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This paper considers a more general shock model with insurance and financial risk background, in which the system is subject
to two types of shocks called primary shocks and secondary shocks. Each primary shock causes a series of secondary shocks
according to some cluster pattern. In reliability applications, a primary shock can represent an issue of insurance policies of an
insurer company, and the secondary shocks then denote the relevant insurance claims generated by the policy. We focus on the
local cumulative shock process where only a certain number of the most recent primary and secondary shocks are accumulated.
This process is a very new topic in the available literature which is more flexible and realistic in modeling some more complex
reliability situations such as bankrupt behavior of an insurance company. Based on the theory of infinite divisibility and stable
distributions, we establish a central limit theorem for the local cumulative shock process and obtain the conditions for the process
to converge to an infinitely divisible distribution or to an 𝛼-stable law. Also, by choosing the proper scale parameters, the process
converges to a normal distribution.

1. Introduction

A shock model in reliability is an operating system subject
to successive shocks of random magnitudes and random
arrival times. In applications, such a system may appear in
engineering, economics, and natural objects. The shocks can
be overload and abrupt changes of temperature or voltage for
a mechanical device and electronic equipment and be natural
disasters for an ecological system or financial crises for an
economic system. These shocks have impacts on the system
and cause the final breakdown of the system.

In the literatures, the standardmathematical setup for the
reaching law of shocks is a stochastic point process {𝑁(𝑡); 𝑡 ≥
0} with the shock instants 0 < 𝑆

1
< 𝑆

2
< ⋅ ⋅ ⋅ , and

the shock magnitudes come from a family of nonnegative
random variables {𝐴

𝑖
}, 𝑖 = 1, 2, . . .. The main object in focus

is the lifetime (or the failure time) of the system. Let 𝜏 denote
the lifetime and 𝑧 > 0 be the prefixed threshold of the system,
then the two classical cases, cumulative shock model and
extreme shock model, are defined, respectively, as

{𝜏 ≤ 𝑡} ⇐⇒ {

𝑁(𝑡)

∑

𝑖=1

𝐴
𝑖
> 𝑧} , (1)

{𝜏 ≤ 𝑡} ⇐⇒ {max {𝐴
1
, . . . , 𝐴

𝑁(𝑡)
} > 𝑧} (2)

for arbitrary 𝑡 > 0. Hence, shock effects are accumulated in
the cumulative shock case, and the system fails just when the
cumulative magnitudes exceeds the threshold level. While in
the extreme shock case, shock effects are memoryless and the
systembreaks down as soon as themagnitude of an individual
shock is larger than the threshold. With relations (1) and (2),
the so-called cumulative shock process {𝑋(𝑡); 𝑡 ≥ 0} and
maximum shock process {𝑀(𝑡); 𝑡 ≥ 0} can be defined by

𝑋(𝑡) =

𝑁(𝑡)

∑

𝑖=1

𝐴
𝑖
, (3)

𝑀(𝑡) = max {𝐴
1
, . . . , 𝐴

𝑁(𝑡)
} , (4)

respectively. It is clear that the lifetime properties of the
system are determined entirely by the processes {𝑋(𝑡)} in the
cumulative case and {𝑀(𝑡)} in the extreme case.

Due to the important theory value and the broad appli-
cation areas, shock models remain an academic focus in
reliability researches during the last three decades. The
main literatures on the two types of shock models include
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Agrafiotis and Tsoukalas [1], Bai et al. [2], Gut [3, 4], Gut
and Hüsler [5], Igaki et al. [6], Skoulakis [7], Finkelstein
and Marais [8], Mercier and Pham [9], Omey and Vesilo
[10], Sumita and Zuo [11], Wang et al. [12], and others. In
these works, various reliability backgrounds are provided,
the distributed characteristics of the system lifetime are
discussed, and the asymptotic properties of the cumulative
and maximum shock processes are investigated. In general,
the study develops along the two directions. One is gradually
profound exploration of the reliability properties of models.
We can find that, with an evolvement of research objects from
the early simple systems to some complex systems presently,
the key problems also turn to distribution properties and
limiting behaviors of the system lifetime and estimations for
the failure probability from the lifetime distribution classes.
The other is realistic extensions of models. In the past several
years, themodel structure and the relevant failuremechanism
are rechanged or readjusted based on classicalmodels tomeet
the various features of the real reliability systems, which is
regarded as a main trend in current research.

In this paper, we setup a new shock model (called local
cumulative shock model) based on a cluster point process
and discuss the limit properties of the relevant shock process
(called local cumulative shock process). Under the cluster
structure, a primary shock, whenever it occurs, can trigger
a series of secondary shocks, and the system fails when the
superposed effect of primary and secondary shocks just over
a certain local period exceeds the threshold. This model is
an extension of the classical extreme shock model. With a
more practical structure and failuremechanism than classical
models, it is suitable to describe some complex reliability
systems relating to earthquake disaster, network failure, and
insurance risk.

The rest of this paper is organized as follows. In Section 2,
we present a local cumulative shock model with a cluster
structure and give the basic assumptions. The fundamental
properties and weak limit theorems (based on the infinite
divisibility and Lévy-Khintchine representation) of the local
cumulative shock process are discussed in Sections 3 and 4,
respectively. Finally, Section 5 concludes the paper.

2. Local Cumulative Shock Model with
Cluster Structure

At the beginning, we list the main notations which are used
in this paper.

{𝑁(𝑡); 𝑡 ≥ 0} primary shock process with shock
instants 0 < 𝑆

1
< 𝑆

2
< ⋅ ⋅ ⋅ , which is assumed to be

a nonhomogeneous Poisson process.
𝜆(𝑡) intensity function of {𝑁(𝑡)}, and then cumulative
intensity function is Λ(𝑡) = ∫𝑡

0
𝜆(𝑠)d𝑠.

𝑋
𝑖
magnitude of the 𝑖th primary shock.

{𝑀
𝑖
(𝑡); 𝑡 ≥ 0} arrival process of secondary shocks

triggered by the 𝑖th primary shock. For 𝑖 = 1, 2, . . .,
{𝑀
𝑖
(𝑡)}’s are assumed to be i.i.d. stochastic point

processes.

𝑌
𝑖𝑗
magnitude of the 𝑗th secondary shock caused by

the 𝑖th primary shock.
{𝑋(𝑡); 𝑡 ≥ 0} cumulative shock process which is a
superposition of a primary process and a group of
secondary processes.
{Δ𝑋

ℎ
(𝑡); 𝑡 ≥ ℎ} local cumulative shock process

defined as Δ𝑋
ℎ
(𝑡) = 𝑋(𝑡) − 𝑋(𝑡 − ℎ).

𝐺
Δ
(𝜃)moment generating function of Δ𝑋

ℎ
(𝑡).

𝐶
Δ
(𝜃) characteristic function of Δ𝑋

ℎ
(𝑡).

