficiency and accuracy.

1. Introduction

Principal component analysis (PCA) [1], known as the sub-
space learning, or the Karhunen-Loeve transform [2], has
been an active topic in machine learning and pattern recog-
nition societies in the last several decades. As a well-known
unsupervised linear dimension reduction and multivariate
analysis method, PCA has been applied to biometric recogni-
tion [3], gene classification [4], latent semantic indexing [5],
and visual tracking [6].

In order to obtain the optimal set of normal orthogonal
basis, which endues PCA with the minimal reconstruction
error, the batch-mode PCA can be achieved in two ways:
the eigenvalue decomposition (EVD) of the data covariance
matrix and the singular value decomposition (SVD) of the
data matrix. Both approaches have a high computational
cost and a mass demand of storage, in the case of a high-
dimensional and large-scale dataset. In practical applica-
tions, not all the observations are available before training.

Especially in online usage, samples arise sequentially along
with time. In these situations, the batch-mode PCA does
not satisfy the demand for real-time process due to its
requirement to recompute the EVD or SVD of the whole data
every time.

To solve this issue, incremental learning has been investi-
gated formore than two decades in both appliedmathematics
andmachine learning community, whose task is to update the
learning results without reexecuting the whole process when
adding new data points. Various effective incremental PCA
(IPCA) methods have been proposed.

In a period of knowledge explosion, the fast growing
information is usually adulterated with mock, invalid, or
expired data. The presence of a few deviated samples might
tremendously contaminate the solved model, such as princi-
pal directions in PCA. The overdue instances, which can be
regarded as outliers compared to unexpired instances in some
degree, could reduce the accuracy of data model. Therefore,
for an intelligent learning system, the only function to
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admit new instances is not enough, but the capability to
eliminate aberrant samples is also necessary. This is the aim
of decremental learning. Comparingwith IPCA, decremental
PCA (DPCA) did not receive adequate attention in the
literature. Only a few methods have been proposed in the
last ten years. Besides, there is no incremental decremental
algorithm of subspace learning to the best of our knowledge.
Similar works are only about support vector machine (SVM)
[7]. Cauwenberghs and Poggio [8] propose an incremental
decremental method of adding and/or deleting a single
sample, and Karasuyama and Takeuchi [9] expand it to the
case of multiple instances.

Because the essence of PCA is SVD or EVD in the math-
ematical form, the task of incremental PCA and decremental
PCA is equivalent to updating and downdating SVD or EVD.
In existing methods, most IPCA approaches adopt similar
strategies via updating SVD. However, these tactics based on
SVD may be impossible to be implemented for decremental
PCA. Lorenzelli and Yao [10] point out that SVD downdating
is NP-hard without knowing right singular vectors. Hall et al.
[11] argue that right singular vectors of the remained matrix
cannot be computed without visiting elements of the right
singular vectors of the originalmatrix. Besides, inmany prac-
tical applications, such as subspace learning [12, 13], image
reconstruction [14], face recognition [15], and visual tracking
[16], only left singular vectors are needed as the projection
matrix, so right singular vectors are usually not stored to save
memory. If the data matrix and the right singular vectors
are not preserved, the position information of deleted points
in the queue may be unknowable in the decremental case,
which causes right singular vectors to be incomputable. The
problem of incomplete position information does not arise
in increment PCA, because it is a common sense that new
instances are appended to the tail of queue.

Based on the demand on incremental decremental learn-
ing and the difficulty of decremental learning in the analysis
above, we introduce a novel online subspace method for
simultaneous incremental decremental learning. The contri-
butions in this paper are as follows.

(1) To avoid the problem of lacking right singular vectors
in decremental learning, we utilize EVD instead
of SVD and propose a dualdating algorithm for
eigenspace, that is, EVD dualdating, which can accept
and delete samples at the same time. Our algorithm
transforms the EVD updating and downdating of the
covariance matrix into a SVD updating problem plus
an EVD of a small autocorrelation matrix. To the best
of our knowledge, it is the first attempt of simultane-
ous incremental decremental subspace learning and
has a simpler and unitized mathematical form, which
theoretically guarantees a better performance than
the conventional multiple-step implementation.

(2) Several theoretical and computational analyses are
presented to further explore the property of EVD
dualdating, including the essence and geometric
explanation of EVD dualdating, expansive forms
of EVD dualdating for data revising and weighted

updating, the computation complex of EVD dual-
dating, a mathematical theorem which demonstrates
the optimality of EVD dualdating in the sequential
mode if the data matrix satisfies low-rank-plus-shift
structure, and a selection method of the optimal rank
𝑘 based on eigenvalues.

(3) It is proofed that the change of mean caused by
adding or deleting samples in the varying-mean
PCA can be transformed into adding and deleting
several equivalent vectors in the zero-mean PCA.
Thus, three online PCA algorithms are derived based
on EVD dualdating to cope with changeable mean:
incremental PCA (EVDD-IPCA), decremental PCA
(EVDD-DPCA), and incremental decremental PCA
(EVDD-IDPCA).

The remaining of this paper is organized as follows.
Section 2 briefly reviews the updating and downdatingmeth-
ods of both SVD and EVD and incremental PCA. The pro-
posed EVD downdating algorithm and its analyses are pre-
sented in Section 3. In Section 4, EVDdualdating is applied to
incremental decremental PCAwithmean updating. Section 5
presents the experiment results and comparisons with other
approaches. Section 6 concludes this paper. In the end, proofs
of lemmas and theorems are in the Appendix.

2. Related Work

Over the past few decades, many efficient incremental PCA
methods have been proposed. Generally, existing IPCA
algorithms can be divided into three categories. The first
category updates eigenvectors without any matrix decom-
position. The typical method is the candid covariance-free
IPCA (CCIPCA) [17]. The second category updates principal
components via EVD updating. The subspace merging and
splitting model, developed by Hall et al. [12], belong to
this category. With the help of partition R-SVD [14] and
SVD updating [18], the third category is the most studied
which recomputes singular values and singular vectors via
sequentially updating SVD.

Weng et al. [17] propose an incremental PCA method
without computing the covariance matrix, the candid
covariance-free IPCA(CCIPCA). The CCIPCA algorithm
computes principal components sequentially and considers
the complementary space of lower order PCs when calculat-
ing higher order PCs. Because the computation of the (𝑖+1)th
PC depends on the 𝑖th one, the error will be accumulated
in the whole process. Besides, the sample-to-dimension ratio
needs to be large enough to avoid some problems coming
from the view of statistical estimation. This condition is not
satisfied in many situations.

Hall et al. [12] develop a merging and splitting eigenspace
model (MSES).This algorithm is an online subspace learning
algorithmbased on EVD, via solving a small eigenproblemon
a new orthonormal basis.MSES is able to update or downdate
EVD by adding or subtracting the eigenspace of added or
deleted samples and adaptive to the change of data mean.
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Except these two approaches above, other incremental
PCA methods are based primarily on SVD. Levy and Lin-
denbaum [19] propose the sequential Karhunen-Loeve (SKL)
method based on the partitioned R-SVD algorithm, which
simplifies the SVD of a large data matrix into the SVD
of some small ones via a sequential procedure. Then, this
sequentialized partitioned R-SVD algorithm is utilized to
extract PCs from a sequence of human face images. Besides,
a forgetting factor is employed to weaken the affection of
old data. However, in SKL, the mean of data is not taken
into consideration, so the result is not accurate enough when
confronting an image sequence with a variational mean, such
as a human face under a changeable illumination. Skočaj and
Leonadris [13] develop the weighted and robust incremental
subspace learning (WR-ISL) algorithm, which has the ability
to deal with the change of mean and weighted data. However,
WR-ISL does not consider the chunk updatingmode; in other
words, only one sample can be manipulated in each round.
The mean updating for multiple samples is solved by Ross et
al. [16], who demonstrate that the covariance matrix of the
combined data is equal to the sum of covariance matrices of
the old data, the new data, and an additional vector when
taking the mean into account. According to this, Ross et
al. obtain an extended SKL algorithm with mean updating,
which is applied to visual tracking and successfully locates
one human face and one toy with different poses under
variational background and illumination, both indoor and
outdoor.

Zha and Simon [18] propose a more generalized math-
ematical formula to update SVD, namely, SVD updating.
This algorithm, which is applied to LSI, is an efficient incre-
mental method to recalculate the rank-𝑘 SVD for updating
documents, updating terms, and term weight corrections.
Moreover, Zha and Simon prove that if the united datamatrix
satisfies the low-rank-plus-shift structure, the result of the
SVD updating algorithm with the new data and the optimal
rank-𝑘 approximate of old data is still an optimal rank-𝑘
estimation. Zhao et al. [20] propose a chunk incremental
PCA approach via the SVD updating algorithm, known as
SVDU-IPCA. Comparing to other incremental PCA meth-
ods, SVDU-IPCA computes the eigendecomposition of the
autocorrelation matrix instead of the covariance matrix. The
motivation is that usually the sample number ismuch smaller
than the data dimension in practical applications, so the
dimension of the autocorrelation matrix is also smaller than
the covariance matrix. Then, Zhao et al. find a strategy to
update the eigendecomposition of a autocorrelation matrix
by SVD updating. However, the change of mean is not
considered in SVDU-IPCA, so it is not suitable for the
situation with changeable mean. Besides, it suffers from the
problem of growing demand for storage and computation,
because the size of autocorrelation matrix is dilating along
with the new data, and an additional process is needed to
transfer the resulting right singular vectors and kept whole
data to principal components. Huang et al. [15] propose an
improved SVDU-IPCA method to handle changeable mean
data and decrease the storage, where only a small package of
concentrated data is saved to calculate left singular vectors.

Although a great deal of research has been accomplished
about incremental subspace learning, the research on decre-
mental learning is still inadequate in the literature. The
merging and splitting eigenspace model developed by Hall et
al. [12] can downdate EVD to recompute PCs when deleting
some samples from the old data. Meanwhile, they claim that
it is impossible to achieve SVD downdating in a closed form
with their model. Brand [21] proposes a fast modification
model of rank-𝑘 singular value decomposition (MSVD). As
an extension of the term weight corrections form of SVD
updating, MSVD is able to recompute the rank-𝑘 SVD of the
modified data matrix after updating, downdating, revising,
and recentering terms. However, this method does not take
themean into consideration, so its result is not accurate when
the data mean was time-varying. Melenchón and Mart́ınez
[22] develop a method for downdating, composing, and
splitting SVD (DCSSVD) with a changeable mean. DCSSVD
accomplishes these by downdating, composing, and splitting
the right singular vectors firstly, then computing the mean
and SVD of the remained right singular vectors, and finally
calculating the resulting SVD. However, this method suffers
from a severe efficiency problem, since the core process is
the SVD of a 𝑑 × 𝑘 matrix, whose computation complexity
is 𝑂(𝑑𝑘min(𝑑, 𝑘)), still depending on the data dimension.
AIPCA, proposed by Wang et al. [23], is a decremental
version of SVDU-IPCA algorithm which recomputes the
eigendecomposition of the autocorrelation matrix by MSVD.
Although AIPCA achieves decremental subspace learning, it
inherits disadvantages of SVDU-IPCA and MSVD, such as
incapability of handling changeable mean, a large memory to
preserve the datamatrix, and an additional process to transfer
its results to left singular vectors.

Beside the accuracy and efficiency, the severest problem
faced by SVD-based decremental methods is that it is a NP-
hard problem without the position information of deleted
samples in the data matrix, which might be not obtainable
in many practical applications.

3. EVD Dualdating

In Section 3.1, we first briefly review the SVD updating [18]
algorithm. Our EVD dualdating algorithm is proposed in
Section 3.2. Then, the related analyses are reported in the
following sections.

3.1. SVD Updating. Given a data matrix 𝐴 = [𝑥
1
, 𝑥
2
, . . . ,

𝑥
𝑛
] ∈ R𝑑×𝑛, its SVD is 𝐴 = 𝑈Σ𝑉

𝑇, where 𝑈 ∈ R𝑑×𝑑,
Σ ∈ R𝑑×𝑛, and 𝑉 ∈ R𝑛×𝑛. The best rank-𝑘 approximation
of 𝐴 is

𝐴 = 𝑈
𝑘
Σ
𝑘
𝑉
𝑇

𝑘
, (1)

where Σ
𝑘
is the diagonal matrix with the largest 𝑘 singular

values and 𝑈
𝑘
and 𝑉

𝑘
are the first 𝑘 columns of 𝑈 and 𝑉,

respectively. We call (1) the rank-𝑘 singular value decompo-
sition (rank-𝑘 SVD) of 𝐴.

When new samples 𝐵 = [𝑥
𝑛+1

, 𝑥
𝑛+2

, . . . , 𝑥
𝑛+𝑚

] ∈ R𝑑×𝑚

come, how to compute the rank-𝑘 SVDof the newdatamatrix
𝐴
∙
= [𝐴 𝐵] by only using 𝑈

𝑘
, Σ
𝑘
, 𝑉
𝑘
, and 𝐵?
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Input:The rank-𝑘 SVD of old data 𝐴, 𝑈
𝑘
, Σ
𝑘
, 𝑉
𝑘
, new data 𝐵.

Output:The rank-𝑘 SVD of total data 𝐴∙, 𝑈̌
𝑘
, Σ̌
𝑘
, 𝑉̌
𝑘
.

(1) Compute QR decomposition, (𝐼
𝑑
− 𝑈
𝑘
𝑈
𝑇

𝑘
)𝐵 = QR;

(2) Compute the rank-𝑘 SVD, [Σ𝑘 𝑈
𝑇

𝑘
𝐵

0 𝑅
] = 𝑈̃

𝑘
Σ̃
𝑘
𝑉̃
𝑇

𝑘
;

(3) The rank-𝑘 SVD of [𝐴 𝐵] is

𝐴∙ = ([𝑈
𝑘

𝑄] 𝑈̃
𝑘
) Σ̃
𝑘
([

𝑉
𝑘

0

0 𝐼
𝑚

]𝑉
𝑘
)

𝑇

.

Algorithm 1: SVD updating.

To solve this problem, Zha and Simon [18] propose
an efficient mathematical tool, namely, SVD updating. Its
detailed procedure is described in Algorithm 1.

3.2. EVD Dualdating. In this section, a thorough discussion
of the proposed dualdating algorithm for EVD is presented.
Dualdating means updating and downdating together; in
other words, we consider the situation of adding and deleting
samples simultaneously.

Given a data matrix 𝐴 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] ∈ R𝑑×𝑛, its SVD

is 𝐴 = 𝑈Σ𝑉. Let 𝑆
𝐴
= 𝐴𝐴

𝑇
∈ R𝑑×𝑑 the covariance matrix (in

this section, we do not distinguish the covariance matrix and
the scatter matrix, since their difference is only the coefficient
1/𝑛), then 𝑆

𝐴
is a symmetric positive semidefinitematrix, and

its EVD is 𝑆
𝐴

= 𝑈Λ𝑈
𝑇, where Λ = Σ

2. The best rank-𝑘
approximation of 𝑆

𝐴
is

𝑆
𝐴
= 𝑈
𝑘
Λ
𝑘
𝑈
𝑇

𝑘
, (2)

where 𝑈
𝑘
is the first 𝑘 columns of 𝑈 and Λ

𝑘
is a diagonal

matrix with the largest 𝑘 eigenvalues in Λ. For any matrix
𝐴 ∈ R𝑑×𝑛, we call (2) the rank-𝑘 eigenvalue decomposition
(rank-𝑘 EVD) of 𝐴 or 𝑆

𝐴
.

Now some old samples 𝐷 are to be deleted, where 𝐷

can be composed of arbitrary 𝑝 (𝑝 < 𝑛) columns in 𝐴.
Without losing any generality, let 𝐷 be the last 𝑝 columns:
𝐷 = [𝑥

𝑛+1−𝑝
, . . . , 𝑥

𝑛
] ∈ R𝑑×𝑝. Meanwhile, new instances𝐵 are

available: 𝐵 = [𝑥
𝑛+1

, . . . , 𝑥
𝑛+𝑚

] ∈ R𝑑×𝑚. We are interested in
how to express the rank-𝑘 EVD of the final data matrix 𝐴⋆ =
[𝑥
1
, . . . , 𝑥

𝑛−𝑝
, 𝑥
𝑛+1

, . . . , 𝑥
𝑛+𝑚

] ∈ R𝑑×(𝑛−𝑝+𝑚) as modifications
to 𝑈
𝑘
, Λ
𝑘
via𝐷 and 𝐵.

3.2.1. Basic Procedure. The basic procedure of the proposed
EVD dualdating algorithm is as follows. Let

Φ = [

[

𝐼
𝑛

𝐼
𝑚

−𝐼
𝑝

]

]

∈ R
(𝑛+𝑚+𝑝)×(𝑛+𝑚+𝑝)

. (3)

Thus, the covariance matrix of 𝐴⋆ can be written as

𝐴
⋆
𝐴
⋆𝑇

= 𝐴𝐴
𝑇
+ 𝐵𝐵
𝑇
− 𝐷𝐷

𝑇

= [𝐴 𝐵 𝐷]Φ[𝐴 𝐵 𝐷]
𝑇

.