(𝛿
2
(𝑡), ](𝑡, ⋅), 𝑏(𝑡)) characteristic triplet of Δ𝑋

ℎ
(𝑡),

where ](𝑡, ⋅) is a Lévy measure.
𝑍
ℎ
(𝑡) regularized process of {Δ𝑋

ℎ
(𝑡)} with centering

function 𝜇(𝑡) and regularizing function 𝜎(𝑡) > 0.
𝐶
𝑍
(𝜃) characteristic function of 𝑍

ℎ
(𝑡).

(𝛿
2
(𝑡), ](𝑡, ⋅), 𝑏(𝑡)) characteristic triplet of 𝑍

ℎ
(𝑡)

with Lévy measure ](𝑡, ⋅).
𝑈
1
, . . . , 𝑈

𝑛
i.i.d. random variables defined on [0, 𝑡]

with common distribution functionΛ(𝑠)/Λ(𝑡), where
𝑠 ∈ (0, 𝑡).
1
{⋅}
indicator function of a random event {⋅}.

A generalized cumulative shock model and its lifetime
properties are already discussed in our latest work [13], where
the system considered is subject to two types of shocks,
called primary shocks and secondary shocks, respectively,
and each primary shock causes a series of secondary shocks
according to a “cluster” mechanism. Then, the shock process
has a cluster structure and is a superposition of a primary
(shock) process and a group of adjunct (shock) processes,
and the system fails once the totally superposed effect of
the primary and secondary shocks exceeds the threshold
level. Let {𝑁(𝑡); 𝑡 ≥ 0} be the primary process with shock
points 0 < 𝑆

1
< 𝑆

2
< ⋅ ⋅ ⋅ and let {𝑀

𝑖
(𝑡); 𝑡 ≥ 0} be the

adjunct process caused by the 𝑖th primary shock.The relevant
cumulative shock process {𝑋(𝑡); 𝑡 ≥ 0} can be defined,
through the totally superposed shock effect by time 𝑡, as

𝑋 (𝑡) =

𝑁(𝑡)

∑

𝑖=1

(𝑐𝑋
𝑖
+

𝑀𝑖(𝑡−𝑆𝑖)

∑

𝑗=1

𝑌
𝑖𝑗
)

= 𝑐

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖
+

𝑁(𝑡)

∑

𝑖=1

∞

∑

𝑗=1

𝑌
𝑖𝑗
1
{𝑆𝑖+𝐷𝑖𝑗≤𝑡}

, 𝑡 ≥ 0,

(5)

where 𝑆
𝑖
and 𝑋

𝑖
represent the occurrence instant and mag-

nitude of the 𝑖th primary shock, 𝑖 = 1, 2, . . .; and for each
𝑖, {𝐷

𝑖𝑗
} is a point sequence satisfying 0 = 𝐷

𝑖0
< 𝐷

𝑖1
<

⋅ ⋅ ⋅ ; then, 𝑆
𝑖
+ 𝐷

𝑖𝑗
and 𝑌

𝑖𝑗
represent the occurrence instant

and magnitude of the 𝑗th secondary shock caused by the 𝑖th
primary shock; 𝑗 = 1, 2, . . .; 1

{⋅}
is the indicator function of

event {⋅}.
In particular, the coefficient “𝑐” in Model (5) can be

set differently to describe the different superposition pat-
terns of primary shocks and secondary shocks for different
applications. For example, for a seismic hazard, the total
damage is the accumulated effect of both the main-quake
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(the primary shock) and all associated after-quakes (the
secondary shocks). In this case we set 𝑐 = 1. This is a
very natural situation and the details for earthquake cluster
background can be found inOgata [14], Daley andVere-Jones
[15], and relevant references therein. Also, an upgrade of a
computer software does not affect the computer system, but it
may induce some software consistency issues which affect the
system operation for a period of time.This is just the situation
of 𝑐 = 0, where only secondary shocks damage the system
and all primary shocks are ineffective. The relevant cases are
discussed by Hohn et al. [16] and Fäy et al. [17]. Moreover,
we consider the repair on some system as the primary shock,
each repair is imperfect and causes a cluster of redundant
faults which can be considered as the secondary shocks.Thus,
the two types of shocks have the opposite effects to the system
and 𝑐 = −1. Another interesting interpretation of this case is
an insurance risk issue, whenever the insurer company issues
an insurance policy and charges a corresponding premium,
it has to burden a series of potential claim risks induced by
this policy. Where a policy premium means a primary shock
and the insurance claims play the secondary shocks. For the
corresponding details of insurance and finance applications,
please see mainly Rolski et al. [18], Denuit et al. [19], and
Lindskog and McNeil [20].

With the above cluster structure, the new cumulative
shock model associating with (5) is more appropriate for
modeling some real and complex reliability situations. How-
ever, is the system’s failure behaviour dependent purely
on the total accumulation of shocks over [0, 𝑡], the entire
history of the system operation? An observation on the fate
of Lehman Brothers Holdings implies a negative answer.
Indeed, it is difficult to convince that a century-old insurance
or financial firm will be immortal as its long successful
experience. In fact, for many realistic reliability systems such
as an earthquake-prone region and an insurance or financial
company, an unpredictable misfortune may be initiated by
some momentous events only recently rather than very long
ago. This suggests that we concentrate on the impact events
over some latest period and to regard a new reliability issue.

By this background, we consider a further case based on
Model (5). For some ℎ > 0, let

Δ𝑋
ℎ
(𝑡) = 𝑋 (𝑡) − 𝑋 (𝑡 − ℎ)

= 𝑐

𝑁(𝑡)

∑

𝑖=1

𝑋
𝑖
+

𝑁(𝑡)

∑

𝑖=1

∞

∑

𝑗=1

𝑌
𝑖𝑗
1
{𝑆𝑖+𝐷𝑖𝑗≤𝑡}

− 𝑐

𝑁(𝑡−ℎ)

∑

𝑖=1

𝑋
𝑖
−

𝑁(𝑡−ℎ)

∑

𝑖=1

∞

∑

𝑗=1

𝑌
𝑖𝑗
1
{𝑆𝑖+𝐷𝑖𝑗≤𝑡−ℎ}

= 𝑐

𝑁(𝑡−ℎ,𝑡)

∑

𝑖=1

𝑋
𝑖
+

𝑁(𝑡)

∑

𝑖=1

𝑀𝑖(𝑡−𝑆𝑖−ℎ,𝑡−𝑆𝑖)

∑

𝑗=1

𝑌
𝑖𝑗
, 𝑡 ≥ ℎ,

(6)

where 𝜂(𝑡 − ℎ, 𝑡) := 𝜂(𝑡) − 𝜂(𝑡 − ℎ) denotes the arrival counts
of a counting process {𝜂(𝑡)} in the interval (𝑡 − ℎ, 𝑡]. Thus,
Δ𝑋

ℎ
(𝑡) measures the cumulative effect of both primary and

secondary shocks over a recent period of length ℎ and induces

a stochastic process {Δ𝑋
ℎ
(𝑡); 𝑡 ≥ ℎ}, according to which we

can define a new lifetime of the system as

𝜏 = inf {𝑡 : Δ𝑋
ℎ
(𝑡) > 𝑧} , (7)

and the relevant failure event can be expressed as

{𝜏 ≤ 𝑡} ⇐⇒ {Δ𝑋
ℎ
(𝑠) > 𝑧, for ℎ < 𝑠 ≤ 𝑡} . (8)

It establishes a novel failuremechanism: the system fails if and
only if the superposed effect of the primary and secondary
shocks accumulated in the recent duration (𝑡 − ℎ, 𝑡], rather
than the entire history [0, 𝑡] as in Model (5), exceeds the
threshold level.