(4)

The basic idea of EVD dualdating is to transform the
dualdating problem into a SVD updating problem plus an
extra process with a small computation complexity. Firstly,
consider the matrix [𝐴 𝐵 𝐷]. Knowing 𝑈

𝑘
, Σ
𝑘
= Λ
1/2

𝑘
, we

assume that right singular vectors in the rank-𝑘 SVD of𝐴 are
𝑉
𝑘
. Then, the rank-𝑘 SVD of [𝐴 𝐵 𝐷] can be calculated by

the SVD updating algorithm:

̂
[𝐴 𝐵 𝐷] = 𝑈̌

𝑘
Σ̌
𝑘
𝑉̌
𝑇

𝑘
, (5)

where 𝑈̌
𝑘
∈ R𝑑×𝑘, Σ̌

𝑘
∈ R𝑘×𝑘, and 𝑉̌

𝑘
∈ R(𝑛+𝑚+𝑝)×𝑘.

Take (5) into (4); we have

𝐴
⋆
𝐴
⋆𝑇

= 𝑈̌
𝑘
Σ̌
𝑘
𝑉̌
𝑇

𝑘
Φ𝑉̌
𝑘
Σ̌
𝑇

𝑘
𝑈̌
𝑇

𝑘
. (6)

Let

Ψ = Σ̌
𝑘
𝑉̌
𝑇

𝑘
Φ𝑉̌
𝑘
Σ̌
𝑇

𝑘
∈ R
𝑘×𝑘

. (7)

Because 𝐴
⋆
𝐴
⋆𝑇 is a symmetric positive semidefinite

matrix, Ψ is also symmetric positive semidefinite. Usually
𝑘 ≪ 𝑑, so Ψ is a small matrix compared to the covariance
matrix of 𝐴⋆. The EVD of Ψ is

Ψ = 𝑃Λ
⋆
𝑃
𝑇
, (8)

where𝑃 ∈ R𝑘×𝑘,Λ⋆ ∈ R𝑘×𝑘 is the diagonal eigenvaluematrix.
Finally, the rank-𝑘 EVD of 𝐴⋆𝐴⋆𝑇 is

𝐴
⋆
𝐴
⋆𝑇

= (𝑈̌
𝑘
𝑃)Λ
⋆
(𝑈̌
𝑘
𝑃)
𝑇

. (9)

By (3) to (9), we have successfully converted the dualdat-
ing problem of EVD into a SVD updating problem of adding
𝑚 + 𝑝 samples plus an EVD of a small 𝑘 × 𝑘matrix.

3.2.2. Further Simplification. Although the basic procedure
of our EVD dualdating algorithm is given, one problem still
remains unsolved: the assumed right singular vectors 𝑉

𝑘
is

unobtainable. Here we address this problem by simplifying
the computation of Ψ.

Consider the results of the SVD updating algorithm on
the rank-𝑘 SVD of [𝐴 𝐵 𝐷]:

𝑈̌
𝑘
= [𝑈𝑘 𝑄] 𝑈̃

𝑘
, Σ̌

𝑘
= Σ̃
𝑘
,

𝑉̌
𝑘
= [

[

𝑉
𝑘

𝐼
𝑚

𝐼
𝑝

]

]

𝑉̃
𝑘
,

(10)
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Input:The rank-𝑘 EVD of old data 𝐴 ∈ R𝑑×𝑛, 𝑈
𝑘
, Λ
𝑘
, the deleted data𝐷 ∈ R𝑑×𝑝, the added data 𝐵 ∈ R𝑑×𝑚.

Output:The rank-𝑘 EVD of the remained data 𝐴⋆ ∈ R𝑑×(𝑛+𝑚−𝑝), 𝑈⋆
𝑘
, Λ⋆
𝑘
.

(1) Let equivalent adding data matrix 𝐵⋆ = [𝐵 𝐷].
(2) Compute QR decomposition, (𝐼

𝑑
− 𝑈
𝑘
𝑈
𝑇

𝑘
)𝐵
⋆
= QR.

(3) Σ
𝑘
= Λ
1/2

𝑘
, compute the rank-𝑘 SVD, [Σ𝑘 𝑈

𝑇

𝑘
𝐵
⋆

0 𝑅
] = 𝑈̃

𝑘
Σ̃
𝑘
𝑉
𝑇

𝑘
.

(4) Let Φ = [

[

𝐼
𝑘

𝐼
𝑚

−𝐼
𝑝

]

]

, calculate Ψ = Σ̃
𝑘
𝑉
𝑇

𝑘
Φ𝑉̃
𝑘
Σ̃
𝑘
.

(5) Compute the EVD of Ψ, Ψ = 𝑃Λ
⋆
𝑃
𝑇.

(6) The rank-𝑘 EVD of 𝐴⋆ is
𝑈
⋆

𝑘
= ([𝑈

𝑘
𝑄] 𝑈̃
𝑘
) 𝑃, Λ

⋆

𝑘
= Λ
⋆.

Algorithm 2: EVD dualdating.

where 𝑈
𝑘

∈ R𝑑×𝑘, 𝑄 ∈ R𝑑×(𝑚+𝑝), 𝑈̃
𝑘

∈ R(𝑘+𝑚+𝑝)×𝑘, 𝑈̌
𝑘

∈

R𝑑×𝑘, Σ̃
𝑘

∈ R𝑘×𝑘, 𝑉
𝑘

∈ R𝑛×𝑘, 𝑉̃
𝑘

∈ R(𝑘+𝑚+𝑝)×𝑘, and 𝑉̌
𝑘

∈

R(𝑛+𝑚+𝑝)×𝑘.
Take (10) into (7); we have

Ψ = Σ̃
𝑘
𝑉̃
𝑇

𝑘
[

[

𝑉
𝑇

𝑘
𝑉
𝑘

𝐼
𝑚

−𝐼
𝑝

]

]

𝑉̃
𝑘
Σ̃
𝑇

𝑘

= Σ̃
𝑘
𝑉̃
𝑇

𝑘
[

[

𝐼
𝑘

𝐼
𝑚

−𝐼
𝑝

]

]

𝑉̃
𝑘
Σ̃
𝑇

𝑘
.

(11)

From (11), it can be seen that the right singular vectors
𝑉
𝑘
are actually not needed, and the computation of Ψ is

simplified.

3.2.3. Algorithm. The detailed procedure of EVD dualdating
has been presented above. To sum up, the pseudocode of
our EVD dualdating algorithm is described in Algorithm 2.
To achieve pure updating or downdating of EVD, it is only
needed to let 𝐵 or 𝐷 be an empty set. From the computation
progress, EVD dualdating is degenerated into the standard
SVD updating in the updating mode.

3.3. Analysis of EVD Dualdating. In this section, we first
analyze the mechanism of EVD dualdating for incremental
and decremental learning. Second, some extended forms of
EVD dualdating are given for particular uses. Third, the
computation complexity on the proposed EVD dualdating
algorithm is presented. Fourth, the optimality of EVD dual-
dating in the sequential usage is demonstrated. Finally, we
discuss how to determine the optimal rank 𝑘.

3.3.1. Mechanism of Incremental and Decremental Learning.
For convenience, when analysing the essence of incremental
and decremental learning based on EVD dualdating, we only
consider the pure updating or downdating situation and
denote the changed matrix as 𝐵 ∈ R𝑑×𝑚 in both situations.

According to the procedure of EVD dualdating, two
key decompositions are the SVD updating of the equivalent

addingmatrix [𝐴 𝐵] and the EVDof the smallmatrixΨ. And
in the SVD updating algorithm, the core step is the rank-𝑘
SVD of the following matrix:

𝐻 ≜ [
Σ
𝑘

𝑈
𝑇

𝑘
𝐵

0 𝑅
] = 𝑈̃

𝑘
Σ̃
𝑘
𝑉̃
𝑇

𝑘
, (12)

where Σ
𝑘
is the diagonal variance matrix of the original

data 𝐴, 𝑈𝑇
𝑘
𝐵 is the coefficient matrix by projecting 𝐵 onto

the subspace spanned by 𝑈
𝑘
, and 𝑅 is the upper triangular

reconstruction error matrix of 𝐵. So a conclusion can be
obtained that, in𝐻, the left 𝑘 columns represent the original
data, and the remained 𝑚 columns represent the added or
deleted data.

Then, divide the columns of 𝑉̃
𝑘
into two partitions:

𝑉̃
𝑘
= [

[

𝑉̃
1

𝑘

𝑉̃
2

𝑘

]

]

, (13)

where 𝑉̃1
𝑘
are the first 𝑘 rows of 𝑉̃

𝑘
and 𝑉̃

2

𝑘
are the last𝑚 rows

of 𝑉̃
𝑘
. Thus, 𝑉̃1

𝑘
, 𝑉̃2
𝑘
stand for the old data and the changed

data, respectively.
So the matrix Ψ can be written as

Ψ = Σ̃
𝑘
[𝑉̃
1𝑇

𝑘
𝑉̃
2𝑇

𝑘
] [

𝐼
𝑘

±𝐼
𝑚

] [
𝑉̃
1

𝑘

𝑉̃
2

𝑘

] Σ̃
𝑇

𝑘

= Σ̃
𝑘
𝑉̃
1𝑇

𝑘
𝑉̃
1

𝑘
Σ̃
𝑇

𝑘
± Σ̃
𝑘
𝑉̃
2𝑇

𝑘
𝑉̃
2

𝑘
Σ̃
𝑇

𝑘
.

(14)

Now, let us observe the situation from the view of
geometry shown in Figure 1. On the left is the column space
of data. The red arrows represent the orthogonal basis 𝑈

𝑘
of

the old subspace. The green arrow is the added or deleted
samples 𝐵, whose projection on 𝑈

𝑘
and reconstruction error

are the green dashed arrows. After QR decomposition, a new
basis in the extended subspace is made up by the red and
pink arrows. However, the projection of the data matrix on
this basis is not completely diagonalized. So, the SVD of the
coefficient matrix 𝐻 on this basis is executed to obtain the
diagonalizing matrix. Then, the new orthogonal basis after
adding 𝐵 is represented by the blue arrows. At this time,
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Figure 1: Visualization of EVD dualdating.

Table 1: Expansions of EVD dualdating.

Old data New data Φ Miscellanea

Update 𝐴
𝑑×𝑛

[𝐴
𝑑×𝑛

𝐵
𝑑×𝑚

] [
𝐼
𝑘

𝐼
𝑚

]

Downdate [𝐶
𝑑×(𝑛−𝑝)

𝐷
𝑑×𝑝

] 𝐶
𝑑×(𝑛−𝑝)

[
𝐼
𝑘

−𝐼
𝑝

]

Dualdate [𝐶
𝑑×(𝑛−𝑝)

𝐷
𝑑×𝑝

] [𝐶
𝑑×(𝑛−𝑝)

𝐵
𝑑×𝑚

]
[
[

[

𝐼
𝑘

𝐼
𝑚

−𝐼
𝑝

]
]

]

Revise [𝐶
𝑑×(𝑛−𝑝)

𝐷
𝑑×𝑝

] [𝐶
𝑑×(𝑛−𝑝)

𝐵
𝑑×𝑝

]
[
[

[

𝐼
𝑘

𝐼
𝑝

−𝐼
𝑝

]
]

]

Weighted update 𝐴
𝑑×𝑛

[𝑤
1
𝐴
𝑑×𝑛

𝑊𝐵
𝑑×𝑚

] [
𝑤
1
𝐼
𝑘

𝑊
] 𝑊 = diag(𝑤

2
, . . . , 𝑤

𝑚+1
)

the row space of 𝐻 is drawn on the right of the figure. The
black and pink arrows compose a standard orthogonal basis,
where the black ones are the elements corresponding to old
samples, and the green one is the elements corresponding to
changed samples. The blue arrow represents the orthogonal
vectors 𝑉̃

𝑘
Σ̃
𝑇

𝑘
in the row space of 𝐻 after adding 𝐵 via SVD

updating. Because EVD dualdating adds samples 𝐵 at first no
matter whether the case is incremental or decremental, so it
needs to make an adjustment in the row space of 𝐻. If it is
deletion, the elements corresponding to changed samples are
sign-changed. As shown in Figure 1, the component, marked
by the cyan blue dashed arrow, is reversed. From (14), Ψ is in
fact the sum or difference of autocorrelation matrices of the
old data 𝑉̃1

𝑘
Σ̃
𝑇

𝑘
and the changed data 𝑉̃2

𝑘
Σ̃
𝑇

𝑘
. According to the

relationship between the column and row space, the EVD of
Ψ is utilized to acquire the new rotation matrix 𝑃 in the data
space. Finally, the resulting orthogonal basis𝑈⋆

𝑘
is the orange

arrows.
To sum up, the aim of EVD dualdating is to obtain the

projection matrix caused by the change of sample set, and
the essence of EVD dualdating is to transform the EVD of
a varying covariance matrix in the data space to the EVD of a
varying autocorrelation matrix in a dimension-reduced row
space.

3.3.2. Extendibility of EVD Dualdating. From the deduction
of EVD dualdating, it can be seen that nearly no restriction
is imposed on 𝐵, 𝐷, and Φ. In the downdating mode, the
procedure is still feasible even if 𝐷 is not columns of 𝐴.

Meanwhile, Φ can be selected as any matrix which matches
the dimension. The only condition needed to be satisfied
is that Ψ must be a positive semidefinite matrix. From
another view, our EVD dualdating algorithm has a favorable
extendibility.

The standard dualdating mode for EVD dualdating is
adding and deleting samples synchronously. As we men-
tioned before, when 𝐵 or 𝐷 is an empty set, EVD dualdating
can work at the pure incremental or decremental mode.
When 𝑚 = 𝑝, EVD dualdating can be seen as data
revising. Another useful extension is forgetting updating, or
the so-called weighted updating, which is very important for
online applications. In the learning procedure, prior instances
should be assigned a lowweight since they become antiquated
as time goes on. Without proper weighting mechanisms, the
contribution of too many old similar samples can become
too prominent that new instances seem meaningless. In [16],
the forgetting factor is used to destrengthen the effect of old
images of the tracked object. Via EVD dualdating, a concise
but meticulous weighting formula can be acquired, in which
the weight of an arbitrary sample can be modulated, similar
as the way adopted in [13].The sole operation is modifyingΦ
as follows:

Φ = [
𝑤
1
𝐼
𝑘

𝑊
] , 𝑊 = [

[

𝑤
2

d
𝑤
𝑚+1

]

]

. (15)

The equivalent data matrix of weighted updating is
[𝑤1𝐴 𝑊𝐵]. The detailed expansions of EVD dualdating are
listed in Table 1.
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3.3.3. Computation Complexity of EVD Dualdating. Before
analyzing, we define some signs to simplify the representa-
tion: QR(𝑚, 𝑛) and SVD(𝑚, 𝑛) stand for the QR and SVD
decomposition of a 𝑚 × 𝑛 rectangle matrix and QR(𝑚),
SVD(𝑚), and EVD(𝑚) stand for the QR, SVD, and EVD
decomposition of a 𝑚 × 𝑚 square matrix. The computation
of the proposed EVD dualdating algorithm is composed
of four parts: QR of (𝐼

𝑑×𝑑
− 𝑈
𝑘
𝑈
𝑇

𝑘
)𝐵
⋆, SVD of 𝐻, EVD

of Ψ, and other multiplication operations including calcu-
lating reconstruction error, Ψ, and 𝑈

⋆

𝑘
. Because the first

𝑘 column of (𝐼
𝑑×𝑑

− 𝑈
𝑘
𝑈
𝑇

𝑘
)𝐵
⋆ is already orthogonal, its

QR decomposition only operates the last 𝑚 + 𝑝 columns
actually. The computation complexity is presented in Table 2,
where the computation is presented into two parts: matrix
decomposition and transformation cost.

In the pure updating or downdating mode, there are
two matrix decompositions in our EVD-Dualdating algo-
rithm, one more than other pure updating and downdating
methods. This may cause EVD dualdating slower than other
methods. But taking the dimension and the transformation
cost into account, the efficiency of EVD dualdating is close
or even better, comparing to other methods. The main
advantage of our algorithm can be reflected in the dualdating
mode. As the only method achieving simultaneous updating
and downdating, EVD dualdating can avoid many repeating
processes and decrease the cumulative error. An experi-
mental comparison of efficiency and accuracy on our EVD
dualdating and other incremental and decremental methods
is presented in Section 5.

3.4. Justification of the Sequential Usage of 𝑈
𝑘
and Λ

𝑘
. In

many online applications, it is impossible to store the original
data because of the limitation of the physical medium and the
consideration about efficiency. Described in a mathematical
form, this means that the original data matrix 𝐴 is unobtain-
able and replaced by its best rank-𝑘 approximation which can
be calculated by𝑈

𝑘
andΛ

𝑘
. So, it is urgent to demonstrate the

effectiveness of EVD dualdating in a sequential process.
Zha and Simon [18] proof that when the combinedmatrix

satisfied the low-rank-plus-shift structure, SVD updating is
optimal when𝐴 is replaced by its best rank-𝑘 approximation.
Here, a theoretical demonstration is given to illustrate that
if the whole data matrix satisfies the low-rank-plus-shift
structure, the result of EVD dualdating after any adding or
deleting operations is also an optimal rank-𝑘 estimation.
First, we state Lemma 1 without proof.