Associatingwith the failuremechanism (8) is a new shock
model; we call the local cumulative shock model with cluster
structure, whose lifetime property is completely determined
by {Δ𝑋

ℎ
(𝑡); 𝑡 ≥ ℎ}, the local cumulative shock process.

Note that when ℎ → 0, the failure occurs only when
the magnitude of a single shock exceeds 𝑧, resulting in the
classical extreme shockmodel defined by (2) and (4). Also, as
ℎ → 𝑡 for each given 𝑡, (𝑡−ℎ, 𝑡] → (0, 𝑡] andΔ𝑋

ℎ
(𝑡) → 𝑋(𝑡)

of (5) and the newmodel becomes the generalized cumulative
shock model of cluster structure.

To illustrate the differences between the two shock pro-
cesses {𝑋(𝑡)} and {Δ𝑋

ℎ
(𝑡)}, we give a group of MATLAB

numerical simulations below. Where the primary process
{𝑁(𝑡)} follows a homogeneous Poisson process and the
adjunct processes {𝑀

𝑖
(𝑡)} are an independent and identically

distributed (i.i.d.) family of homogeneous Poisson processes.
When the secondary shocks 𝑌

𝑖𝑗
have an i.i.d. light-tailed

distribution (an exponential distribution is used here), the
sample paths of the cumulative shock process {𝑋(𝑡)} and the
corresponding local cumulative shock process {Δ𝑋

ℎ
(𝑡)} with

the case of 𝑐 = 1 are shown in Figure 1, and the sample paths
with the case of 𝑐 = −1 in Figure 2, respectively. Meanwhile,
the sample paths of {𝑋(𝑡)} and {Δ𝑋

ℎ
(𝑡)} with the secondary

shocks 𝑌
𝑖𝑗
of an i.i.d. heavy-tailed distribution (heavy-tailed

Weibull distribution here) display as Figure 3 (𝑐 = 1) and
Figure 4 (𝑐 = −1), respectively.

These illustrations show some distinct characteristics
between the local cumulative shock process {Δ𝑋

ℎ
(𝑡)} and

the cumulative shock process {𝑋(𝑡)}. For example, (i) taking
different values (1 or −1) of the parameter 𝑐 (which means
different superposition patterns of primary shocks and sec-
ondary shocks) changes the trend of {𝑋(𝑡)}, but it seems
to have no obvious influence on {Δ𝑋

ℎ
(𝑡)}; (ii) when the

secondary shocks 𝑌
𝑖𝑗
follow a heavy-tailed distribution, the

sample paths of {𝑋(𝑡)} have more drastic upward jumps than
those in the case of 𝑌

𝑖𝑗
has a light-tailed distribution. The

similar differences between the two cases can also be found
from the sample paths of {Δ𝑋

ℎ
(𝑡)}; (iii) it can be observed that

{Δ𝑋
ℎ
(𝑡)} fluctuates more intensely than {𝑋(𝑡)} in the same

time span, whether the secondary shocks 𝑌
𝑖𝑗
have light-tailed

or heavy-tailed distributions, also whether the coefficient 𝑐 =
1 or −1. In summary, these characteristics show stronger
randomness (or lesser predictability) for the local cumulative
shock process {Δ𝑋

ℎ
(𝑡)} than for the cumulative shock process

{𝑋(𝑡)} and provide a more reasonable explanation for the
bankruptcy behavior in insurance and financial industry
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Figure 1: Sample paths with exponentially distributed secondary shocks and 𝑐 = 1.
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Figure 2: Sample paths with exponentially distributed secondary shocks and 𝑐 = −1.
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Figure 3: Sample paths with Weibull distributed secondary shocks and 𝑐 = 1.
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Figure 4: Sample paths with Weibull distributed secondary shocks and 𝑐 = −1.
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such as Lehman Brothers Holdings: the fateful risk is more
like short-term determined and not necessarily long-history
dependent.

In this paper, we consider the local cumulative shock
model with cluster shock structure and mainly focus on the
weak convergence of {Δ𝑋

ℎ
(𝑡)}, the local cumulative shock

process defined by (6). {Δ𝑋
ℎ
(𝑡)} is a very novel stochastic

process, it defines a new reliability mechanism for some
applications and has not been found in the current research
literature. Our discussion is based on the following basic
assumptions.
(A
1
) The primary process {𝑁(𝑡); 𝑡 ≥ 0} is a nonhomoge-
neous Poisson process with intensity function 𝜆(𝑡) <
∞ and cumulative intensity functionΛ(𝑡) = ∫𝑡

0
𝜆(𝑠)d𝑠

satisfying Λ(𝑡) → ∞ as 𝑡 → ∞.
(A
2
) The adjunct processes {𝑀

𝑖
(𝑡); 𝑡 ≥ 0}, 𝑖 = 1, 2, . . .,

are an i.i.d. family of counting processes of stationary
increments and with arrival instants of 0 = 𝐷

𝑖0
<

𝐷
𝑖1
< ⋅ ⋅ ⋅ . For any 𝑡 < ∞, we have𝑀

1
(𝑡) < ∞.

(A
3
) The primary shock magnitudes 𝑋

𝑖
’s are nonnega-

tive and i.i.d. random variables with finite variance
Var(𝑋

1
) > 0.

(A
4
) The secondary shock magnitudes 𝑌

𝑖𝑗
’s are nonnega-

tive and i.i.d. random variables, for all 𝑖 and 𝑗.
(A
5
) The families {𝑋

𝑖
}, {𝑌

𝑖𝑗
}, {𝑁(𝑡)}, and {𝑀

𝑖
(𝑡)} are mutu-

ally independent.