Lemma 1. Let 𝐴 ∈ R𝑑×𝑛, 𝑑 > 𝑛, and its EVD is 𝑆
𝐴
= 𝐴𝐴

𝑇
=

𝑈
𝐴
Λ
𝐴
𝑈
𝑇

𝐴
= ∑
𝑛

𝑖=1
𝜆
𝑖
𝑢
𝐴𝑖
𝑢
𝑇

𝐴𝑖
, where 𝑢

𝐴𝑖
and 𝜆

𝐴𝑖
are the 𝑖th

eigenvector and eigenvalue, respectively. Then for ∀𝑝 > 𝑘, one
has

best
𝑘
(𝑆
𝐴
) = best

𝑘
(𝑆
𝐴
−

𝑛

∑

𝑖=𝑝

𝜆
𝐴𝑖
𝑢
𝐴𝑖
𝑢
𝑇

𝐴𝑖
) . (16)

The lemma above indicates that for the rank-𝑘 EVD it
is safe to cutoff the minor eigenspaces, without affecting
the optimality. With this, we discuss under the low-rank-
plus-shift structure, when 𝐴 is replaced by best

𝑘
(𝐴), the

information discarded will also be discarded after EVD
dualdating. The conclusion is summarized in Theorem 2,
whose proof can be found in the Supplementary Material
(available online at http://dx.doi.org/10.1155/2014/429451).

Theorem 2. Given a matrix 𝐴 ∈ R𝑑×𝑛, with its best-𝑘
approximation 𝐴, the deleted data 𝐷 ∈ R𝑑×𝑝 from 𝐴, the
added data 𝐵 ∈ R𝑑×𝑚, 𝑑 > 𝑛 > 𝑝. Let 𝐶 = [𝐴 𝐷] be
the remained data from 𝐴, 𝐹 = [𝐶 𝐷 𝐵] the full data, and
𝐸 = [𝐶 𝐵] the final data, where the underline means deletion.
Let 𝐶 = [best𝑘(𝐴) 𝐷] be the remained matrix after deleting
columns corresponding to 𝐷 from 𝐴’s best-𝑘 approximation,
and let 𝐸 = [𝐶 𝐵] be the final data from 𝐴. Assume that 𝐹
satisfies the low-rank-plus-shift structure; that is,

𝐹
𝑇
𝐹 = 𝑋

𝐹
+ 𝜎
2
𝐼
𝑛
, 𝜎 > 0, (17)

where 𝑋
𝐹

is symmetric and positive semidefinite with
rank(𝑋

𝐹
) = 𝑘; then

best
𝑘
(𝑆
𝐸
) = best

𝑘
(𝑆
𝐸
) . (18)

3.5. Criterion for the Optimal Rank 𝑘 Selection. In the
deduction above, the rank of subspace is assumed to be a
fixed number 𝑘; however the optimal dimension of subspace
depends on a priori information, which is possibly unknown
in practical applications. Based on the fact that the bulk of
variability of a given dataset can be captured by the top few
eigenvectors, we introduce an eigenvalue-based method to
determine the best rank 𝑘 of subspace during the online
learning procedure.

Supposing the truncation operation is not yet executed in
steps 4 and 6 of Algorithm 2, the ranks of obtained 𝑈

⋆

𝑘
and

Λ
⋆

𝑘
are 𝑘 + 𝑚 + 𝑝. First, we define the rate 𝑟

𝑖
:

𝑟
𝑖
=

∑
𝑖

𝑗=1
𝜆
𝑗

∑
𝑘+𝑚+𝑝

𝑗=1
𝜆
𝑗

, (19)

which indicates the proportion of the first 𝑖 eigenvalues in all
eigenvalues.Then, the best dimension 𝑘 can be selected as the
minimum number 𝑖 exceeding some threshold:

𝑘 = min {𝑖 | 𝑟
𝑖
≥ 𝑇
𝑟
} , (20)

where the threshold 𝑇
𝑟
is a value in (0, 1). In the batch mode,

the threshold only depends on the proportion of information
to be preserved. For EVD dualdating, because the estimation
of rank 𝑘 and truncation are performed in every round, the
threshold is relative to the ratio of saved andnew information.
In practical implementation, it can be chosen according to the
chunk size of added and deleted samples.

4. Incremental Decremental PCA Based on
EVD Dualdating

In the deduction of EVD dualdating in Section 3.2, the mean
of samples is not considered, but in practical applications,
centralization is a necessary process to reduce the effect of
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Input:The sample number, mean, eigenvectors, eigenvalues of old data, 𝑛, 𝜇
𝐴
, 𝑈
𝑘
, Λ
𝑘
, the sample number and mean of

new samples 𝐵,𝑚, 𝜇
𝐵
.

Output:The sample number, mean, eigenvectors, eigenvalues of new data, 𝑛⋆, 𝜇⋆, 𝑈⋆
𝑘
, Λ⋆
𝑘
.

(1) Update the sample number and mean, 𝑛⋆ = 𝑛 + 𝑚, 𝜇⋆ = (𝑛/ (𝑛 + 𝑚))𝜇
𝐴
+ (𝑚/(𝑛 + 𝑚))𝜇

𝐵
.

(2) Compute the extra added sample, 𝑥
𝑎
= √(𝑛 + 𝑚) /𝑛𝑚(𝜇

𝐴
− 𝜇
𝐵
).

(3) Equivalent added data matrix, 𝐵 = [𝐵 − 𝜇
𝐵
1
𝑚
, 𝑥
𝑎
].

(4) Compute 𝑈⋆
𝑘
, Λ⋆
𝑘
, via EVD-Dualdating with 𝑈

𝑘
, Λ
𝑘
, and added data 𝐵.

Algorithm 3: EVDD-base incremental PCA (EVDD-IPCA).

Input:The sample number, mean, eigenvectors, eigenvalues of old data, 𝑛, 𝜇
𝐴
, 𝑈
𝑘
, Λ
𝑘
, the sample number and mean of

deleted samples𝐷, 𝑝, 𝜇
𝐷
.

Output:The sample number, mean, eigenvectors, eigenvalues of remained data, 𝑛⋆, 𝜇⋆, Λ⋆
𝑘
, 𝑈⋆
𝑘
.

(1) Update the sample number and mean, 𝑛⋆ = 𝑛 − 𝑝, 𝜇⋆ = (𝑛/(𝑛 − 𝑝))𝜇
𝐴
− (𝑝/(𝑛 − 𝑝))𝜇

𝐷
.

(2) Compute the extra deleted sample, 𝑥
𝑑
= √𝑛𝑝/(𝑛 − 𝑝)(𝜇

𝐴
− 𝜇
𝐷
).

(3) Equivalent deleted data matrix,𝐷 = [𝐷 − 𝜇
𝐷
1
𝑝
, 𝑥
𝑑
].

(4) Compute 𝑈⋆
𝑘
, Λ⋆
𝑘
via EVD-Dualdating with 𝑈

𝑘
, Λ
𝑘
and deleted data𝐷.

Algorithm 4: EVDD-base decremental PCA (EVDD-DPCA).

environment. In this section, we first provide a brief review
of PCA. Then, we take mean into account and propose three
online subspace learning algorithms: EVDD-IPCA, EVDD-
DPCA, and EVDD-IDPCA.

4.1. Principal Component Analysis. Principal component
analysis (PCA) is one of the most popular multivariate
analysis and dimension reduction methods. The goal of PCA
is to find a set of normal orthogonal basis, so-called principal
components, which has the best reconstruction performance
in the sense of minimummean squared error (MMSE).

Given a data matrix 𝐴 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} ∈ R𝑑×𝑛, the

covariance matrix of 𝐴 is defined by 𝑆
𝐴

= (1/𝑛)∑
𝑛

𝑖=1
(𝑥
𝑖
−

𝜇
𝐴
)(𝑥
𝑖
− 𝜇
𝐴
)
𝑇. Principal components (PCs) are the first

𝑘 eigenvectors {𝑢
1
, . . . , 𝑢

𝑘
} corresponding to the largest 𝑘

eigenvalues {𝜆
1
, . . . , 𝜆

𝑘
}. Let 𝑈 = {𝑢

1
, . . . , 𝑢

𝑘
}, Λ =

diag(𝜆
1
, . . . , 𝜆

𝑘
); then𝑈 andΛ can be achieved by the EVDof

the covariance matrix, 𝑆
𝐴
= 𝑈Λ𝑈

𝑇. Another way of solving
PCA is to compute the SVD of the centralized data matrix
𝐴 − 𝜇1

𝑛
= 𝑈Σ𝑉

𝑇, where 1
𝑛
stands for a 1 × 𝑛 full-1 row

vector, each column of left singular vectors 𝑈 is a principal
component, and Σ = √𝑛Λ is the singular value matrix.

4.2. Incremental and Decremental PCA. When confronting
a huge dataset with a high dimension, both batch-mode
methods, no matter EVD or SVD, cost tremendous time
and storage. Besides, for an online learning system, it has to
face an awkward circumstance that not all the instances are
available before training, or some expired instances need to
be deleted after training. Obviously, these problems exceed
the ability of the batch-mode PCA. The incremental and
decremental PCA is a natural solution.

In this section, we consider EVD dualdating with a time-
varyingmean, and deduce the incremental decremental PCA

formula based on EVD dualdating. As mentioned before,
EVD dualdating degenerates into SVD updating without
right singular vectors in the updating mode, so EVDD-IPCA
is actually the same as the extended sequential KL algorithm.
Nonetheless we still present it in this paper for integrity. The
interested reader can find more details in the reference paper
[16].

The key idea of EVDD-based incremental and decremen-
tal PCA algorithm is that centralizing the original samples,
the added samples, and the deleted samples separately and
utilizing some mean-revising vectors to keep the covariance
matrix equal to the original one.Themethods of determining
these mean-revising vectors are introduced in Lemmas 3, 4,
and 5. For incremental or decremental PCA, there is only one
mean-revising vector, noted as the equivalent added vector
𝑥
𝑎
or the equivalent deleted vector 𝑥

𝑑
, respectively, which

is direct ratio to the difference of the original mean and the
changed sample mean. For increment decremental PCA, the
situation is a little more complex. Because of the existence
of intersecting items, there are three mean-revising vectors,
two equivalent added vectors 𝑥

𝑎1
, 𝑥
𝑎2
, and one equivalent

deleted vector 𝑥
𝑑
. Based on these lemmas, the proposed

EVDD-IPCA, EVDD-DPCA, and EVDD-IDPCA algorithms
are presented in Algorithms 3, 4, and 5.

4.2.1. Incremental PCA

Lemma 3. Let 𝐴 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, 𝐵 = {𝑥

𝑛+1
, 𝑥
𝑛+2

, . . . ,

𝑥
𝑛+𝑚

} be two data matrices, and let their concatenation be
𝐸 = [𝐴 𝐵]. Denote the means and scatter matrices of 𝐴, 𝐵,
and 𝐸 as 𝜇

𝐴
, 𝜇
𝐵
, and 𝜇

𝐸
and 𝑆
𝐴
, 𝑆
𝐵
, and 𝑆

𝐸
, respectively. This

holds

𝑆
𝐸
= 𝑆
𝐴
+ 𝑆
𝐵
+ 𝑥
𝑎
𝑥
𝑇

𝑎
, (21)

where 𝑥
𝑎
= √((𝑛 + 𝑚)/𝑛𝑚)(𝜇

𝐴
− 𝜇
𝐵
).
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Input:The sample number, mean, eigenvectors, eigenvalues of old data, 𝑛, 𝜇
𝐴
, 𝑈
𝑘
, Λ
𝑘
, the sample number and mean of

added samples 𝐵,𝑚, 𝜇
𝐵
, the sample number and mean of deleted samples𝐷, 𝑝, 𝜇

𝐷
.

Output:The sample number, mean, eigenvectors, eigenvalues of remained data, 𝑛⋆, 𝜇⋆, 𝑈⋆
𝑘
, Λ⋆
𝑘
.

(1) Update the sample number and mean, 𝑛⋆ = 𝑛 + 𝑚 − 𝑝, 𝜇⋆ = (𝑛𝜇
𝐴
+ 𝑚𝜇
𝐵
− 𝑝𝜇
𝐷
)/(𝑛 + 𝑚 − 𝑝).

(2) Compute the extra sample, 𝑥
𝑎1

= √𝑛(𝜇
𝐴
− 𝜇
⋆
), 𝑥
𝑎2

= √𝑚(𝜇
𝐵
− 𝜇
⋆
), 𝑥
𝑑
= √𝑝(𝜇

𝐷
− 𝜇
⋆
).

(3) Equivalent added data matrix, 𝐵 = [𝐵 − 𝜇
𝐵
1
𝑚
, 𝑥
𝑎1
, 𝑥
𝑎2
].

(4) Equivalent deleted data matrix,𝐷 = [𝐷 − 𝜇
𝐷
1
𝑝
, 𝑥
𝑑
].

(5) Compute 𝑈⋆
𝑘
, Λ⋆
𝑘
via EVD-Dualdating with 𝑈

𝑘
, Λ
𝑘
and added data 𝐵, deleted data𝐷.

Algorithm 5: EVDD-base incremental decremental PCA (EVDD-IDPCA).

4.2.2. Decremental PCA

Lemma 4. Let 𝐶 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−𝑝
}, 𝐷 =

{𝑥
𝑛−𝑝+1

, 𝑥
𝑛−𝑝+2

, . . . , 𝑥
𝑛
} be two data matrices, and let

𝐴 = [𝐶 𝐷] be their concatenation. Denote the means and
scatter matrices of 𝐶, 𝐷, and 𝐴 as 𝜇

𝐶
, 𝜇
𝐷
, and 𝜇

𝐴
and 𝑆
𝐶
, 𝑆
𝐷
,

and 𝑆
𝐴
, respectively. This holds

𝑆
𝐶
= 𝑆
𝐴
− 𝑆
𝐷
− 𝑥
𝑑
𝑥
𝑇

𝑑
, (22)

where 𝑥
𝑑
= √(𝑛𝑝/(𝑛 − 𝑝))(𝜇

𝐴
− 𝜇
𝐷
).

4.2.3. Incremental Decremental PCA

Lemma 5. Let 𝐶 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−𝑝
}, 𝐷 = {𝑥

𝑛−𝑝+1
,

𝑥
𝑛−𝑝+2

, . . . , 𝑥
𝑛
}, and 𝐵 = {𝑥

𝑛+1
, 𝑥
𝑛+2

, . . . , 𝑥
𝑛+𝑚

} be three data
matrices, and let 𝐴 = [𝐶 𝐷], 𝐸 = [𝐶 𝐵]. Denote the means
and scatter matrices of 𝐴, 𝐷, 𝐵, and 𝐸 as 𝜇

𝐴
, 𝜇
𝐷
, 𝜇
𝐵
, and 𝜇

𝐸

and 𝑆
𝐴
, 𝑆
𝐷
, 𝑆
𝐵
, and 𝑆

𝐸
, respectively. This holds

𝑆
𝐸
= 𝑆
𝐴
+ 𝑆
𝐵
+ 𝑥
𝑎1
𝑥
𝑇

𝑎1
+ 𝑥
𝑎2
𝑥
𝑇

𝑎2
− 𝑆
𝐷
− 𝑥
𝑑
𝑥
𝑇

𝑑
, (23)

where 𝑥
𝑎1

= √𝑛(𝜇
𝐴
− 𝜇
𝐸
), 𝑥
𝑎2

= √𝑚(𝜇
𝐵
− 𝜇
𝐸
), and 𝑥

𝑑
=

√𝑝(𝜇
𝐷
− 𝜇
𝐸
).

Remark 6. As an important approach of dimension reduc-
tion, PCA is utilized as the preprocessing method for many
other machine learning methods, and the feature extraction
method in other applications. Because these methods usually
work in the subspace of PCA, there is a great demand
to achieve simultaneous online incremental decremental
subspace learning and data reconstruction. Artac et al. [24]
propose a method to sequentially compute the coefficients
of a sample in IPCA. Here, we introduce an incremental
approach to update the projection coefficients of a data
point after renewing the subspace via EVD-IDPCA, without
storing the original data. For any sample 𝑥

𝑖
, assuming the

eigenvectors is𝑈
𝑘
and the mean is 𝜇when it is added into the

dataset, the reconstruction of 𝑥
𝑖
is 𝑥
𝑖
= 𝑈
𝑘
𝑐
𝑖
+ 𝜇, where 𝑐

𝑖
=

𝑈
𝑇
𝑥
𝑖
is the projection coefficients of 𝑥

𝑖
on the basis𝑈

𝑘
. Then,

at each round of EVD-IDPCA, the projection coefficients of
𝑥
𝑖
can be updated by

𝑐
⋆

𝑖
= (𝑈̃
(1:𝑘)

𝑘
𝑃)
𝑇

𝑐
𝑖
+ 𝑈
⋆𝑇

𝑘
(𝜇 − 𝜇

⋆
) , (24)

where 𝑈̃(1:𝑘)
𝑘

is the first 𝑘 rows of 𝑈̃
𝑘
. It is worth noticing that

in (24) (𝑈̃(1:𝑘)
𝑘

𝑃)
𝑇 is a procedure variable in EVD dualdating,

and 𝑈
⋆𝑇

𝑘
(𝜇 − 𝜇

⋆
) only needs to be computed once for all

samples, so the computational amount of updating 𝑐
𝑖
is small,

𝑂(𝑘
2
), but the memory to store a data point is reduced from

𝑂(𝑑) to 𝑂(𝑘).