3. Fundamental Properties

For describing the properties of {Δ𝑋
ℎ
(𝑡); 𝑡 ≥ ℎ}, we use the

notations
𝛾
𝑖
= (𝑋

𝑖
; 𝐷
𝑖1
, 𝐷
𝑖2
, . . . ; 𝑌

𝑖1
, 𝑌
𝑖2
, . . .) ,

𝜓 (𝑡, 𝑆
𝑖
, 𝛾
𝑖
) = 𝑐𝑋

𝑖
1
{𝑆𝑖≤𝑡}

+ ∑

𝑗≥1

𝑌
𝑖𝑗
1
{𝑆𝑖+𝐷𝑖𝑗≤𝑡}

.
(9)

Then, the local cumulative shock process {Δ𝑋
ℎ
(𝑡)} has a new

representation

Δ𝑋
ℎ
(𝑡) = ∑

𝑆𝑖≤𝑡

𝜓 (𝑡, 𝑆
𝑖
, 𝛾
𝑖
) − ∑

𝑆𝑖≤𝑡−ℎ

𝜓 (𝑡 − ℎ, 𝑆
𝑖
, 𝛾
𝑖
)

:= ∑

𝑆𝑖≤𝑡

𝜓 ((𝑡 − ℎ, 𝑡) , 𝑆
𝑖
, 𝛾
𝑖
)

=

𝑁(𝑡)

∑

𝑖=1

𝜓 ((𝑡 − ℎ, 𝑡) , 𝑆
𝑖
, 𝛾
𝑖
) , 𝑡 ≥ ℎ.

(10)

By assumptions (A
2
)–(A

5
), {𝛾

𝑖
} is a family of i.i.d. random

vectors and independent of the primary process {𝑁(𝑡)}, and
the components 𝑋, 𝐷, and 𝑌 in 𝛾 are mutually independent.
We present several basic properties of {Δ𝑋

ℎ
(𝑡)} based on the

moment generating function.

Proposition 1. Under assumptions (A
1
)–(A

5
), given 𝑡 > ℎ, the

moment generating function of Δ𝑋
ℎ
(𝑡) can be expressed as

𝐺
Δ
(𝜃) = exp {Λ (𝑡) (𝐸 [e𝜃𝜓((𝑡−ℎ,𝑡),𝑈1 ,𝛾1)] − 1)} , (11)

where 𝑈
1
is a random variable defined on [0, 𝑡] with the

distribution function Λ(⋅)/Λ(𝑡).

Proof. By the definition of the moment generating function,
we have

𝐺
Δ
(𝜃) = 𝐸 [e𝜃Δ𝑋ℎ(𝑡)]

= 𝐸 [e𝜃∑
𝑁(𝑡)

𝑖=1
𝜓((𝑡−ℎ,𝑡),𝑆𝑖 ,𝛾𝑖)

]

=

∞

∑

𝑛=0

𝑃 {𝑁 (𝑡) = 𝑛} 𝐸 [e𝜃∑
𝑛

𝑖=1
𝜓((𝑡−ℎ,𝑡),𝑈𝑖 ,𝛾𝑖)

]

=

∞

∑

𝑛=0

(𝐸 [e𝜃𝜓((𝑡−ℎ,𝑡),𝑈1 ,𝛾1)])
𝑛 Λ
𝑛
(𝑡)

𝑛!

e−Λ(𝑡)

= exp {Λ (𝑡) (𝐸 [e𝜃𝜓((𝑡−ℎ,𝑡),𝑈1 ,𝛾1)] − 1)} ,

(12)

where𝑈
1
, . . . , 𝑈

𝑛
are i.i.d. random variables on [0, 𝑡] with the

common distribution function Λ(𝑠)/Λ(𝑡). The last step based
on the fact that

𝜓 ((𝑡 − ℎ, 𝑡) , 𝑈
𝑖
, 𝛾
𝑖
) = 𝑐𝑋

𝑖
1
{𝑡−ℎ<𝑈𝑖≤𝑡}

+ ∑

𝑗≥1

𝑌
𝑖𝑗
1
{𝑡−ℎ<𝑈𝑖+𝐷𝑖𝑗≤𝑡}

,

𝑖 = 1, 2, . . . ,

(13)

are i.i.d. random variables.

From (11), we obtain

𝐸 [Δ𝑋
ℎ
(𝑡)] = Λ (𝑡) 𝐸 [𝜓 ((𝑡 − ℎ, 𝑡) , 𝑈

1
, 𝛾
1
)]

= ∫

𝑡

0

𝐸 [𝜓 ((𝑡 − ℎ, 𝑡) , 𝑠, 𝛾
1
)] 𝜆 (𝑠) d𝑠,

Var (Δ𝑋
ℎ
(𝑡)) = Λ (𝑡) 𝐸 [𝜓

2
((𝑡 − ℎ, 𝑡) , 𝑈

1
, 𝛾
1
)]

= ∫

𝑡

0

𝐸 [𝜓
2
((𝑡 − ℎ, 𝑡) , 𝑠, 𝛾

1
)] 𝜆 (𝑠) d𝑠.

(14)

Note that (11) and (14) contain the moment generating
function and the moments of 𝜓((𝑡 − ℎ, 𝑡), 𝑈

1
, 𝛾
1
). Thus, we

need to present the properties of 𝜓((𝑡 − ℎ, 𝑡), 𝑈
1
, 𝛾
1
).

Proposition 2. Under assumptions (A
1
)–(A

5
), given 𝑡 > ℎ, the

moment generating function of 𝜓
1
= 𝜓((𝑡 − ℎ, 𝑡), 𝑈

1
, 𝛾
1
) is

𝐺
𝜓1
(𝜃) =

∞

∑

𝑚=0

𝑝
𝑚
𝐸
𝑚
[e𝜃𝑌11]

⋅ (

Λ (𝑡) − Λ (𝑡 − ℎ)

Λ (𝑡)

𝐸 [e𝜃𝑐𝑋1] + Λ (𝑡 − ℎ)
Λ (𝑡)

) ,

(15)

where 𝑝
𝑚
= 𝑃{𝑀

1
(ℎ) = 𝑚}, 𝑚 = 0, 1, . . ..
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Proof. Letting𝑀
1
= 𝑀

1
(𝑡 − 𝑈

1
− ℎ, 𝑡 − 𝑈

1
), then

𝜓 ((𝑡 − ℎ, 𝑡) , 𝑈
1
, 𝛾
1
) = 𝑐𝑋

1
1
{𝑡−ℎ<𝑈1≤𝑡}

+ ∑

𝑗≥1

𝑌
1𝑗
1
{𝑡−ℎ<𝑈1+𝐷1𝑗≤𝑡}

= 𝑐𝑋
1
1
{𝑡−ℎ<𝑈1≤𝑡}

+

𝑀1

∑

𝑗=1

𝑌
1𝑗
.