5. Experiment

In this section, experiments of the proposed algorithms
based on EVD dualdating are presented, compared with
other classic methods. Because incremental PCA has been
discussed a lot in the earlier literature and the proposed
EVDD-IPCA is actually equivalent to the extended sequential
KL algorithm, we do not verify IPCA methods in this paper
any more. The interested reader can find the performance
analysis and comparison in relative papers [12, 15, 16, 20].
In the following content, decremental PCA, incremental
decremental PCA experiments on real-world datasets are
firstly reported; then, an adaptive rank selection experiment
of EVD-Dualdating on an artificial dataset is represented. All
experiments are performed with Matlab, on a computer with
dual-core 2.0GHz CPU and 4GRAM.

5.1. DPCA Experiment: Performance Evaluation on Real-
WorldData. In order to verify the performance and efficiency
of the proposed EVDD-DPCA and EVDD-IDPCA, four
datasets are used, including cases of both high dimension and
huge size.The FERET [25] database is a standard dataset used
for facial recognition system evaluation managed by DARPA
andNIST.TheAR [26] dataset is a popular face image dataset,
where images are shot under different facial expressions,
illumination conditions, and partial occlusions due to sun
glasses and scarf. The Yale Face Database B (Yale B) [27]
contains 5760 single light source images of 10 subjects each
seen under 576 viewing conditions (9 poses ×64 illumination
conditions). Subsets of AR, FERET, and Yalb B are employed
in our simulation, which includes 952, 720, and 4050 cropped
and centralized face images, respectively.The fourth database
is the Columbia Object Image Library (COIL-100) [28], and
it includes 7200 color images of 100 objects, which are taken
at pose intervals of 5 degrees, corresponding to 72 poses per
object. The detailed information of four datasets and our
experiment settings are listed in Table 3.

To compare the performance of decremental learning, we
implement the proposed EVDD-DPCA algorithm with the
batch-mode PCA, MSES [12], MSVD [21], DCSSVD [22],
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Table 3: Dataset and configuration for DPCA.

Data set Dimension Class Delete Sample Training Testing
FERET 92 × 112 120 40 6 4 2
AR 92 × 112 119 39 8 6 2
Yale B 25 × 30 90 30 45 30 15
COIL-100 25 × 25 100 40 72 42 30

and AIPCA [23]. First, the whole data are learned via the
batch-mode PCA; then, assuming some classes are expired
data, their samples are deleted chunk by chunk. In our
experiment, the number of expired classes is 40 for FERET,
39 for AR, 30 for Yale B, and 40 for COIL-100, and the chunk
size is 10. Every experiment is repeated 20 times to reduce
the disturbance from the process scheduling of operating
system and randomized grouping.Theperformance ismainly
evaluated by their efficiency, accuracy of eigenspace, and
performance of face recognition:

(i) execution time;
(ii) weighted angle between PCs of the batch-mode PCA

and DPCA methods:

𝜃
𝑤

𝑖
=

𝜆
𝑖

󵄨󵄨󵄨󵄨𝜃𝑖
󵄨󵄨󵄨󵄨

∑
𝑘

𝑗=1
𝜆
𝑗

, (25)

where 𝜆
𝑖
is the 𝑖th eigenvalue of the batch mode and

𝜃
𝑖
is the angle between the 𝑖th PCs;

(iii) recognition rate.

5.1.1. Computational Efficiency by the Subspace Dimension
𝑘(10−200). Recalling the analysis of computation complexity
in Section 3.3, the practical computational efficiency depends
on the dimension of the small matrix for decomposition
and the cost of transformation. From Table 2, DCSSVD has
a larger computation complexity of matrix decomposition,
QR(𝑛−𝑝, 𝑘) and SVD(𝑑, 𝑘); AIPCA has a larger computation
complexity of transformation, 𝑂(𝑑𝑛(𝑘 + 𝑝)). For MSES,
MSVD and our EVDD, they have close computation com-
plexities: MSES needs one additional SVD(𝑑, 𝑝) to extract
the eigenspace model of deleted samples before subtracting;
MSVD has two QR decomposition of the residual matrices
in both the row and column space, QR(𝑑, 𝑝) and QR(𝑛, 𝑝),
as well as a larger transformation cost 𝑂((𝑑 + 𝑛)(𝑘 + 𝑝)

2
);

EVDD has one additional EVD(𝑘) to transform updating to
downdating. Therefore, when the data dimension 𝑑 is high
or the size of dataset 𝑛 is huge, that is, 𝑑, 𝑛 ≫ 𝑘, 𝑝, DCSSVD
andAIPCA achieve lower efficiencies, andMSES,MSVD, our
EVDD achieve close higher efficiencies. This conclusion is
also demonstrated by Figures 2(a), 2(b), 2(c), and 2(d), which
show the execution time by kept PCs (𝑘: 10–200) of MSES,
DCSSVD, MSVD, AIPCA, and EVDD-DPCA, on FERET,
AR, Yale B, COIL-100. From these figures, we observe that
our proposed EVDD-DPCA achieves a better or comparable
efficiency.

5.1.2. PC Estimation Equality to Ground-Truth PCs. In order
to evaluate the accuracy, the angles between the resulting PCs
of DPCAmethods and the batch-mode PCA can be adopted.
But, we choose the weighted angles by their corresponding
eigenvalue, which are more suitable for evaluation because
they emphasize the importance of the leading PCs. Figures
3(a), 3(b), 3(c), and 3(d) show the weighted angles of the first
50 PCs of DPCAmethods on four datasets, when the number
of kept PCs is 100, and the chunk size is 10. Figures 4(a), 4(b),
4(c), and 4(d) show the weighted angles error of the first 50
PCs of DPCA methods on different datasets by the number
of kept PCs (𝑘: 10–200), when the chunk size is 10.

From these figures, our proposed EVDD-DPCA algo-
rithm performs the best accuracy of the eigenvector esti-
mation. The accuracy of principal direction depends on the
estimation of mean and the cut-off error. The error of mean
will cause a bias of the origin for data centralizing, which
may cause the direction of the resulting basis totally different
in the worst situation. The cut-off error accumulates in the
sequential process, so themore times the truncation happens,
the lower accuracy the final result remains. The method to
update the mean is the same in MSES and EVDD-DPCA,
whose estimate is equal to the true mean. In DCSSVD,
the new mean is updated via the right singular vectors 𝑉.
However, 𝑉 is cut off to the reduced dimension, so its
estimation of mean is not accurate. But the inaccuracy of
mean will not affect its computation of singular vectors,
because the mean correction item is stripped off from 𝑉,
and no data centralizing process is executed. So errors of
the singular vectors in EVDD-DPCA, MSES and DCSSVD
mainly come from the cut-off error. Before splitting, MSES
calculates the EVD of the deleted data, whose result is cut
off to the kept dimension. The step will bring in more cut-
off error. DCSSVD directly deals with the right singular
vectors 𝑉 to achieve downdating, so it actually ignores the
information of deleted samples reflected by high order PCs.
In AIPCA and MSVD, the mean is not updated, so all the
remained samples centralized with the old mean. Therefore,
their results deviate far away from true PCs. In Figures
3(a), 3(b), 3(c), and 3(d), it can be seen that the weighted
angle of our proposed EVDD-DPCA is much smaller than
other methods, because of the accurate estimate of mean
and the smaller cut-off error. MSES and MSVD have close
performances, andAIPCA andMSVDhave larger errors.The
same conclusion can be obtained in Figures 4(a), 4(b), 4(c),
and 4(d). The fluctuation at the beginning of these curves is
because the dimension of observed PCs is increasing from 10
to 50.
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Figure 2: CPU time of DPCA methods on different datasets, 𝑘: 10–200, chunk = 10.

5.1.3. Results of Recognition withMinimumDistance Classifier.
In the recognition experiment, the resulting PCs are used
as the projection matrix to project the testing image to
the subspace, then minimum distance classifier (MDC) is
utilized for recognition. The advantage of MDC in our
online application is that only the mean of each class in the
projection subspace needs to be saved. The distance between
a sample 𝑥 and a classΩ inMDC is defined by aMahalanobis
distance:

𝑑 (𝑥,Ω) = [(𝑥 − 𝜇
Ω
)
𝑇

Λ
−1

𝑘
(𝑥 − 𝜇

Ω
)]
1/2

, (26)

where 𝑥 is the projection vector in the subspace, 𝜇
Ω
is the

mean of the class Ω in the subspace, Λ
𝑘
is the eigenvalue

matrix estimated by EVD dualdating.
Figures 5(a), 5(b), 5(c), and 5(d) represent recognition

rates of the full-data PCA, the batch-mode PCA, DPCA
methods.The result shows that the full-data PCA has a lower
recognition rate due to the existence of expired instances, and
all DPCA methods have close recognition rates, nearly equal
to the batch-mode PCA.The similar results are also obtained
by Ozawa et al. [29]. This phenomenon can be explained
via random projection (RP) [30]. According to Johnson-
Lindenstrauss lemma [31], arbitrary set of𝑁 points in a high-
dimensional Euclidean space can be mapped onto a 𝑘 ≥
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Figure 3: The first 50 weighted angles of DPCA methods on different datasets, 𝑘 = 100, chunk = 10.