(16)

Note that 𝑀
1
has stationary increments (by assumption

(A
2
)); we have

𝐺
𝜓1
(𝜃) = 𝐸 [e𝜃𝜓((𝑡−ℎ,𝑡),𝑈1 ,𝛾1)]

= 𝐸 [𝐸 [e𝜃𝑐𝑋11{𝑡−ℎ<𝑈1≤𝑡}e𝜃∑
𝑀1

𝑗=1
𝑌1𝑗
| 𝑈
1
]]

= 𝐸[

∞

∑

𝑚=0

𝑃 {𝑀
1
= 𝑚 | 𝑈

1
}

⋅ 𝐸 [e𝜃𝑐𝑋11{𝑡−ℎ<𝑈1≤𝑡}e𝜃∑
𝑀1

𝑗=1
𝑌1𝑗
|

𝑀
1
= 𝑚,𝑈

1
]]

=

∞

∑

𝑚=0

𝑝
𝑚
𝐸 [e𝜃𝑐𝑋11{𝑡−ℎ<𝑈1≤𝑡}e𝜃∑

𝑚

𝑗=1
𝑌1𝑗
]

=

∞

∑

𝑚=0

𝑝
𝑚
(𝐸 [e𝜃𝑐𝑋1e𝜃∑

𝑚

𝑗=1
𝑌1𝑗
] 𝑃 {𝑡 − ℎ < 𝑈

1
≤ 𝑡}

+𝐸 [e𝜃∑
𝑚

𝑗=1
𝑌1𝑗
] 𝑃 {𝑈

1
≤ 𝑡 − ℎ})

=

1

Λ (𝑡)

∞

∑

𝑚=0

𝑝
𝑚
(𝐸 [e𝜃𝑐𝑋1] 𝐸 [e𝜃∑

𝑚

𝑗=1
𝑌1𝑗
]

⋅ (Λ (𝑡) − Λ (𝑡 − ℎ))

+ 𝐸 [e𝜃∑
𝑚

𝑗=1
𝑌1𝑗
]Λ (𝑡 − ℎ))

=

1

Λ (𝑡)

∞

∑

𝑚=0

𝑝
𝑚
𝐸
𝑚
[e𝜃𝑌11] ((Λ (𝑡) − Λ (𝑡 − ℎ)) 𝐸 [e𝜃𝑐𝑋1]

+Λ (𝑡 − ℎ)) .

(17)

The result has been proved.

For a given 𝑡, we can compute first twomoments (if exists)
of 𝜓((𝑡 − ℎ, 𝑡), 𝑈

1
, 𝛾
1
) and of Δ𝑋

ℎ
(𝑡) and get the following

conclusion.

Proposition 3. Under assumptions (A
1
)–(A

5
), for a given 𝑡 >

ℎ, the moment generating function of Δ𝑋
ℎ
(𝑡) is

𝐺
Δ
(𝜃) = eΛ(𝑡)(𝐺𝜓1 (𝜃)−1), (18)

where 𝐺
𝜓1
(𝜃) is given by (15), and the mean and variance are

𝐸 [Δ𝑋
ℎ
(𝑡)] = 𝐸 [𝑁 (𝑡 − ℎ, 𝑡)] 𝑐𝐸 [𝑋1

]

+ 𝐸 [𝑁 (𝑡)] 𝐸 [𝑀
1
] 𝐸 [𝑌

11
] ,

Var (Δ𝑋
ℎ
(𝑡)) = 𝐸 [𝑁 (𝑡 − ℎ, 𝑡)]

⋅ (𝑐
2
𝐸 [𝑋

2

1
] + 2𝑐𝐸 [𝑀

1
] 𝐸 [𝑋

1
] 𝐸 [𝑌

11
])

+ 𝐸 [𝑁 (𝑡)] (𝐸 [𝑀1
]Var (𝑌

11
)

+ 𝐸 [𝑀
2

1
] 𝐸
2
[𝑌
11
]) .

(19)

Also define the distribution function of 𝜓((𝑡 − ℎ, 𝑡), 𝑠, 𝛾
1
)

as

𝐻(𝑦; 𝑡, 𝑠) = 𝑃 {𝜓 ((𝑡 − ℎ, 𝑡) , 𝑠, 𝛾
1
) ≤ 𝑦} , 0 ≤ 𝑠 ≤ 𝑡, 𝑦 ∈ 𝑅.

(20)

We have another result.

Proposition 4. Under assumptions (A
1
)–(A

5
), for a given 𝑡 >

ℎ, the logarithmically characteristic function of Δ𝑋
ℎ
(𝑡) is

i𝜃𝑏 (𝑡) − 1
2

𝜃
2
𝛿
2
(𝑡) + ∫

𝑅\{0}

(ei𝜃𝑦 − 1 −
i𝜃𝑦
1 + 𝑦

2
) ] (𝑡, d𝑦) ,

(21)

where

𝑏 (𝑡) = ∫

𝑅

𝑦

1 + 𝑦
2
] (𝑡, d𝑦) ,

𝛿
2
(𝑡) = lim

𝜀→0

∫

|𝑦|<𝜀

𝑦
2] (𝑡, d𝑦) ,

(22)

] (𝑡, d𝑦) = ∫
𝑡

0

𝐻(𝑦 + d𝑦; 𝑡, 𝑠) 𝜆 (𝑠) d𝑠 − ∫
𝑡

0

𝐻(𝑦; 𝑡, 𝑠) 𝜆 (𝑠) d𝑠

:= ∫

𝑡

0

𝐻(d𝑦; 𝑡, 𝑠) 𝜆 (𝑠) d𝑠

(23)

is a measure on 𝑅.

Proof. Denote the characteristic function ofΔ𝑋
ℎ
(𝑡) by𝐶

Δ
(𝜃).

It follows from (11) that

𝐶
Δ
(𝜃) = 𝐺

Δ
(i𝜃) = exp {Λ (𝑡) (𝐺

𝜓1
(i𝜃) − 1)} , (24)
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where 𝐺
𝜓1
(i𝜃) is the characteristic function of 𝜓

1
= 𝜓((𝑡 −

ℎ, 𝑡), 𝑈
1
, 𝛾
1
). Conditioning on 𝑈

1
, we have

log𝐶
Δ
(𝜃) = Λ (𝑡) (𝐸 [ei𝜃𝜓((𝑡−ℎ,𝑡),𝑈1 ,𝛾1)] − 1)

= ∫

𝑡

0

(𝐸 [ei𝜃𝜓((𝑡−ℎ,𝑡),𝑠,𝛾1)] − 1) 𝜆 (𝑠) d𝑠

= ∫

𝑡

0

∫

𝑅

(ei𝜃𝑦 − 1)𝐻 (d𝑦; 𝑡, 𝑠) 𝜆 (𝑠) d𝑠

= ∫

𝑅

(ei𝜃𝑦 − 1) ] (𝑡, d𝑦)

= i𝜃∫
𝑅

𝑦

1 + 𝑦
2
] (𝑡, d𝑦)

+ lim
𝜀→0

∫

|𝑦|<𝜀

(ei𝜃𝑦 − 1 −
i𝜃𝑦
1 + 𝑦

2
) ] (𝑡, d𝑦)

+ ∫

𝑅\{0}

(ei𝜃𝑦 − 1 −
i𝜃𝑦
1 + 𝑦

2
) ] (𝑡, d𝑦)

= i𝜃𝑏 (𝑡) − 1
2

𝜃
2
𝛿
2
(𝑡)

+ ∫

𝑅\{0}

(ei𝜃𝑦 − 1 −
i𝜃𝑦
1 + 𝑦

2
) ] (𝑡, d𝑦) .

(25)

The last equality is due to the definition of (22) and the fact
that

ei𝜃𝑦 − 1 −
i𝜃𝑦
1 + 𝑦

2
∼ −

1

2

𝜃
2
𝑦
2
,





𝑦




→ 0, (26)

where “∼” means limit equivalence.

It can be shown that the measure ](𝑡, ⋅) defined by (23)
satisfies

∫

𝑅

(𝑦
2
∧ 1) ] (𝑡, d𝑦) < ∞ (27)

and also guarantees

𝑏 (𝑡) < ∞, 0 ≤ 𝛿
2
(𝑡) < ∞. (28)

Thus, ](𝑡, ⋅) is the Lévy measure and (𝛿2(𝑡), ](𝑡, ⋅), 𝑏(𝑡)) is the
characteristic triplet of Δ𝑋

ℎ
(𝑡) for given 𝑡 > ℎ, respectively.

4. Central Limit Theorems

In this section, we discuss the limit theorems of {Δ𝑋
ℎ
(𝑡)}, that

is, the weak convergence of the regularized process

𝑍
ℎ
(𝑡) :=

Δ𝑋
ℎ
(𝑡) − 𝜇 (𝑡)

𝜎 (𝑡)

, 𝑡 ≥ ℎ, (29)

as 𝑡 → ∞, where 𝜇(𝑡) and 𝜎(𝑡) > 0 are the appropri-
ately selected centering and regularizing functions. To this
end, we need to examine the convergence property of the
corresponding characteristic function. The discussion of this
section is based on the standard theories of infinitely divisible
distributions and stable distributions (please see Cont and
Tankov [21], Sato [22], Lin et al. [23], and Embrechts et al.
[24] for the details).

4.1. Lévy-Khintchine Representation and Infinite Divisibil-
ity. By (21) and the Lévy-Khintchine representation of an
infinitely divisible distribution, we know that Δ𝑋

ℎ
(𝑡) is

infinitely divisible for given 𝑡 > ℎ, and its characteristic func-
tion is fully determined by the Lévy triplet (𝛿2(𝑡), ](𝑡, ⋅), 𝑏(𝑡))
defined in (22) and (23). Such a one-to-one correspondence
also holds for their convergence results as 𝑡 → ∞. Thus, we
use the notation

Δ𝑋
ℎ
(𝑡) ≈ (𝛿

2
(𝑡) , ] (𝑡, ⋅) , 𝑏 (𝑡)) (30)

to represent this relation and only discuss the weak con-
vergence of triplet (𝛿2(𝑡), ](𝑡, ⋅), 𝑏(𝑡)). Note that the infinite
divisibility of Δ𝑋

ℎ
(𝑡) is due to the nature of the Poisson

primary shock process.
Then, by (29) and Proposition 4, the regularized process

{𝑍
ℎ
(𝑡)} is also infinitely divisible. For appropriately selected

𝜇(𝑡) and 𝜎(𝑡), we have the following theorem.

Theorem 5. Under assumptions (A
1
)–(A

5
), for a given 𝑡 > ℎ,

𝑍
ℎ
(𝑡) is infinitely divisible and

𝑍
ℎ
(𝑡) ≈ (𝛿

2
(𝑡) , ] (𝑡, ⋅) , 𝑏 (𝑡)) , (31)

where

] (𝑡, d𝑦) = ] (𝑡, 𝜎 (𝑡) d𝑦) = ∫
𝑡

0

𝐻(𝜎 (𝑡) d𝑦; 𝑡, 𝑠) 𝜆 (𝑠) d𝑠,

(32)

𝑏

(𝑡) = ∫

𝑅

𝑦

1 + 𝑦
2
] (𝑡, d𝑦) −

𝜇 (𝑡)

𝜎 (𝑡)

= ∫

𝑅

𝑦

1 + 𝑦
2
] (𝑡, 𝜎 (𝑡) d𝑦) −

𝜇 (𝑡)

𝜎 (𝑡)

,

(33)

𝛿
2
(𝑡) = lim

𝜀→0

∫

|𝑦|<𝜀

𝑦
2] (𝑡, 𝜎 (𝑡) d𝑦) . (34)

Thus, the Lévy-Khintchin representation of 𝑍
ℎ
(𝑡) is given by

i𝜃𝑏 (𝑡) − 1
2

𝜃
2
𝛿
2
(𝑡)

+ ∫

𝑅\{0}

(ei𝜃𝑦 − 1 −
i𝜃𝑦
1 + 𝑦

2
) ] (𝑡, 𝜎 (𝑡) d𝑦) .

(35)

Proof. Thecharacteristic function of𝑍
ℎ
(𝑡), denoted by𝐶

𝑍
(𝜃),

can be written as

𝐶
𝑍
(𝜃) = 𝐸 [ei𝜃𝑍ℎ(𝑡)] = 𝐸 [ei𝜃(Δ𝑋ℎ(𝑡)−𝜇(𝑡))/𝜎(𝑡)]

= e−i𝜃𝜇(𝑡)/𝜎(𝑡)𝐶
Δ
(

𝜃

𝜎 (𝑡)

) .

(36)

Then,

log𝐶
𝑍
(𝜃) = −i𝜃

𝜇 (𝑡)

𝜎 (𝑡)

+ ∫

𝑅

(ei𝜃𝑦/𝜎(𝑡) − 1) ] (𝑡, d𝑦)

= −i𝜃
𝜇 (𝑡)

𝜎 (𝑡)

+ ∫

𝑅

(ei𝜃𝑧 − 1) ] (𝑡, 𝜎 (𝑡) d𝑧) ,
(37)

where 𝑧 = 𝑦/𝜎(𝑡).The rest of proof is the same as the last part
proof of Proposition 4.
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Because the weak limit of the sequence of infinitely divisi-
ble random variables is also infinitely divisible, we can obtain
the following weak convergence results of the regularized
process {𝑍

ℎ
(𝑡)} based onTheorem 5 and Proposition 4.