𝑂(log𝑁/𝜖
2
) (0 < 𝜖 < 1) dimension subspace where the dis-

tances between all pair of points are approximately preserved.
So as long as 𝑘 is large enough, for arbitrary 𝑘-dimensional
random projection, the classification performance is mainly
determined by MDC and the structure of data space itself. In
our experiments, the smallest 𝑘 is between the range [40, 60]
on FERET, AR, Yale B, and about 100 on COIL-100.

5.2. IDPCA Experiment: Performance Evaluation on Real-
World Data. To compare the performance of incremental
decremental subspace learning methods, we implement the
proposed EVDD-IDPCA algorithm with the batch-mode

PCA, MSES [12], MSVD [21], DCSSVD [22], and AIPCA
[23]. Because DCSSVD only accomplishes decremental PCA,
we combine it with the extended SKL to achieve IDPCA. As
a decremental version of SVDU-IPCA, AIPCA is connected
with SVDU-IPCA to fulfill IDPCA in our experiment.

The datasets for IDPCA is the same as in the DPCA
experiment and the configuration is shown in Table 4. In our
experiment, samples of pretraining classes are learned by the
batch-mode PCA, then at every round, a chunk of samples
in expired classes are deleted, and meanwhile a chunk of
samples in new classes are added. The chunk size is 10. The
training/testing rate is the same as in the DPCA experiment.
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Figure 4: Error of the first 50 weighted angles of DPCA methods on different datasets, 𝑘: 10–200, chunk = 10.

Table 4: Dataset and configuration for IDPCA.

Data set Dimension Class Delete Add Sample Training Testing
FERET 92 × 112 120 40 40 6 4 2
AR 92 × 112 119 39 39 8 6 2
Yale B 25 × 30 90 20 20 45 30 15
COIL-100 25 × 25 100 30 30 72 42 30

Execution time, weighted angle, and recognition rate are used
to evaluate the performance of IDPCA methods.

5.2.1. Computational Efficiency by the Subspace Dimension
𝑘(10−200). Figures 6(a), 6(b), 6(c), and 6(d) present the

runtime by the number of kept PCs (𝑘) of IDPCA meth-
ods. Different from other IDPCA methods, which process
incremental learning and decremental learning separately,
our EVDD-IDPCA deals with deleted and added sam-
ples simultaneously, and avoids the repeating execution of
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Figure 5: Recognition rate of DPCA methods on different datasets, 𝑘: 10–200, chunk = 10.

pre-processing, post-processing and some matrix decompo-
sitions. Therefore, as shown in Table 2, via the dualdating
scheme, EVD dualdating has a more concise form with less
matrix decompositions and a lower transformation cost. So
in our experiment, the proposed EVDD-IDPCA performs
much higher efficiency than other methods, especially, when
the scale of dataset is large.

5.2.2. PC Estimation Equality to Ground-Truth PCs. Figures
7(a), 7(b), 7(c), and 7(d) show the weighted angles between
the first 50 PCs of different IDPCA methods, when the

number of kept PCs is 10, and the chunk size is 10. Figures
8(a), 8(b), 8(c), and 8(d) show the error norm of weighted
angles between the first 50 PCs of IDPCA methods on
different datasets by the number of kept PCs(𝑘: 10–200),
when the chunk size is 10. As the only real incremental
decremental PCA method with an accurate mean estimation
and a dualdating scheme, EVDD-IDPCA can obtain princi-
pal eigenvectors with fairly better approximation than other
methods via avoiding redundant cut-off error. These figures
show that the estimation of leading PCs in EVDD-IDPCA is
significantly superior to opponents.
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Figure 6: CPU time of IDPCA methods on different datasets, 𝑘: 10–200, chunk = 10.

5.2.3. Results of RecognitionwithMinimumDistance Classifier.
Figures 9(a), 9(b), 9(c), and 9(d) represent recognition rates
of the full-data PCA, the batch-mode PCA, IDPCAmethods.
The result is similar as shown in DPCA experiments, that
the recognition rate of full-data PCA is lower because of
the existence of expired classes, and recognition rates of
considered IDPCA methods are close, mainly depending on
MDC and the structure of data space, when 𝑘 is large enough
to satisfy Johnson-Lindenstrauss lemma.

Besides, one important advantage of EVDD-DPCA, not
reflected by these DPCA and IDPCA experiments, is that the
specific position information of deleted and added samples is
not needed, which are necessary for DCSSVD, AIPCA, and
MSVD.

5.3. Automatic Rank 𝑘 Selection and Weighted EVD Dual-
dating. In this experiment, the selection of the dimension 𝑘

of subspace without any a priori is evaluated. An artificial
dataset is used here, which includes data points generated
from the following model:

𝑥 = 𝐴𝑐 + 𝑛, (27)

where 𝐴 ∈ R𝑑×𝑑, 𝑐 ∈ R𝑑×1 is a coefficient vector and
𝑛 is a small noise, sampled from a normal distribution
N(0, 𝜎𝐼

𝑑
). In the simulation, the data dimension is 𝑑 =

100, and the number of generated samples is 10000. Then,
samples are sequentially learned at different chunk sizes (5,
10, 20) by our EVD dualdating and weighted EVD dualdating
algorithms. The weights are 𝑤

1
= 0.95, and 𝑊 = 𝐼
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Figure 7: The first 50 weighted angles of IDPCA methods on different datasets, 𝑘 = 100, chunk = 10.

in weighted EVD dualdating. In every round, the number
of kept PCs is determined by (20), and the thresholds of
preserved proportion are 𝑇

𝑟
= 0.98, 0.97, 0.96 with respect to

the chunk sizes 5, 10, and 20. Figure 10 shows the updating
curves of kept rank 𝑘 during the online learning process,
where the solid lines stand for weighted EVD dualdating, and
the dash lines stand for EVD dualdating. From this figure,
kept ranks in all curves quickly rise from the chunk size to
50–60 at the beginning, which means new features have been
added to the eigenspace. Then, ranks of the weighted EVD
dualdating tend to a common stable value 53. It is worth noted
that the red solid line with the smallest chunk size 5 has the
fast convergence speed, and the blue solid onewith the largest

chunk size 20 converges slowest. For normal EVDdualdating,
because the influence of leading PCs is not weakened, as the
online learning progresses, it becomes unwelcome to new
features, and later exclusive to minor PCs. Therefore, their
kept ranks, reflected by dash lines, all have a quick decreasing
trend. For example, the blue dash line (chunk = 20) ends with
a rank less than 30, after all samples are learned.

6. Conclusion

This paper focuses on the problem of online incremen-
tal/decremental subspace learning and reports a novel dual-
dating algorithm of EVD, namely, EVD dualdating. Different
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Figure 8: Error of the first 50 weighted angles of IDPCA methods on different datasets, 𝑘: 10–200, chunk = 10.

from previous works, the proposed EVD dualdating algo-
rithm can renew the EVD of a data matrix while adding
and deleting samples simultaneously. With EVD dualdating,
IPCA-EVDD, DPCA-EVDD, and IDPCA-EVDD are pre-
sented to handle the changeable mean, where the variation is
equivalent to add and delete several additional vectors in the
case of zero-mean PCA. Plenty of comparative experiments
on both real-world and artificial databases demonstrate
that our EVD dualdating algorithm has a significant better
approximation accuracy and computational efficiency than
other state-of-the-art incremental and decremental PCA
methods.

Appendices

A. Proof of Lemma 4

By definition,

𝜇
𝐸
=

𝑛𝜇
𝐴

𝑛 − 𝑝
−

𝑝𝜇
𝐷

𝑛 − 𝑝
,

𝜇
𝐴
− 𝜇
𝐸
=

𝑝

𝑛 − 𝑝
(𝜇
𝐷
− 𝜇
𝐴
) ,

𝜇
𝐷
− 𝜇
𝐸
=

𝑛

𝑛 − 𝑝
(𝜇
𝐷
− 𝜇
𝐴
) .

(A.1)
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Figure 9: Recognition rate of IDPCA methods on different datasets, 𝑘: 10–200, chunk = 10.
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B. Proof of Lemma 5

By definition,

𝜇
𝐸
=

𝑛𝜇
𝐴
+ 𝑚𝜇
𝐵
− 𝑝𝜇
𝐷

𝑛 + 𝑚 − 𝑝
. (B.1)
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