Corollary 6. Under assumptions (A
1
)–(A

5
), there exists an

infinitely divisible random variable 𝑍 ≈ (𝛿
2

0
, ]
0
(⋅), 𝑏

0
) with

⋅ ⊂ 𝑅 and constants 𝑏
0
and 𝛿2

0
≥ 0, such that the sufficient

and necessary conditions for 𝑍
ℎ
(𝑡)

d
→ 𝑍 as 𝑡 → ∞ are

] (𝑡, ⋅) → ]
0
(⋅) , 𝑏


(𝑡) → 𝑏

0
, 𝛿

2
(𝑡) → 𝛿

2

0
,

(38)

where ](𝑡, ⋅) → ]
0
(⋅) means ∫

𝑅
𝑓(𝑥)](𝑡, d𝑥) →

∫
𝑅
𝑓(𝑥)]

0
(d𝑥) for all bounded and continuous functions 𝑓 :

𝑅 → 𝑅 \ {0}.

4.2. Convergence to 𝛼-Stable Distribution. Now, we present
the conditions for {𝑍

ℎ
(𝑡)} to converge weakly to an 𝛼-stable

distribution. Let 𝐹 denote the common distribution function
of secondary shocks 𝑌

𝑖𝑗
. We consider the case that 𝐹 has a

regular-tailed distributionwith index𝛼 ∈ (0, 2) and then have
the following theorem.

Theorem 7. Under assumptions (A
1
)–(A

5
), if 𝐹(𝑦) =

𝑦
−𝛼
𝐿(𝑦), where 𝛼 ∈ (0, 2) and 𝐿 is some slowly varying

function, then 𝜎(𝑡) and 𝜇(𝑡) can be chosen as

𝜎 (𝑡) = 𝐹
−1
(1 −

1

𝛽 (𝑡)

) , (39)

𝜇 (𝑡) =

{
{

{
{

{

0, 𝑖𝑓 𝛼 ∈ (0, 1] ;

𝜎 (𝑡) ∫

|𝑦|<1

𝑦] (𝑡, 𝜎 (𝑡) d𝑦) , 𝑖𝑓 𝛼 ∈ (1, 2) ,

(40)

respectively, such that as 𝑡 → ∞,

𝑍
ℎ
(𝑡) =

Δ𝑋
ℎ
(𝑡) − 𝜇 (𝑡)

𝜎 (𝑡)

d
→ 𝐺

𝛼
, (41)

where 𝛽(𝑡) = ∫

𝑡

0
𝐸[𝑀

1
(𝑡 − 𝑠 − ℎ, 𝑡 − 𝑠)]𝜆(𝑠)d𝑠 and 𝐺

𝛼
is the

𝛼-stable distribution with index 𝛼 ∈ (0, 2).

Proof. The selected 𝜎(𝑡) implies that 𝜎(𝑡) → ∞ as 𝑡 → ∞.
FromTheorem 5, we know that 𝑍

ℎ
(𝑡) ≈ (𝛿

2
(𝑡), ](𝑡, ⋅), 𝑏(𝑡));

according to Corollary 6 and Subsection 2.4 of Klüppelberg
et al. [25], to prove this theorem,we need to show, as 𝑡 → ∞,

(i) for each𝐴 ⊂ 𝑅, ](𝑡, 𝐴) → ]
0
(𝐴), and for 𝑦 > 0, ]

0
(⋅)

satisfies the following homogeneous conditions:

]
0
(𝑦,∞) = 𝑦

−𝛼]
0
(1,∞) ,

]
0
(−∞, −𝑦) = 𝑦

−𝛼]
0
(−∞, −1) ;

(42)

(ii) 𝛿2(𝑡) → 0;
(iii) 𝑏(𝑡) → 𝑏

0
;

note that (i) holds if we show, for 𝑦 > 0,

] (𝑡, (𝑦,∞)) → ]
0
(𝑦,∞) , (43)

where the convergence is in the sense of Corollary 6. From
(32) and (23), we have

] (𝑡, (𝑦,∞)) = ] (𝑡, (𝜎 (𝑡) 𝑦,∞))

= ∫

𝑡

0

𝐻(𝜎 (𝑡) 𝑦; 𝑡, 𝑠) 𝜆 (𝑠) d𝑠

= ∫

𝑡

0

𝑃 {𝜓 ((𝑡 − ℎ, 𝑡) , 𝑠, 𝛾
1
) > 𝜎 (𝑡) 𝑦} 𝜆 (𝑠) d𝑠

= ∫

𝑡

0

𝑃

{

{

{

𝑐𝑋
1
1
{𝑡−ℎ<𝑠≤𝑡}

+

𝑀1

∑

𝑗=1

𝑌
1𝑗
> 𝜎 (𝑡) 𝑦

}

}

}

𝜆 (𝑠) d𝑠

= ∫

𝑡

0

∞

∑

𝑚=0

𝑝
𝑚
𝑃

{

{

{

𝑐𝑋
1
1
{𝑡−ℎ<𝑠≤𝑡}

+

𝑚

∑

𝑗=1

𝑌
1𝑗
> 𝜎 (𝑡) 𝑦

}

}

}

𝜆 (𝑠) d𝑠,

(44)

where𝑀
1
= 𝑀

1
(𝑡 − 𝑠 − ℎ, 𝑡 − 𝑠), 𝑝

𝑚
= 𝑃{𝑀

1
= 𝑚}. Due to the

existence of the integral above, the finite variance of 𝑋
1
, and

the regular-tailed distribution property of ∑𝑚
𝑗=1
𝑌
1𝑗
, we have

𝑃{|𝑐𝑋
1
| > 𝜎(𝑡)𝑦} = 𝑜(𝑃{∑

𝑚

𝑗=1
𝑌
1𝑗
> 𝜎(𝑡)𝑦}). It follows from

Lebesgue’s dominated convergence theorem that

] (𝑡, (𝑦,∞)) ∼ ∫

𝑡

0

∞

∑

𝑚=0

𝑝
𝑚
𝑃

{

{

{

𝑚

∑

𝑗=1

𝑌
1𝑗
> 𝜎 (𝑡) 𝑦

}

}

}

𝜆 (𝑠) d𝑠

∼ ∫

𝑡

0

∞

∑

𝑚=0

𝑚𝑝
𝑚
𝑃 {𝑌

11
> 𝜎 (𝑡) 𝑦} 𝜆 (𝑠) d𝑠

= 𝑃 {𝑌
11
> 𝜎 (𝑡) 𝑦} ∫

𝑡

0

𝐸 [𝑀
1
(𝑠)] 𝜆 (𝑠) d𝑠

= 𝑃 {𝑌
11
> 𝜎 (𝑡) 𝑦} 𝛽 (𝑡) .

(45)

From (39), we have 𝛽(𝑡) = 1/𝐹(𝜎(𝑡)) = 1/𝑃{𝑌
11
> 𝜎(𝑡)}.

Using the properties of regular-tailed distributions and slowly
varying functions, we obtain

] (𝑡, (𝑦,∞)) ∼

𝑃 {𝑌
11
> 𝜎 (𝑡) 𝑦}

𝑃 {𝑌
11
> 𝜎 (𝑡)}

=

(𝜎 (𝑡) 𝑦)
−𝛼

(𝜎 (𝑡))
−𝛼

⋅

𝐿 (𝜎 (𝑡) 𝑦)

𝐿 (𝜎 (𝑡))

= 𝑦
−𝛼
.

(46)
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Let ]
0
(𝑦,∞) = 𝑦

−𝛼; then, ]
0
(⋅) is a Lévy measure; it

implies (43) and also satisfies the homogeneous conditions
(42). Thus, (i) has been proved.

For showing (ii), we note from (46) that, as 𝑡 → ∞,

] (𝑡, 𝜎 (𝑡) d𝑦) = ] (𝑡, (𝜎 (𝑡) 𝑦,∞)) − ] (𝑡, (𝜎 (𝑡) (𝑦 + d𝑦) ,∞))

∼ 𝑦
−𝛼
− (𝑦 + d𝑦)−𝛼 ,

(47)

and using (34),

𝛿
2
(𝑡) = lim

𝜀→0

∫

|𝑦|<𝜀

𝑦
2] (𝑡, 𝜎 (𝑡) d𝑦)

∼ lim
𝜀→0

∫

|𝑦|<𝜀

𝑦
2
(𝑦
−𝛼
− (𝑦 + d𝑦)−𝛼) .

(48)

Since 𝛼 < 2, the integral above converges to zero, thus
𝛿
2
(𝑡) → 0.
Finally, we show (iii). From (33) and (40), when𝛼 ∈ (1, 2),

𝑏

(𝑡) = ∫

𝑅

𝑦

1 + 𝑦
2
] (𝑡, 𝜎 (𝑡) d𝑦) −

𝜇 (𝑡)

𝜎 (𝑡)

= ∫

𝑅

𝑦

1 + 𝑦
2
] (𝑡, 𝜎 (𝑡) d𝑦) − ∫

|𝑦|<1

𝑦] (𝑡, 𝜎 (𝑡) d𝑦)

= ∫

|𝑦|≥1

𝑦

1 + 𝑦
2
] (𝑡, 𝜎 (𝑡) d𝑦)

− ∫

|𝑦|<1

𝑦
3

1 + 𝑦
2
] (𝑡, 𝜎 (𝑡) d𝑦)

∼ ∫

|𝑦|≥1

𝑦

1 + 𝑦
2
(𝑦
−𝛼
− (𝑦 + d𝑦)−𝛼)

− ∫

|𝑦|<1

𝑦
3

1 + 𝑦
2
(𝑦
−𝛼
− (𝑦 + d𝑦)−𝛼)

:= 𝐼 (𝛼) .

(49)

Since all the integrands are bounded and continuous over
their integration regions, the above integrals exist. Let 𝑏

0
=

𝐼(𝛼), thus we have 𝑏(𝑡) → 𝑏
0
.

When 𝛼 ∈ (0, 1],

𝑏

(𝑡) = ∫

𝑅

𝑦

1 + 𝑦
2
] (𝑡, 𝜎 (𝑡) d𝑦)

∼ ∫

𝑅

𝑦

1 + 𝑦
2
(𝑦
−𝛼
− (𝑦 + d𝑦)−𝛼)

:= 𝐼

(𝛼) .

(50)

Similarly, the above integral exists, and we also have 𝑏(𝑡) →
𝑏
0
by choosing 𝑏

0
= 𝐼

(𝛼).

We remark that the another representation of 𝛽(𝑡) in
Theorem 7 is

𝛽 (𝑡) = Λ (𝑡) 𝐸 [𝑀
1
] = 𝐸 [𝑁 (𝑡)] 𝐸 [𝑀1

] , (51)

where𝑀
1
= 𝑀

1
(𝑡 − 𝑈

1
− ℎ, 𝑡 − 𝑈

1
). Note that

𝛽 (𝑡) =

1

𝑃 {𝑌
11
> 𝜎 (𝑡)}

=

𝜎
𝛼
(𝑡)

𝐿 (𝜎 (𝑡))

, (52)

which implies

𝜎 (𝑡) = Λ
1/𝛼
(𝑡) 𝐿

1
(Λ (𝑡)) , (53)

where 𝐿
1
is a slowly varying function.

The theorem below gives the conditions for the regular-
ized process {𝑍

ℎ
(𝑡)} to converge to normal distribution. This

result is natural.

Theorem 8. Under assumptions (A
1
)–(A

5
), if Var(𝑌

11
) exists

and is finite, we can choose

𝜎
2
(𝑡) = ∫

𝑡

0

𝐸 [𝜓
2
((𝑡 − ℎ, 𝑡) , 𝑠, 𝛾

1
)] 𝜆 (𝑠) d𝑠,

𝜇 (𝑡) = ∫

𝑡

0

𝐸 [𝜓 ((𝑡 − ℎ, 𝑡) , 𝑠, 𝛾
1
)] 𝜆 (𝑠) d𝑠,

(54)

such that, as 𝑡 → ∞,

𝑍
ℎ
(𝑡) =

Δ𝑋
ℎ
(𝑡) − 𝜇 (𝑡)

𝜎 (𝑡)

d
→ Φ, (55)

whereΦ represents standard normal distribution.

5. Summary and Discussion

The local cumulative shock model defined by (6), (7), and
(8) is a generalization of the classical extreme shock models.
There are two types of shocks in this model called primary
shocks and secondary shocks, respectively. The primary
shocks are generated by a nonhomogeneous Poisson process
and each of them causes a series of secondary shocks.
Therefore, the shock process has a cluster structure and can
be considered as the superposition of two streams of shock
processes. In this model, the local cumulative shock process
{Δ𝑋

ℎ
(𝑡); 𝑡 ≥ ℎ} plays the core role in determining the

lifetime behavior of the system.
This paper discusses the limit properties of {Δ𝑋

ℎ
(𝑡)}.

Based on the theories of infinite divisibility and stable distri-
butions, we establish the central limit theorems of {Δ𝑋

ℎ
(𝑡)},

and find the conditions under which the regularized process
of {Δ𝑋

ℎ
(𝑡)} converges to infinitely divisible, 𝛼-stable or

normal distributions. Our work provides a foundation for the
next work of studying lifetime property and failure behavior
of the local cumulative shock model.

{Δ𝑋
ℎ
(𝑡)} is a very novel stochastic process and has

not been found in the available literature. The new failure
mechanism defined by {Δ𝑋

ℎ
(𝑡)} is more reasonable than the

classical models to explain some reliability phenomenons
such as the bankruptcy behavior in insurance and financial
industry, where the fateful risk is not necessarily long-history
dependent but more like short-term determined. For such
a situation, the classical models may not provide realistic
risk measures. There are two main factors that make our
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modelmore reasonable in describing the risk behavior for the
operations of an insurance or a financial firm.The first one is
that the cluster structure is based on the event sequence of
purchase and claims of each insurance policy. The second is
that the local cumulative shock is more realistic and flexible
in modeling the bankrupt condition for modern insurance
services.
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